人教版高中数学必修2第二章《直线与直线的方程》教案8
高中数学必修二《直线与方程》教案设计
高中数学必修二《直线与方程》教案设计一、教学目标1.知识目标:o学生能够掌握直线的点斜式、两点式和一般式方程的表达形式及其相互转换。
o学生能够理解直线方程中斜率、截距的概念,并能根据给定条件求出直线方程。
o学生能够运用直线方程解决简单的几何问题,如求两直线的交点、判断两直线是否平行或垂直。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提高数学建模能力。
o提高学生的运算能力,能够熟练进行直线方程的推导和计算。
o增强学生的问题解决能力,能够运用所学知识解决实际问题。
3.情感态度价值观目标:o培养学生严谨的数学学习态度,注重逻辑推理和证明过程。
o激发学生的学习兴趣,鼓励学生积极探索数学奥秘,培养数学学习的自信心。
o培养学生的合作精神,通过小组讨论和合作学习,提高团队协作能力。
二、教学内容-重点:直线的点斜式、两点式和一般式方程的表达及相互转换;斜率、截距的概念及应用。
-难点:直线方程的应用,如求两直线的交点、判断两直线的位置关系。
三、教学方法-讲授法:用于直线方程的基本概念和理论的讲解。
-讨论法:通过小组讨论,加深学生对直线方程的理解和应用。
-案例分析法:通过具体案例分析,提高学生解决实际问题的能力。
-多媒体教学法:利用多媒体资源,如、动画等,直观展示直线方程的图形和推导过程。
四、教学资源-教材:《高中数学必修二》-教具:黑板、粉笔、直尺、圆规-多媒体资源:课件、直线方程推导动画、几何画板软件-实验器材:无需特定实验器材五、教学过程六、课堂管理1.小组讨论:每组4-5人,确保每组成员水平均衡,指定小组长负责协调讨论和记录。
2.维持纪律:明确课堂规则,如举手发言、不打断他人讲话等,对违规行为及时提醒和处理。
3.激励策略:对积极参与讨论、表现突出的学生给予表扬和奖励,如加分、小礼品等。
七、评价与反馈1.课堂小测验:每节课结束前进行小测验,检查学生对本节课内容的掌握情况。
2.课后作业:布置适量的课后作业,巩固所学知识,要求学生按时完成并提交。
高中数学人教A版必修2教案-3.2_直线的方程_教学设计_教案_1
教学准备1. 教学目标1.掌握直线与平面垂直的概念并能用三种语言表示;2.掌握直线与平面垂直的判定定理及语言表示;3.会用线面垂直的定义和判定定理证明简单命题.2. 教学重点/难点1.掌握直线与平面垂直的概念并能用三种语言表示;2.掌握直线与平面垂直的判定定理及语言表示;3.会用线面垂直的定义和判定定理证明简单命题.3. 教学用具4. 标签教学过程从源于身边的图片中寻找并感知直线与平面的垂直关系.1.旗杆与地面的位置关系2.将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?直线与平面垂直的定义1.铅垂线与地面上的任意一条直线的关系?(演示实验)2.如果一条直线和平面a相交,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直.如右图直线垂直于平面a3.直线与平面垂直的画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.例1 已知下列命题:探究直线与平面垂直的判定定理1.旗杆与比萨斜塔对比直观感觉塔与地面不垂直,旗杆是与地面垂直的,但是如何测定旗杆与地面垂直?(分组讨论)2.如下图,请同学们准备一块三角形的纸片,过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕与桌面所在的平面α垂直?3.直线与平面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.图形语言:归纳小结1、直线与平面垂直的定义及应用;2、直线与平面垂直判定定理证明及应用;3、数学思想:转化的思想课外小组探究1.你认为三棱锥中最多有几个直角三角形?2.四棱锥最多有几个直角三角形呢?布置作业P74 习题2.3 B组:2,4.。
人教版高中必修二《直线与方程》教学案例
人教版高中必修二《直线与方程》教学案例《人教版高中必修二《直线与方程》教学案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!第1节直线与方程复习目标:1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线位置的几何要素,掌握直线方程的几种形式,了解斜截式与一次函数的关系.一、课前预习基础回顾考点1 直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴_____与直线_____的方向所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.动态定义:旋转(2)倾斜角的范围为_______________.2.直线的斜率(1)定义:一条直线的倾斜角α的________叫做这条直线的斜率,斜率常用小写字母k表示,即k=______,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_________.考点2 直线方程的几种形式关键要素:点,斜率,截距名称条件方程适用范围点斜式斜率k与点(x1,y1)y-y1=k(x-x1)不含直线x=x1斜截式斜率k与直线在y轴上的截距by=kx+b不含垂直于x轴的直线两点式两点(x1,y1),(x2,y2)=不含直线x=x1(x1=x2)和直线y=y1(y1=y2)截距式直线在x轴、y轴上的截距分别为a、b+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不同时为0)平面直角坐标系内的直线都适用[双基夯实]一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”)1.直线的倾斜角越大,其斜率越大.( )2.当直线的斜率不存在时,其倾斜角存在.( )3.过点P(x1,y1)的直线方程一定可设为y-y1=k(x-x1).( )4.直线方程的截距式+=1中,a,b均应大于0.( )二、小题快练1.[2017·贵州模拟]已知直线l经过点P(-2,5),且斜率为-,则直线l的方程为( )A.3x+4y-14=0B.3x-4y+14=0C.4x+3y-14=0D.4x-3y+14=02.[课本改编]直线x+y+1=0的倾斜角是( )A.B.C.D.3.[课本改编]过两点(0,3),(2,1)的直线方程为( )A.x-y-3=0B.x+y-3=0C.x+y+3=0D.x-y+3=04.若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为______.考向1 直线的倾斜角与斜率看菜如图,比较直线,,的斜率、、的大小.1.直线2x-y+4=0同时过第()象限A.一,二,三B.二,三,四C.一,二,四D.一,三,四2.直线l1:ax-y+b=0,l2:bx-y+a=0,在同一坐标系下l1和l2的图像是()3.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是_______.拓展:(1)若M在第二象限,则k的取值范围是_______.(2)若M在第四象限,则k的取值范围是_______.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;例1 直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_______________________.探究1若将题中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.直线l的斜率直线l的倾斜角α区别直线l垂直于x轴时l的斜率不存在直线l垂直于x轴时l的倾斜角是90°联系①直线的斜率与直线的倾斜角(90°除外)为一一对应关系.②当α∈[0°,90°)时,α越大,l的斜率越大;当α∈(90°,180°)时,α越大,l的斜率越大.③所有直线都有倾斜角,但不是所有直线都有斜率.【变式训练1】如果直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角α的取值范围是( )A.0≤α≤πB.0≤α≤或<α<πC.0≤α≤D.≤α<或<α<π考向2 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.【变式训练2】已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.触类旁通求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,即设定含有参数的直线方程,由条件列出方程(组),再求出参数,最后将其代入直线方程.考向3 直线方程的应用例3 已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.【变式训练3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.核心规律1.明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法.满分策略1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.1.直线的倾斜角与斜率(1)在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按__________方向旋转到和直线重合时所转过的____________称为这条直线的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为__________.(2)倾斜角的范围为________________.(3)倾斜角与斜率的关系:α≠90°时,k=________,倾斜角是90°的直线斜率________.(4)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=_____________________.2.直线方程的五种基本形式名称方程适用范围点斜式不含直线x=x0斜截式不含垂直于x轴的直线两点式不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式不含垂直于坐标轴和过原点的直线一般式平面直角坐标系内的直线都适用自我检测1.若A(-2,3),B(3,-2),C三点共线,则m的值为________.2.直线l与两条直线x-y-7=0,y=1分别交于P、Q两点,线段PQ的中点为(1,-1),则直线l的斜率为_______________________________________________________.3.下列四个命题中,假命题是________(填序号).①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;③与两条坐标轴都相交的直线不一定可以用方程+=1表示;④经过点Q(0,b)的直线都可以表示为y=kx+b.4.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过第________象限.5.已知直线l的方向向量与向量a=(1,2)垂直,且直线l过点A(1,1),则直线l的方程为______________.二、教学过程探究点一倾斜角与斜率例1 已知两点A(-1,-5)、B(3,-2),直线l的倾斜角是直线AB 倾斜角的一半,求l的斜率.变式迁移1直线xsinα-y+1=0的倾斜角的变化范围是______________.探究点二直线的方程例2 过点M(0,1)作直线,使它被两直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M所平分,求此直线方程.变式迁移2 求适合下列条件的直线方程:(1)经过点P(3,2)且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.探究点三直线方程的应用例3 过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)PA·PB最小时l的方程.变式迁移3 为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m,应如何设计才能使草坪面积最大?拓展延伸:例4 已知实数x,y满足y=x2-2x+2(-1≤x≤1).试求的最大值与最小值.三、回顾与反思:人教版高中必修二《直线与方程》教学案例这篇文章共9802字。
高中数学直线与方程教案
高中数学直线与方程教案教学目标:学生能够掌握直线方程的求解方法,了解直线方程与几何的关系,能够灵活运用直线方程解决实际问题。
教学重点:直线方程的基本概念和求解方法。
教学难点:直线方程与几何问题的应用。
教学内容:一、直线的方程形式及性质1. 直线的一般方程:Ax + By + C = 02. 直线的斜率与截距3. 直线的截距式和点斜式二、直线的方程求解1. 通过已知点和斜率求直线方程2. 通过两点求直线方程3. 通过截距求直线方程三、直线方程的应用1. 直线与圆的位置关系2. 直线与直线的位置关系3. 直线方程解决实际问题的应用教学方法:讲解结合练习,引导学生自主发现问题,并通过实际问题进行实践。
教学过程:一、直线的方程形式及性质1. 引出直线的一般方程Ax + By + C = 0的定义及性质,让学生理解直线方程的意义。
2. 通过实例演示直线的斜率与截距的计算方法。
3. 探讨直线的截距式和点斜式的应用及意义。
二、直线的方程求解1. 通过已知点和斜率求直线方程的例题演练,让学生灵活掌握解题方法。
2. 通过两点和截距求直线方程的练习,引导学生掌握不同情况下的求解方法。
三、直线方程的应用1. 通过例题演示直线与圆的位置关系,让学生理解直线与曲线的相互关系。
2. 引导学生通过实际问题应用直线方程解决难题,培养学生的问题解决能力。
教学总结:通过本节课的学习,学生应该能够掌握直线方程的基本概念和求解方法,了解直线方程与几何问题的关系,能够灵活运用直线方程解决实际问题。
同时,希望同学们能够通过实际问题的解答,感受到数学在生活中的应用和意义。
人教课标版高中数学必修2《直线的方程(第2课时)》教学设计
3.2.2 直线的方程一、教学目标(一)核心素养通过这节课学习,根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(两点式及截距式),体会数形结合的思想.(二)学习目标1.掌握直线方程的两点式、截距式以及它们之间的联系和转化,并能根据条件熟练地求出满足已知条件的直线方程.2.通过经历直线方程的发现过程,以提高分析、比较、概括、化归的数学能力,初步了解用代数方程研究几何问题的思路,培养综合运用知识解决问题的能力.3.在教学中充分揭示“数”与“形”的内在联系,体会数、形的统一美,激发学习数学的兴趣,进行对立统一的辩证唯物主义观点的教育,培养勇于探索、勇于创新的精神.(三)学习重点1.直线方程的两点式的推导.2.直线方程的截距式的推导.3.直线方程的两点式与截距式的应用.(四)学习难点直线方程的两点式、截距式的推导及运用,应考虑使用范围并进行分类讨论.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第100页至第102页,填空: 直线方程121121x x x x y y y y --=--,这是经过两点),(11y x A ,),(22y x B 的直线方程(其中21x x ≠,21y y ≠)的直线方程,所以我们把它叫做直线的两点式方程. 直线方程1=+by a x (其中a ,b 均不为0),我们把直线l 与x 轴的交点)0,(a 的横坐标a 叫做直线在x 轴上的截距;方程1=+by a x (其中a ,b 均不为0)由直线与两个坐标轴的截距b a ,确定,故其称为直线的截距式方程.当直线l 平行或垂直于坐标轴时,两点式不能表示出直线方程;当直线l 平行或垂直于坐标轴或过坐标原点时,截距式不能表示出直线方程.(2)写一写:直线的两点方程是121121x x x x y y y y --=--(其中21x x ≠,21y y ≠);直线的截距式方程是1=+by a x (其中a ,b 均不为0). 2.预习自测(1)过两点(1,2),(2,4)的直线的两点式方程为( )A .214221y x --=-- B .121242-+=-+x y C .121242+-=+-x y D .122412--=--x y 答案:A .解析:【知识点】直线的两点式方程. 【解题过程】方程形如121121x x x x y y y y --=--的形式.点拨:把每一个选项与概念进行对比,特别注意两点式的形式要一模一样.(2)过两点(1,0),(0,4)的直线的截距式方程为( )A .141=-y x B .141=+y x C .14=+y xD .14=-y x解析:【知识点】直线的截距式方程. 【解题过程】方程形如1=+by a x 的形式. 点拨:明确截距的概念,再写成截距式方程的形式.(3)已知两直线0x ky k --=与(1)y k x =-平行,则k 的值是( )A .1B .-1C .1或-1D .2答案:B .解析:【知识点】直线平行的充要条件. 【解题过程】由题设知k k 1=1k ;当1=k 时,两直线重合,舍去.点拨:直线平行的充要条件是斜率相等,且排除掉重合的情形.(二)课堂设计1.知识回顾(1)直线的点斜式方程——已知直线l 经过点),(111y x P ,且斜率为k ,直线的方程:)(11x x k y y -=-为直线方程的点斜式.直线的斜率0=k 时,直线方程为;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.(2)直线的斜截式方程——已知直线l 1y y =经过点P (0,b ),并且它的斜率为k ,直线l 的方程:b kx y +=为斜截式.① 斜截式是点斜式的特殊情况,某些情况下用斜截式比用点斜式更方便.② 斜截式b kx y +=在形式上与一次函数的表达式一样,它们之间只有当0≠k 时,斜截式方程才是一次函数的表达式.③斜截式b kx y +=中,k ,b 的几何意义.探究一 问题引入★●活动① 应用直线方程的点斜式,求经过下列两点的直线方程:⑴A(2,1),B(6,-3); ⑵A(0,5),B(5,0); ⑶A(-4,-5),B(0,0).【设计意图】本环节从学生利用上节课学过的直线的方程的点斜式,求过两已知点的直线的方程出发,让学生“悟”出学习两点式的必要性,同时也“悟”也两点式的推导方法,以此导入新课,目的在于学生既加深学过知识的理解,又为学习新知识奠定良好的基础.探究二 直线的两点式方程的推导★●活动① 直线的两点式方程——已知直线经过两个点,求直线的方程已知直线上两点),(11y x A ,B (),22y x )(21x x ≠,求直线方程.首先利用直线的斜率公式求出斜率,然后利用点斜式写出直线方程为:)(112121x x x x y y y y ---=- 由)(112121x x x x y y y y ---=-可以导出121121x x x x y y y y --=--,这两者表示了直线的范围是不同的.后者表示范围缩小了.但后者这个方程的形式比较对称和美观,体现了数学美,同时也便于记忆及应用.所以采用后者作为公式,由于这个方程是由直线上两点确定的,所以叫做直线方程的两点式.所以,当21x x ≠,21y y ≠时,经过),(11y x A ,B (),22y x 的直线的两点式方程可以写成:121121x x x x y y y y --=--. ●活动② 互动交流,课堂讨论探究1:哪些直线不能用两点式表示?答:倾斜角是0°或90°的直线不能用两点式公式表示.探究2:若要包含倾斜角为0°或90°的直线,应把两点式变成什么形式?答:应变为))(())((121121y y x x x x y y --=--的形式.探究3:我们推导两点式是通过点斜式推导出来的,还有没有其他的途径来进行推导呢? 答:有,利用同一直线上三点中任意两点的斜率相等.【设计意图】两点式方程由点斜式方程自然导出,特别要注意直线的两点式方程也有缺陷,因此,本环节通过问题的讨论,力求使学生对直线方程的两点式有一个全面的认识,以建立起完整、准确的知识结构.探究三 直线的截距式方程的推导★●活动① 直线的截距式方程——已知直线在y x ,轴上的截距,求直线的方程定义:直线与x 轴交于一点(a ,0)定义a 为直线在x 轴上的截距;直线与y 轴交于一点(0,b )定义b 为直线在y 轴上的截距.我们易得到过A(a ,0) B(0, b ) (其中a ,b 均不为0)的直线方程为b x ab y +-=,将其变形为:1=+by a x . 以上直线方程是由直线在x 轴和y 轴上的截距确定的,所以叫做直线方程的截距式.有截距式画直线比较方便,因为可以直接确定直线与x 轴和y 轴的交点的坐标.●活动② 巩固理解,加深认识提出问题串,让学生一起交流讨论:探究4:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?答:不是,它们可以是正,也可以是负,也可以为0.探究5:有没有截距式不能表示的直线?答:有,当截距为零时.故使用截距式表示直线时,应注意单独考虑这几种情形,分类讨论,防止遗漏.【设计意图】通过直线的斜截式方程变形为截距式方程,加深对直线的斜截式方程的理解,突破重点,也体现了截距式方程的重要性.探究四 直线的两点式方程与截距式方程的应用★▲●活动① 巩固基础,检查反馈例1 下面四个直线方程中,可以看作是直线的两点式方程的是( )A.122+=-y xB.1-=x yC.3211=-+x y D.322121--=-+x y 答案:D .解析:【知识点】直线的两点式方程概念的理解. 【解题过程】方程形如121121x x x x y y y y --=--的形式. 点拨:把每一个选项与概念进行对比,特别注意两点式的形式要一模一样.同类训练 下面四个直线方程中,可以看作是直线的截距式方程的是( ) A.112=-+y x B.012=-+y x C.12=-y xD.02=-y x答案:A .解析:【知识点】直线的截距式方程概念的理解. 【解题过程】方程形如1=+by a x 的形式. 点拨:把每一个选项与概念进行对比,特别注意截距式的形式要一模一样.例2 求过点A (2,1),B (0,-3)的直线的两点式方程,再化为斜截式方程.【知识点】两点式方程,斜截式方程. 【解题过程】直线的两点式方程为202131--=---x y ⇒直线的斜截式方程为32-=x y .【思路点拨】直线的两点式方程与斜截式方程的互化. 【答案】202131--=---x y ;32-=x y .同类训练 求过点A (-4,-5),B (0,0)的直线的两点式方程,再化为斜截式方程. 答案:404505++=++x y ;x y 45=. 解析:【知识点】两点式方程,斜截式方程. 【解题过程】直线的两点式方程为404505++=++x y ⇒直线的斜截式方程为x y 45=. 点拨:直线的两点式方程与斜截式方程的互化.【设计意图】巩固掌握两点式方程与斜截式方程的互化.●活动② 强化提升、灵活应用例3 说出下列直线的方程:⑴倾斜角为 45,在y 轴上的截距为0;⑵在x 轴上的截距为-5,在y 轴上的截距为6;【知识点】直线的截距式方程,会画出图形.【数学思想】数形结合思想.【解题过程】(1)x y =;(2)165=+-y x . 点拨:直线的截距与截距式的概念理解清楚.答案:(1)x y =;(2)165=+-y x . 同类训练 写出下列直线的方程:(1)在x 轴上截距是-3,与y 轴平行;(2)在y 轴上的截距是4,与x 轴平行.答案:(1)3-=x ;(2)4=y .解析:【知识点】直线的截距式方程,会画出图形.【数学思想】数形结合思想.【解题过程】(1)3-=x ;(2)4=y .点拨:直线的截距式方程的特殊情况.【设计意图】在讲完两点式后,紧接着讲解截距式,有利于比较两种形式的方程,从而有助于学生理解两者之间的内在的联系和区别,在具体应用截距式时能考虑到截距为0与不为0的两种情况,并建立完善的知识的结构.3.课堂总结知识梳理通过列表从名称、形式、已知条件、使用范围等方面对所学的直线方程的四种形式(点斜式、斜截式、两点式、截距式)进行填表比较:【设计意图】为帮助学生用联系的观点来学习知识,又能把四种形式的直线方程加以区别,以便更好地运用它们,本环节主要采用比较法的形式小结.(三)课后作业基础型 自主突破1.下面四个直线方程中,可以看作是直线的截距式方程的是( )A.112=-+y x B.012=-+y x C.12=-y xD.02=-y x答案:A .解析:【知识点】直线的截距式方程概念的理解. 【解题过程】方程形如1=+by a x 的形式. 点拨:把每一个选项与概念进行对比,特别注意截距式的形式要一模一样.2.直线b ax y +=(b a +=0)的图象是( )答案:D . 解析:【知识点】直线的斜截式方程与几何意义.【数学思想】数形结合思想【解题过程】解法一:由已知,直线b ax y +=的斜率为a ,在y 轴上的截距为b .又因为b a +=0.∴a 与b 互为相反数,即直线的斜率及其在y 轴上的截距互为相反数. 图A 中,a >0,b >0;图B 中,a <0,b <0;图C 中,a >0,b =0故排除A 、B 、C.选D. 解法二:由于所给直线方程是斜截式,所以其斜率a ≠0,于是令y =0,解得ab x -=.又因为b a +=0,∴b a -=,∴1=-=ab x ∴直线在x 轴上的截距为1,由此可排除A 、B 、C ,故选D .点拨:直线的斜截式方程与几何意义.3.若ac >0且bc <0,直线0=++c by ax 不通过( )A.第一象限B.第二象限C.第三象限D.第四象限答案:D .解析:【知识点】直线一般式方程与斜截式方程的互化,会由直线特征量画直线.【解题过程】由ac >0且bc <0,知0,0ab bc <<;由直线0=++c by ax a c y x b b ⇒=--,故斜率0a k b =->,截距0c b->,所以直线过一、二、三象限,不过第四象限. 点拨:会由直线特征量画直线.1.若点)1,(a A 在直线012= +y x 上,则=a ________,若点A 不在直线012= +y x 上,则a 的取值范围是________.答案:=a 0;0a .解析:【知识点】点在直线上的充要条件.【数学思想】数形结合思想【解题过程】点)1,(a A 在直线012= +y x 上,则=a 0;若点A 不在直线012= +y x 上,则a 的取值范围是0a .点拨:点在直线上的充要条件.2.经过点(2,1)且倾斜角的正切值是2的直线方程是________.答案:230x y .解析:【知识点】已知直线过一点与其倾斜角的正切值,求直线方程.【解题过程】由题设知斜率tan 2k,由点斜式方程,得直线的方程为12(2)y x ,即230x y .点拨:已知直线过一点与其倾斜角的正切值,可由点斜式求直线方程.3.已知A (2,5),B (4,1),若点P (x ,y )在线段AB 上,则2x -y 的最大值为_______. 答案:7.解析:【知识点】直线的两点式方程.【解题思路】如图示:A (2,5),B (4,1).若点P (x ,y )在线段AB 上,令z =2x-y ,则平行y =2x-z 当直线经过B 时截距最小,z 取得最大值,可得2x-y 的最大值为:2×4-1=7.故答案为7.点拨:平行直线z =2x-y ,判断取得最值的位置,求解即可.能力型 师生共研1.过点P(2,1)作直线l 交y x ,正半轴于AB 两点,当||||PB PA ⋅取到最小值时,求直线l 的方程.答案:03=-+y x .解析:【知识点】直线方程与函数最值.【解题过程】设直线l 的方程为:)0(),2(1≠-=-k x k y令y =0解得kx 12-=;令x =0,解得k y 21-= ∴A (k12-,0),B (0,k 21-), ∴||||PB PA ⋅=)4)(11(22k k ++4248)1(4822=⨯+≥++=kk 当且仅当12=k 即1±=k 时,||||PB PA ⋅取到最小值.又根据题意0<k ,∴1-=k所以直线l 的方程为:03=-+y x .点拨:此题在求解过程中运用了基本不等式,同时应注意结合直线与坐标轴正半轴相交而排除k =1的情形.2.已知直线1l 的倾斜角为34,直线2l 经过点(3,2),(,1)A B a ,且12l l ,求实数a 的值.答案:0a . 解析:【知识点】已知两点求斜率;垂直的充要条件.【数学思想】数形结合思想【解题过程】11k ,由12l l 得221103k a a .点拨:由垂直的充要条件得另一直线的斜率,再由两点表示斜率.探究型 多维突破1.一直线被两直线1l :064=++y x ,2l :0653=--y x 截得的线段的中点恰好是坐标原点,求该直线方程.答案:06=+y x .解析:【知识点】直线相交与中点.【数学思想】数形结合思想.【解题过程】设所求直线与1l ,2l 的交点分别是A 、B ,设A(00,y x ),则B 点坐标为(00,y x --)因为A 、B 分别在1l ,2l 上,所以⎩⎨⎧=-+-=++06530640000y x y x ②① ①+②得:0600=+y x ,即点A 在直线06=+y x 上,又直线06=+y x 过原点,所以直线l 的方程为06=+y x .点拨:交点与中点的坐标表示.1.直线01=-+By Ax 在y 轴上的截距是-1,而且它的倾斜角是直线333=-y x 的倾斜角的2倍,则( )A.A =3,B =1B.A =-3,B =-1C.A =3,B =-1D.A =-3,B =1答案:B .解析:【知识点】直线的倾斜角与截距. 【解题过程】将直线方程化成斜截式Bx B A y 1+-=. 因为B1=-1,B =-1,故否定A 、D. 又直线333=-y x 的倾斜角α=3π,∴直线01=-+By Ax 的倾斜角为2α=32π, ∴斜率-32tan π=B A =-3, ∴A =-3,B =-1,故选B .点拨:直线的倾斜角与截距.自助餐1.已知直线l 的方程是1y x ,则( )A .直线经过点(-1,2),斜率为1B.直线经过点(2,-1),斜率为-1C .直线经过点(-1,2),斜率为-1D .直线经过点(-2,-1),斜率为1答案:C .解析:【知识点】直线的斜截式方程.【解题过程】直线l 的方程是1y x ,故直线经过点(-1,2),斜率为-1. 点拨:将点的坐标代入直线方程直接检验,斜率的概念.2.直线33(1)yx 的倾斜角及在x 轴上的截距分别是( )A .2,600B .0120,2C .,600 2D .2,1200答案:B .解析:【知识点】直线的倾斜角与横截距.【解题过程】直线的斜率为3-,令0 y 时,2x,故在x 轴上的截距为2. 点拨:直线的斜截式方程.3.已知直线l 过点(2,0),(2,6),其斜率为k ,在y 轴上的截距为b ,则有( ) A .3,23=-=b k B .2,23-=-=b k C .3,32k b =-=- D .3,32-=-=b k答案:C . 解析:【知识点】已知直线过两点,转化为斜截式方程.【解题过程】斜率063222k ,故直线l 的方程为3(2)2y x ,可化为323--=x y ,故3,23-=-=b k . 点拨:直线的斜截式方程.4.已知直线l 过点(2,1)P ,且交x 轴、y 轴正向于A 、B 两点,要使得ABC 的面积最小,则l的方程为________. 答案:1 2.2y x 解析:【知识点】直线的点斜式方程与三角形面积最值.【数学思想】数形结合思想【解题过程】设l 的方程为(2)1(0)y k x k ,故1(2,0),(0,12).A B k k 所以11111(2)(12)222(2)()242222S OA OB k k k k k k ,当且仅当12k 时,所以l 的方程为1 2.2y x 点拨:设出直线的点斜式方程,表示出三角形面积,再利用均值不等式求出最小值. 5.过点(5,2),且在x 轴上截距是在y 轴上截距的2倍的直线方程是____________. 答案:y -9=0或2x -5y =0.解析:【知识点】直线的截距式方程.【解题过程】解:当直线过原点时,直线方程为y=25x 直线不经过原点时,设直线方程为12x y a a+= 把点(5,2)代入可得5+4=2a ,解得a =92 ∴直线的方程为x +2y -9=0.综上可得:直线的方程为x +2y -9=0或2x -5y =0.故答案为:x +2y -9=0或2x -5y =0.点拨:当直线过原点时,直线方程为y=25x .直线不经过原点时,设直线方程为12x y a a+=,把点(5,2)代入即可得出.6.若直线0=++C By Ax 通过第二、三、四象限,则系数A 、B 、C 需满足条件( )A.A 、B 、C 同号B.AC <0,BC <0C.C =0,AB <0D.A =0,BC <0答案:A .解析:【知识点】直线经过哪几个象限.【数学思想】数形结合思想. 【解题过程】解法一:原方程可化为B C x B A y --=(B ≠0). ∵直线通过第二、三、四象限,∴其斜率小于0,y 轴上的截距小于0,即-B A <0,且-BC <0 ∴B A >0,且BC >0 即A 、B 同号,B 、C 同号.∴A 、B 、C 同号,故选A .解法二:(用排除法)若C =0,AB <0,则原方程化为B C x B A y --==-x BA . 由AB <0,可知-BA >0. ∴此时直线经过原点,位于第一、三象限,故排除C.若A =0,BC <0,则原方程化为B C y -=.由BC <0,得-BC >0. ∴此时直线与x 轴平行,位于x 轴上方,经过一、二象限.故排除D. 若AC <0,BC <0,知A 、C 异号,B 、C 异号∴A 、B 同号,即AB >0.∴此时直线经过第一、二、四象限,故排除B.故A 、B 、C 同号,应选A . 点拨:数形结合思想.。
人教版高中必修23.2直线的方程教学设计 (2)
人教版高中必修23.2直线的方程教学设计教学目标1.学生能够理解直线的概念,以及在平面直角坐标系中如何表示直线。
2.学生能够掌握求直线斜率、截距的方法,并能根据截距式和斜率式得出直线方程。
3.学生能够通过实例理解直线方程式的应用,如求两直线交点的方法。
教学内容及安排第一节:直线的概念与描述1.利用白板进行直线概念解释,向学生介绍直线的定义、性质及分类。
2.使用平面直角坐标系图形演示,帮助学生直观感受直线的本质。
3.通过实例让学生理解直线斜率概念,同时介绍斜率的求法。
第二节:截距式、斜率式的讲解及应用1.介绍直线截距式及其特点,引导学生了解截距式求解直线方程的基本方法。
2.通过实例引导学生分类讨论斜率的正负情况,介绍了解斜率式求解直线方程的方法。
3.协助学生通过题目实践,帮助学生掌握直线方程式的求法。
第三节:交点的求解及其应用1.图示示范直线求交点,让学生直观感受交点的特点。
2.协助学生利用平面直角坐标系图形找出直线交点的位置。
3.进行实践训练,让学生掌握直线方程求交点的方法。
教学重点难点掌握直线的表示方法,求解直线斜率和截距的知识点,以及应用直线方程式求解交点的难点。
教学方法1.讲授法:在理论讲解中,使用直观的图像让学生理解概念,提高他们的学习兴趣和动力。
2.贴近生活法:利用生活常识的例子辅助讲解,让学生更好地理解概念。
3.互动式教学法:在实践环节中,通过活跃的互动让学生更深入地理解知识点。
教学手段1.黑板、白板等教学设备:用于讲解概念和实例解题。
2.投影仪:用于图表、图像、视频等内容的展示与示范。
3.课本、习题集等辅助教材:用于补充与加深学生掌握的知识点。
教学评价方法1.以平时测试、期中期末考试为主要评价方法,包括选择题、计算题等多种形式。
2.注重课堂互动表现,考虑课堂参与度和表现、课堂演讲与报告等因素。
教学实施建议1.在理论讲解后引导学生上课边做课本习题,增强实践应用能力。
2.每节课的期末加上模拟演练,让学生在课程中更好地掌握知识。
人教A版高中数学必修二教案直线的方程
7.2直线的方程一、素质教育目标1、知识教学点⑴直线方程的点斜式、斜截式、两点式、截距式和一般式,它们之间的内在联系⑵直线与二元一次方程之间的关系⑶由已知条件写出直线的方程⑷根据直线方程求出直线的斜率、倾斜角、截距,能画方程表示的直线2、能力训练点(1)通过对直线方程的点斜式的研究,培养学生由特殊到一般的研究方法(2)通过对二元一次方程与直线的对应关系的认识和理解,培养学生的数、形转化能力(3)通过运用直线方程的知识解答相关问题的训练,培养学生灵活运用知识分析问题、解决问题的能力。
二、学法指导本节主要学习直线方程的五种形式,应理解并记忆公式的内容,特别要搞清各个公式的适用范围:点斜式和斜截式需要斜率存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示过原点及与坐标轴垂直的直线。
一般式虽然可表示任意直线但它所含的变量多,故在运用时要灵活选择公式,不丢解不漏解。
三、教学重点、难点1、重点:直线的点斜式和一般式的推导,由已知条件求直线的方程2、难点:直线的点斜式和一般式的推导,如何选择方程的形式,如何简化运算过程。
四、课时安排本课题安排3课时五、教与学过程设计第一课时直线的方程-点斜式、斜截式●教学目标1.理解直线方程点斜式的形式特点和适用范围.2.了解求直线方程的一般思路.3.了解直线方程斜截式的形式特点.●教学重点直线方程的点斜式●教学难点点斜式推导过程的理解.●教学方法学导式●教具准备幻灯片●教学过程1、创设情境已知直线l过点(1,2),斜率为2,则直线l上的任一点应满足什么条件?分析:设Q(x,y)为直线l上的任一点,则k PQ= 1,即(y―1)/(x―1)= 2(x≠1),整理得y―2=2(x―1)又点(1,2)符合上述方程,故直线l 上的任一点应满足条件y ―2=2(x ―1)回顾解题用到的知识点:过两点的斜率的公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线的斜率公式是:)(211212x x x x y y k ≠--= 2、提出问题问:直线l 过点(1,2),斜率为2,则直线l 的方程是y ―2=2(x ―1)吗?回想一下直线的方程与方程的直线的概念:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程叫做这条直线的方程,这条直线叫做这个方程的直线。
人教A版高中数学必修二直线的方程教案新
直线的方程一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计。
人教版高中必修2(B版)2.2直线方程课程设计
人教版高中必修2(B版)2.2直线方程课程设计一、教学目标1.了解直线的基本概念,掌握基本的直线方程求法。
2.学会在平面直角坐标系中画出一条直线,能够根据直线上任一点坐标求出直线方程。
3.通过实例学习掌握解直线方程的基本方法和技巧。
4.熟悉直线方程的应用,能够解决实际问题。
二、教学重点1.直线的基本概念2.直线方程(斜率截距式、两点式、截距式、一般式)3.直线方程的应用三、教学难点1.直线方程的应用2.通过实例来解决实际问题四、教学内容与安排教学内容学时数直线的基本概念 1直线方程——斜率截距式 1直线方程——两点式 1直线方程——截距式 1教学内容学时数直线方程——一般式 1直线方程的应用 2教学内容说明:1.直线的基本概念:介绍直线的定义、特征以及相关概念,如斜率、截距等。
2.直线方程——斜率截距式:讲解直线方程的一种求法,即斜率截距式,包括斜率和截距的含义及求法。
3.直线方程——两点式:介绍直线方程的另一种求法,即两点式,包括如何根据两点的坐标求出直线方程。
4.直线方程——截距式:介绍直线方程的第三种求法,即截距式,包括截距的含义及求法。
5.直线方程——一般式:介绍直线方程的最一般的形式,即一般式,包括一般式的含义、特点及相互转化之间的联系。
6.直线方程的应用:通过实例来让学生掌握直线方程的应用,如求直线的交点、判定两直线的位置关系等。
教学安排:1.第一课时:直线的基本概念–学习什么是直线,直线的定义、特征等基本概念。
2.第二课时:直线方程——斜率截距式–介绍斜率和截距的含义及求法,讲解斜率截距式的求法。
3.第三课时:直线方程——两点式–讲解两点式的求法,如何根据两点的坐标求出直线方程。
4.第四课时:直线方程——截距式–讲解截距的含义及求法,介绍截距式的求法。
5.第五课时:直线方程——一般式–讲解一般式的含义、特点及相互转化之间的联系。
6.第六、七课时:直线方程的应用–通过实例来让学生掌握直线方程的应用,如求直线的交点、判定两直线的位置关系等。
人教版高中数学必修二《直线的两点式方程》教学课件
lB
通过A,B两点的直线
方程为:xa— +yb —=1
o
A x
5/27/2020
直线与x轴交点的横坐标a叫做直线在x轴上的截距.
思考:直线在y轴上的截距是什么?直线方程 xa— +yb —=1由什么确定? 直线在y轴上的截距是直线与y轴交点的纵坐标b. 方程 xa— +by—=1由在两个坐标轴上的截距a与b确定. 方程 xa— +by—=1叫做截距式方程. 截距式方程不能表示垂直于x轴、y轴和过原点的 直线.
{ 所以有:
a0+
5
b
=
1
解出:a=-3,b=5
a+b = 2
所以所求直线方程为
x -3
+
y 5
=1,
即5x-3y+15=0
5/27/2020
已知点A(1,2),B(3,1)求线段AB的垂直
平分线的方程.
解:由中点公式可知,AB中点M的坐标为:(2,—3 )
直线AB的斜率kAB=
1-2 3-1
=-—21
2
设线段AB的垂直平分线的斜率为k,
则有kAB· k=-1 ,求出=2. 过点(2,—23 ),斜率为2的直线方程为: y- —23 = 2(x-2)
所以线段AB的垂直平分线的方程是4x-2y-5=0.
5/27/2020
x 轴表示一条河,骆驼队从A地出发前往河中取 水,然后到B处。你知道在何处取水,行程最 短吗?
(2)根据题意,由截距式
方程有:x -5
+
y 6
=1
y
6Байду номын сангаас4 2
-6 -4 -2 o 2 4 6 x
2019年高中数学人教版必修2全套教案
目录第一章:空间几何体 (1)第二章直线与平面的位置关系 (10)第三章直线与方程 (28)第四章圆与方程 (50)第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
高中数学 直线的方程教案 新人教版必修2-新人教版高一必修2数学教案
§3.2 直线的方程§3.2.1 直线的点斜式方程一、教材分析直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kx +b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.二、教学目标1.知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程;(3)体会直线的斜截式方程与一次函数的关系.2.过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程,学生通过对比理解“截距”与“距离”的区别.3.情态与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题.三、教学重点与难点教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.四、课时安排1课时五、教学设计(一)导入新课思路1.方程y=kx+b与直线l之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l上任意一点P(x1,y1)的坐标是方程y=kx+b的解.(2)(x1,y1)是方程y=kx+b的解 点P(x1,y1)在直线l上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题——直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题).(二)推进新课、新知探究、提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l 的斜率k 且l 经过点P 1(x 1,y 1),如何求直线l 的方程?③方程导出的条件是什么?④若直线的斜率k 不存在,则直线方程怎样表示? ⑤k=11x x y y --与y-y 1=k(x-x 1)表示同一直线吗?⑥已知直线l 的斜率k 且l 经过点(0,b),如何求直线l 的方程?讨论结果:①确定一条直线需要两个条件:a.确定一条直线只需知道k 、b 即可;b.确定一条直线只需知道直线l 上两个不同的已知点.②设P(x ,y)为l 上任意一点,由经过两点的直线的斜率公式,得k=11x x y y --,化简,得y -y 1=k(x -x 1).③方程导出的条件是直线l 的斜率k 存在.④a.x=0;b.x=x 1.⑤启发学生回答:方程k=11x x y y --表示的直线l 缺少一个点P 1(x 1,y 1),而方程y -y 1=k(x -x 1)表示的直线l 才是整条直线.⑥y=kx+b.(三)应用示例思路1例1 一条直线经过点P1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.图1解:这条直线经过点P1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0,这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力.变式训练求直线y=-3(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程.解:设直线y=-3(x-2)的倾斜角为α,则tanα=-3,又∵α∈[0°,180°),∴α=120°.∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2.例 2 如果设两条直线l1和l2的方程分别是l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)当l1∥l2时,两条直线在y轴上的截距明显不同,但哪些量是相等的?为什么?(2)l 1⊥l 2的条件是什么?活动:学生思考:如果α1=α2,则tanα1=tanα2一定成立吗?何时不成立?由此可知:如果l 1∥l 2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b 1≠b 2且k 1=k 2,则l 1与l 2的位置关系是怎样的?由学生回答,重点说明α1=α2得出tanα1=tanα2的依据.解:(1)当直线l 1与l 2有斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2时,直线l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)l 1⊥l 2⇔k 1k 2=-1.变式训练判断下列直线的位置关系:(1)l 1:y=21x+3,l 2:y=21x-2;(2)l 1:y=35x,l 2:y=-53x. 答案:(1)平行;(2)垂直.思路2例1 已知直线l 1:y=4x 和点P(6,4),过点P 引一直线l 与l 1交于点Q ,与x 轴正半轴交于点R ,当△OQR 的面积最小时,求直线l 的方程.活动:因为直线l 过定点P(6,4),所以只要求出点Q 的坐标,就能由直线方程的两点式写出直线l 的方程.解:因为过点P(6,4)的直线方程为x=6和y -4=k(x -6),当l 的方程为x=6时,△OQR 的面积为S=72;当l 的方程为y -4=k(x -6)时,有R(k k 46-,0),Q (k k 46-,41624--k k ), 此时△OQR 的面积为S=21×k k 46-×41624--k k =)4()23(82--k k k . 变形为(S -72)k 2+(96-4S)k -32=0(S≠72).因为上述方程根的判别式Δ≥0,所以得S≥40.当且仅当k=-1时,S 有最小值40.因此,直线l 的方程为y -4=-(x -6),即x +y -10=0. 点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导.变式训练如图2,要在土地ABCDE 上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1 m 2)(单位:m ).图2解:建立如图直角坐标系,在线段AB 上任取一点P 分别向CD 、DE 作垂线,划得一矩形土地.∵AB 方程为2030x x +=1,则设P(x,20-32x )(0≤x≤30), 则S 矩形=(100-x)[80-(20-32x )] =-32(x-5)2+6 000+350(0≤x≤30),当x=5时,y=350,即P (5,350)时,(S 矩形)max =6 017(m 2). 例2 设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为x -2y +1=0,y=1,求△ABC 中AB 、AC 各边所在直线的方程.活动:为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图3,设AC 的中点为F ,AC 边上的中线BF :y=1.图3AB 边的中点为E ,AB 边上中线CE :x -2y +1=0.设C 点坐标为(m ,n),则F(23,21++n m ). 又F 在AC 中线上,则23+n =1, ∴n=-1.又C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0. ∴m=-3.∴C 点为(-3,-1).设B 点为(a,1),则AB 中点E(213,21++a ),即E(21a +,2). 又E 在AB 中线上,则21a +-4+1=0.∴a=5. ∴B 点为(5,1).由两点式,得到AB ,AC 所在直线的方程AC :x -y +2=0,AB :x +2y -7=0.点评:此题思路较为复杂,应使同学们做完后从中领悟到两点:(1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来.变式训练已知点M (1,0),N (-1,0),点P 为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?解:∵P 点在直线2x-y-1=0上,∴设P (x 0,2x 0-1).∴|PM|2+|PN|2=10(x 0-52)2+512≥512. ∴最小值为512. (四)知能训练课本本节练习1、2、3、4.(五)拓展提升已知直线y=kx +k +2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k 的取值范围.图4活动:此题要首先画出图形4,帮助我们找寻思路,仔细研究直线y=kx +k +2,我们发现它可以变为y -2=k(x +1),这就可以看出,这是过(-1,2)点的一组直线.设这个定点为P(-1,2).解:我们设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,且α1<α<α2.则k 1=tanα1<k <k 2=tanα2.又k 1=132-+=-5,k 2=312--=-21, 则实数k 的取值范围是-5<k <-21.(六)课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.(七)作业习题3.2 A组2、3、5.§3.2.2 直线的两点式方程一、教材分析本节课的关键是关于两点式的推导以及斜率k不存在或斜率k=0时对两点式的讨论及变形.直线方程的两点式可由点斜式导出.若已知两点恰好在坐标轴上(非原点),则可用两点式的特例截距式写出直线的方程.由于由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便.在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式.二、教学目标1.知识与技能(1)掌握直线方程的两点式的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。
高中数学人教B版必修二同步教案:直线的方程
人教B 版 数学 必修2:直线的方程教学目标:1.理解直线与方程0=++C By Ax (,A B 不同时为0)是一一对应的;2.掌握直线方程形式之间的互相转化;3.理解掌握直线恒过定点问题。
教学重点:直线一般式的应用及与其他四种形式的互化难点:理解直线方程的一般式的含义教学过程:㈠复习 1直线方程的几种形式及局限性.2会由条件选用适当的方程形式练习1 143P㈡新课讲解:直线方程的几种形式(点斜式、斜截式、两点式、截距式),都是关 于x 、y 的二元 一次方那么,直线的方程是否都是二元一次方程?反之,二元一次方程的图形是否都是直线?(1)平面直角坐标系中,90α≠o时,l :y=kx+b 即kx-y+b=0 90α=o 时,l :x=0x 即x+0y-0x =0即它们都可变形为0=++C By Ax 的形式,且,A B 不同时为0直线的方程都是关于,x y 的二元一次方程。
(2)关于,x y 的二元一次方程的一般形式为0=++C By Ax ,( ,A B 不同时为0)0B ≠时BC x B A y --=即表示一直线, 0B =时AC x -=即表示与x 轴垂直的直线, 每一个二元一次方程都表示一条直线。
于是一. 直线方程:1. 平面直角坐标系中 ,直线与关于,x y 二元一次方程是一一对应的即直线 二元一次方程2. 一般式: 0=++C By Ax (其中,A B 不同时为0)一般地,需将所求的直线方程化为一般式。
练习2⑴说出斜率:①3x+y-5=0, ②7x-6y+4=0, ③x/4-y/5=1,④2y-7=0, ⑤x+2y=0, ⑥Ax+By+C=0(B ≠0) ⑵写成截距式 ①3x+y-5=0, ②7x-6y+4=0⑶说出在坐标轴上的截距① 154=-y x ②7x-6y+4=0 二.直线方程形式间的互化例1.已知直线l : 260x y -+=(1)求直线l 的斜率k,倾斜角α;(2)求l 在x 轴,y 轴上的截距,并画图.解:(1)∵260x y -+=, ∴26y x =+,∴l 的斜截式方程:132y x =+, ∴12k =,∴1arctan 2α= (2) 方法1: 0x =时y=3,y=0时x=-6即l 在x 轴上的截距是6-,在y 轴上的截距是3.方法2:2260166x y x y -+=∴-=--Q l ∴的截距式方程:163x y +=- ∴ l 在x 轴上的截距是6-,在y 轴上的截距是3.即,l x y 与轴的交点 ()()60,0,3A B -, 如图:评:(1)一般式与其他形式方程间的互化即“同解变形”(2)求截距方法:①x=0时y=?,y=0时x=?②化成截距例2.解析:方法1:直线过点()()3004-,,, 3120441203m m n n ⎧-+==⎧∴∴⎨⎨+==-⎩⎩方法2:1204,x y n ==-=时 1203y x m=-=-时 方法3 120mx ny ++= 11212mx ny ∴+=-- 即11212x y m n+=-- 12123,4m n ∴-=--=三. 直线恒过定点问题例3.求证:不论m 取何实数,直线恒过一定点, 并求出定点的坐标 证明:直线方程即为()()311210x y m x y +----=∈Q 对任意m R,此方程恒成立.311022103x y x x y y +-==⎧⎧∴∴⎨⎨--==⎩⎩ ()∴直线过定点2,3 评:直线是否过定点即方程对一切m ∈R 恒成立f(x)+mg(x)=0对任意m ∈R 恒成立,则练习3 恒过定点取何值,直线求证:无论0)34()15()2(3)1(=---++k y k x k k 已知直线mx+ny+12=0在x,y 轴上的截距分别是-3和4,求m,n 的值()()213110m x m y m --+-+=()()00f xg x =⎧⎪⎨=⎪⎩()()2直线y+3=mx+1恒过定点xy 3 6- O小结:1.直线方程的形式间的转化2.由直线方程求表示直线位置的特征量(如:斜率,截距等)3.直线恒过定点问题作业:,11,12.44.1.P2.l kx y k已知直线:-+1+2=0()l1证明:直线过定点,()l x y2若交轴负半轴于A,交轴的AOB∆正半轴于B,面积为S,试求Sl的最小值,并求出此时的方程.。
最新人教版高中数学必修二直线的一般式方程公开课优质教案
.
④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特 殊位置的直线) ,由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截
距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式
.各种
形式互化的实质是方程的同解变形(如图
x 3 y 11 0, x 2,
解方程组
,得
.
2 x y 1 0,
y3
∴直线恒过 (2,3) 点 .
(六)课堂小结
通过本节学习,要求大家:
(1)掌握直线方程的一般式,了解直角坐标系中直线与关于
x 和 y 的一次方程的对应关系;
(2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式;
(3)通过学习,培养相互合作意识 ,培养学生思维的严谨性,注意语言表述能力的训练
§3.2.3 直线的一般式方程
一、教材分析
直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一 步学习作好知识上的必要准备, 又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础 方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形 式 .掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础
2
答案: -
3
例 2 把直线 l 的方程 x-2y+6=0 化成斜截式,求出直线 l 的斜率和它在 x 轴与 y 轴上的截距,并画出图
形.
解: 由方程一般式 x- 2y+ 6=0 ,
①
移项,去系数得斜截式 y= x + 3.
②
高中数学3.2 直线的方程 教案1人教版必修2
直线的方程教学目标(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.(3)掌握直线方程各种形式之间的互化.(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.教学建议1.教材分析(1)知识结构由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.(2)重点、难点分析①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.2.教法建议(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.教学设计示例直线方程的一般形式教学目标:(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.(2)理解直线与二元一次方程的关系及其证明(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.教学用具:计算机教学方法:启发引导法,讨论法教学过程:下面给出教学实施过程设计的简要思路:教学设计思路:(一)引入的设计前边学习了如何根据所给条件求出直线方程的方法,看下面问题:问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答,并纠正学生中不规范的表述.再看一个问题:问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:【问题1】“任意直线的方程都是二元一次方程吗?”(二)本节主体内容教学的设计这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:思路一:…思路二:………教师组织评价,确定最优方案(其它待课下研究)如下:按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?学生们不难得出:二者可以概括为统一的形式.这样上边的结论可以表述如下:在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?师生共同讨论,评价不同思路,达成共识:回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即(1)当时,方程可化为这是表示斜率为、在轴上的截距为的直线.(2)当时,由于、不同时为0,必有,方程可化为这表示一条与轴垂直的直线.因此,得到结论:在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.【动画演示】演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.(三)练习巩固、总结提高、板书和作业等环节的设计在此从略-->。
高中数学直线及其方程教案
高中数学直线及其方程教案教学目标:
1. 了解直线的基本定义及性质;
2. 掌握直线的方程表示方法;
3. 熟练运用直线的方程解决具体问题。
教学重点:
1. 直线的基本性质;
2. 直线的方程表示方法。
教学难点:
1. 利用直线方程解决实际问题。
教学准备:
1. PowerPoint课件;
2. 教案复印件;
3. 钢笔、白板、擦拭布。
教学步骤:
一、引入(5分钟)
1. 引导学生回顾直线的基本概念;
2. 提出问题:如何表示直线的方程?
二、提出问题(10分钟)
1. 介绍直线的一般方程:Ax + By + C = 0;
2. 说明直线斜率的概念以及直线的斜截式方程;
3. 讲解直线的截距式方程及解题方法。
三、示范演练(15分钟)
1. 解答直线方程表示问题;
2. 演示如何根据直线方程解决相关问题。
四、练习与拓展(15分钟)
1. 学生互相讨论并解答相关问题;
2. 综合应用直线方程解决复杂问题。
五、总结与反思(5分钟)
1. 总结直线的方程表示方法及应用;
2. 提醒学生巩固相关知识,勤加练习。
教学反馈:
1. 课后布置作业:完成相关练习题;
2. 下节课继续巩固直线方程的应用。
教学延伸:
1. 注重学生自主学习,鼓励他们通过查阅资料和练习巩固所学知识;
2. 引导学生思考及解决实际应用问题,拓展直线方程的应用范围。
高中数学直线方程的教案
高中数学直线方程的教案
一、教学目标:
1. 理解直线的定义及特点;
2. 了解直线的斜率和截距的概念;
3. 掌握直线方程的一般式、点斜式和斜截式的表示方法;
4. 能够根据给定条件写出直线的方程;
5. 能够解决与直线方程相关的实际问题。
二、教学重点和难点:
1. 掌握直线的方程表示方法;
2. 能够根据给定条件写出直线的方程。
三、教学准备:
1. 教材:《高中数学》教材;
2. 教具:黑板、彩色粉笔、直尺、铅笔等。
四、教学过程:
1. 引入:通过几个实际问题引入直线方程的概念,引导学生认识直线的基本特点。
2. 讲解:讲解直线的定义、斜率和截距的概念,介绍直线方程的一般式、点斜式和斜截式的表示方法。
3. 练习:进行一些简单的练习,让学生掌握如何根据给定条件写出直线的方程,并理解直线的方程与直线的性质之间的关系。
4. 巩固:让学生自主完成一些练习题,巩固所学知识。
5. 拓展:通过一些挑战性问题让学生深入思考,拓展他们对直线方程的应用能力。
6. 总结:对本节课的内容进行总结,并提出下节课的预习内容。
五、课后作业:
1. 完成课堂上未能完成的练习题;
2. 预习下节课的内容,准备相关知识点的问题。
六、教学反思:
本节课主要围绕直线方程展开,教学内容较为简单,但需要学生对直线的性质和表示方法有一定的理解。
在教学过程中,要注重引导学生思考问题,激发他们对数学的兴趣,帮助他们建立良好的数学思维方式。
高中数学必修二《直线与方程》说课稿
高中数学必修二《直线与方程》说课稿一、教学目标1.知识目标:o理解和掌握直线的点斜式、两点式、一般式方程及其相互转化。
o能够根据给定条件求出直线的方程,并能利用直线方程解决简单的几何问题。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提升学生的数学建模能力。
o提高学生分析问题和解决问题的能力,特别是在处理直线与坐标轴交点、两直线位置关系等问题时。
3.情感态度价值观目标:o激发学生对数学的兴趣,培养学生严谨的学习态度和科学精神。
o通过合作学习,增强学生的团队合作意识,培养学生的沟通能力和责任感。
二、教学内容-重点:直线的三种基本方程(点斜式、两点式、一般式)及其相互转换。
-难点:根据实际问题选择合适的直线方程形式,以及利用直线方程解决实际问题。
三、教学方法-讲授法:用于介绍直线方程的基本概念和理论。
-讨论法:分组讨论直线方程的应用场景,促进学生之间的交流与合作。
-案例分析法:通过具体案例分析,加深学生对直线方程的理解和掌握。
-多媒体教学法:利用PPT、动画等多媒体资源,直观展示直线方程的图形变化,增强教学效果。
四、教学资源-教材:高中数学必修二《直线与方程》章节。
-教具:黑板、粉笔、直尺、圆规。
-多媒体资源:PPT课件、直线方程的动态演示软件、在线教学平台。
-实验器材:无需特定实验器材,但可准备几何画板软件用于辅助作图。
五、教学过程六、课堂管理-小组讨论:每组分配明确的任务,确保每位学生都参与讨论,轮流发言。
-课堂纪律:设定明确的课堂规则,如举手发言、保持安静等,确保课堂秩序。
-激励机制:对积极参与讨论、提出创新见解的学生给予表扬,激发学习动力。
七、评价与反馈-课堂小测验:每节课结束前进行小测验,检查学生对新知识的掌握情况。
-课后作业:布置适量作业,包括基础题和拓展题,以巩固课堂所学。
-期末考试:通过期末考试全面评估学生的学习效果,包括理论知识和应用能力。
-学生反馈:定期收集学生对教学内容、方法的反馈,及时调整教学策略。
高中数学必修二直线教案
高中数学必修二直线教案教学目标:1. 理解直线斜率的概念,掌握斜率的计算方法;2. 能够根据给定的直线上两点的坐标求斜率和方程;3. 能够根据直线的斜率和截距,写出直线的方程;4. 培养学生分析问题和解决问题的能力,提高其数学推理和运算技巧。
教学重点和难点:1. 理解直线斜率的概念和计算方法;2. 根据直线上两点的坐标求斜率和方程;3. 根据直线的斜率和截距,写出直线的方程。
教学准备:1. 教师准备:教案、板书、PPT等教学资源;2. 学生准备:学生课本、笔、作业本等学习用品。
教学过程:第一步:引入教师通过引入直线的概念和特点,引发学生对直线斜率和方程的兴趣。
第二步:直线的斜率1. 教师讲解直线的斜率的概念,定义为纵坐标之差与横坐标之差的比值。
2. 通过例题演示如何计算直线的斜率。
第三步:直线的方程1. 教师讲解直线的一般方程形式 y = kx + b,其中 k 为斜率,b 为截距。
2. 通过例题演示如何根据直线的斜率和截距写出直线的方程。
第四步:实例演练1. 学生进行练习,根据给定的两点坐标,求直线的斜率和方程;2. 学生练习根据直线的斜率和截距写出直线的方程。
第五步:小结教师对本节课的内容进行小结,强调直线斜率和方程的重要性和应用。
教学反馈:1. 教师对学生的练习和表现进行评价和反馈;2. 学生可以提出问题和疑惑,教师进行解答和指导。
作业布置:1. 练习册上相关练习题;2. 思考如何应用直线方程解决实际问题。
教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,进一步提升教学效果。
人教A版高中数学必修二直线方程教案课时
第一课时 3.1.1 直线的倾斜角与斜率教学要求:会根据直线上的两点坐标求直线的倾斜角与斜率,给出一直线上的一点与它的斜率,能够画出它的图象.教学重点:理解倾斜角, 斜率.教学难点:倾斜角, 斜率的理解及计算. 教学过程:一、复习准备:1. 讨论:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?2. 在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢? 二、讲授新课:1. 教学平面倾斜角与斜率的概念:① 直线倾斜角的概念: x 轴正向与直线向上方向之间所成的角叫直线的倾斜角注意:当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.。
讨论:倾斜角的取值范围是什么呢?② 直线斜率的概念:直线倾斜角α的正切值叫直线的斜率.常用k 表示,tan k α=讨论:当直线倾斜角为90︒度时它的斜率不存在吗?. 倾斜角的大小与斜率为正或负有何关系?斜率为正或负时,直线过哪些象限呢? α取值范围是[)0,π.③ 直线斜率的计算:两点确定一直线,给定两点111(,)p x y 与222(,)p x y ,则过这两点的直线的斜率2121y y k x x -=- 思考 :(1)直线的倾斜角α确定后, 斜率k 的值与点1p ,2p 的顺序是否有关?(2)当直线平行表于y 轴或与y 轴重合时,上述公式2121y y k x x -=-还适用吗?2. 教学例题:例1,求经过两点(2,3),(4,7)A B 的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.例2:在平面直角坐标系中画出经过原点且斜率分别为 1,2,3--的直线123,,l l l .三. 巩固与提高练习:1. 已知下列直线的直线倾斜角α,求直线的斜率k.⑴ 030a = ⑵ 045a = ⑶ 0120a = ⑷ 0135 2:已知直线l 过点(1,2)A 、(,3)B m ,求直线l 的斜率和倾斜角3,已知,,a b c 是现两两不等的实数,求经过下列两点直线的倾斜角. (1) (,),(,)A a b B b c (2) (,),(,)P b b c Q a c a ++ 4.画出经过点(0,3)且斜率分别为3和-2的直线. 四.小结:倾斜角、斜率的概念, 斜率的计算公式. 五:作业,95P 2题.第二课时 3.1.2 两条直线平行与垂直的判定教学要求:明白两直线平行与垂直时倾斜角之间的关系,能够 通过代数的方法,运用斜率来判定两直线平行与垂直关系. 教学重点:用斜率来判定两直线平行与垂直. 教学难点:用斜率来判定两直线平行与垂直. 教学过程:一、复习准备:1. 提问:直线的倾斜角的取值范围是什么?如果计算直线的斜率?2. 在同一直角坐标系中画出过原点斜率分别是-3,3,1的直线的图象.3. 探究:两直线平行(垂直)时它们的倾斜角之间有何关系? 二、讲授新课:1. 两条直线平行的判定:① 由上述探究 →两条直线平行:两直线倾斜角都相等.即: 12αα= ,提问: 两直线平行,它们的斜率相等吗? 1212l l k k ⇔=② 两条直线平行的判定: 两条不重合的直线,斜率都存在. 它们的斜率相等.即: 12αα= , 1212l l k k ⇔=注意: 上述结论的前提是两条直线不重合并且斜率都存在. 2. 两条直线垂直的判定:探究两直线12,l l 垂直时,它们的斜率12,k k 的关系. ① 12,l l 的倾斜角0190α=,020α=时, 斜率12,k k 不存在;② 当斜率12,k k 都存在时.设12,l l 的倾斜角分别为12,αα, 其中1α>2α,则有01290αα=+01122211tan tan(90)tan k k ααα==+=-=-,即:121k k =-两条直线垂直的判定:两直线的斜率都存在时,两直线垂直,则它们的斜率12,k k 的乘积121k k =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八课时 两条直线的位置关系―点到直线的距离公式
一、三维目标:
1、知识与技能:理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;
2、能力和方法: 会用点到直线距离公式求解两平行线距离
3、情感和价值:认识事物之间在一定条件下的转化。
用联系的观点看问题 二、教学重点:点到直线的距离公式
教学难点:点到直线距离公式的理解与应用. 三、教学方法:学导式
教具:多媒体、实物投影仪 四、教学过程
(一)、情境设置,导入新课
前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。
逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P 到直线l 的距离。
用POWERPOINT 打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。
要求学生思考一直线上的计算?能否用两点间距离公式进行推导? 两条直线方程如下:
⎩⎨
⎧=++=++0
222111C y B x A C y B x A (二)、研探新课 1.点到直线距离公式:
点),(00y x P 到直线0:=++C By Ax l 的距离为:2
2
00B
A C
By Ax d +++=
(1)提出问题
在平面直角坐标系中,如果已知某点P 的坐标为),(00y x ,直线=0或B =0时,以上公式0:=++C By Ax l ,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?
学生可自由讨论。
(2)数行结合,分析问题,提出解决方案
学生已有了点到直线的距离的概念,即由点P 到直线l 的距离d 是点P 到直线l 的垂线段的长.
这里体现了“画归”思想方法,把一个新问题转化为 一个曾今解决过的问题,一个自己熟悉的问题。
画出图形,分析任务,理清思路,解决问题。
方案一:
设点P 到直线l 的垂线段为PQ ,垂足为Q ,由PQ ⊥l 可 知,直线PQ 的斜率为A
B
(A ≠0),根据点斜式写出直
线PQ 的方程,并由l 与PQ 的方程求出点Q 的坐标; 由此根据两点距离公式求出|PQ |,得到点P 到直线l 的距离为d
此方法虽思路自然,但运算较繁.下面我们探讨别一种方法
方案二:设A ≠0,B ≠0,这时l 与x 轴、y 轴都相交,过点P 作x 轴的平行线,交l 于点
),(01y x R ;作y 轴的平行线,交l 于点),(20y x S ,
由⎩⎨⎧=++=++0020
011C By Ax C By x A 得B C
Ax y A C By x --=--=0201,.
所以,|P R|=|10x x -|=
A
C
By Ax ++00,|PS |=|20y y -|=
B
C
By Ax ++00
|RS |=AB
B A PS PR 2
22
2
+=
+×|C By Ax ++00|由三角形面积公式可知:
d ·|RS |=|P R|·|PS |,所以2
2
00B
A C
By Ax d +++=。
可证明,当A=0时仍适用 这个过程比较繁琐,但同时也使学生在知识,能力。
意志品质等方面得到了提高。
2、例题应用,解决问题。
例1 求点P=(-1,2)到直线 3x=2的距离。
解:
5 3 =
例2 已知点A(1,3),B(3,1),C(-1,0),求三角形ABC的面积。
解:设AB边上的高为h,则S ABC=1
2
AB h
•
AB==AB边上的高h就是点C到AB的距离。
AB边所在直线方程为
31
1331
y X
--
=
--
,即x+y-4=0。
点C到X+Y-4=0
的距离为h
h=
2
104
11
-+-
=
+
S ABC
=
1
5
2
⨯=
通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性。
3、同步练习:114页第1,2题。
(三)、拓展延伸,评价反思
1、应用推导两平行线间的距离公式
已知两条平行线直线
1
l和
2
l的一般式方程为
1
l:0
1
=
+
+C
By
Ax,
2
l:0
2
=
+
+C
By
Ax,则
1
l与
2
l的距离为
2
2
2
1
B
A
C
C
d
+
-
=
证明:设)
,
(
y
x
P是直线0
2
=
+
+C
By
Ax上任一点,则点P0到直线
1
=
+
+C
By
Ax的距离为
2
2
1
B
A
C
By
Ax
d
+
+
+
=又0
2
=
+
+C
By
Ax
即
2
C
By
Ax-
=
+,∴d=
2
2
2
1
B
A
C
C
+
-
例3求两平行线
1
l:0
8
3
2=
-
+y
x,
2
l:0
10
3
2=
-
+y
x的距离.
解法一:在直线1
l上取一点P(4,0),因为
1
l∥
2
l,所以点P到
2
l的距离等于
1
l与
2
l的距
离.于是13
13
2
13
2
3
2
10
3
4
2
2
2
=
=
+
+
⨯
-
⨯
=
d
解法二:
1
l∥
2
l又10
,8
2
1
-
=
-
=C
C.
由两平行线间的距离公式得13
3
232)10(82
2=
+---=d (四)、课堂练习
已知一直线被两平行线3x+4y-7=0与3x+4y+8=0所截线段长为3。
且该直线过点(2,3),求该直线方程。
(五)、小结:点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式
(六)、课后作业:1、求点P (2,-1)到直线2x +3y -3=0的距离. 2、已知点A (a ,6)到直线3x -4y =2的距离d=4,求a 的值:
3、已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :
02=++C By Ax ,则1l 与2l 的距离为2
221B A C C d +-=
五、教后反思:。