2001-数二真题、标准答案及解析
湖南省_2001年_高考数学真题(理科数学)(附答案)_历年历届试题
2001年普通高等学校招生全国统一考试数学(理工农医类)-同湖南卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式()()[]βαβαβ-++=sin sin 21cos sin a ()()[]βαβαβ--+=sin sin 21sin cos a()()[]βαβαβ-++=cos cos 21cos cos a()()[]βαβαβ--+-=cos cos 21sin sin a正棱台、圆台的侧面积公式 S 台侧l c c )(21+'=其中c ′、c 分别表示上、下底面周长, l 表示斜高或母线长 台体的体积公式 V 台体h S S S S )(31+'+'=一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.若sini θcos θ>0,则θ在 ( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限2.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2 = 0上的圆的方程是( )A .(x -3) 2+(y +1) 2= 4 B .(x +3) 2+(y -1) 2= 4 C .(x -1) 2+(y -1) 2 = 4D .(x +1) 2+(y +1) 2 = 43.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) A .1B .2C .4D .64.若定义在区间(-1,0)的函数2()log (1)a f x x =+满足()0f x >,则a 的取值范围是 ( ) A .(210,)B .⎥⎦⎤ ⎝⎛210,C .(21,+∞) D .(0,+∞)5.极坐标方程)4sin(2πθρ+=的图形是( )6.函数y = cos x +1(-π≤x ≤0)的反函数是 ( )A .y =-arc cos (x -1)(0≤x ≤2)B .y = π-arc cos (x -1)(0≤x ≤2)C .y = arc cos (x -1)(0≤x ≤2)D .y = π+arc cos (x -1)(0≤x ≤2)7. 若椭圆经过原点,且焦点为F 1 (1,0), F 2 (3,0),则其离心率为 ( ) A .43 B .32 C .21 D .41 8. 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( ) A .a <bB .a >bC .ab <1D .ab >29. 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( ) A .60°B .90°C .105°D .75°10.设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是 ( ) A .①③B .①④C .②③D .②④11. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) A .P 3>P 2>P 1B .P 3>P 2 = P 1C .P 3 = P 2>P 1D .P 3 = P 2 = P 112. 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为 ( ) A .26 B .24C .20D .19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 14.双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为15.设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q =16.圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 18. (本小题满分12分)已知复数z 1 = i (1-i ) 3.(Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. 19. (本小题满分12分)设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O . 20. (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明i n i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . 21. (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?22. (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯=41=. ……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分 ∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC .即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫ ⎝⎛+=47sin 47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为2pmy x +=; ……4分 代入抛物线方程得y 2-2pmy -p 2= 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF ACCN ADEN ==,,ABAF BCNF =……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m mp iim 1…m i m 1+-⋅, 同理 ⋅-⋅=n n n n np i in 1…n i n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()inni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C in in =, ……10分所以, imi i n i C n C m >(1<i ≤m <n =. 因此,∑∑==>mi imi mi iniC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi imi ni iniC n Cm 0. 即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0. 化简得 5×(54)n +2×(54)n -7>0, ……9分设=x (54)n ,代入上式得5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分 (22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分.(Ⅰ)解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2) = f (x 1) · f (x 2),所以=)(x f f (2x ) · f (2x )≥0,x ∈[0,1]. ∵ =)1(f f (2121+) = f (21) · f (21) = [f (21)]2,f (21)=f (4141+) = f (41) · f (41) = [f (41)]2. ……3分0)1(>=a f ,∴ f (21)21a =,f (41)41a =. ……6分(Ⅱ)证明:依题设y = f (x )关于直线x = 1对称, 故 f (x ) = f (1+1-x ),11 / 11 即f (x ) = f (2-x ),x ∈R . ……8分 又由f (x )是偶函数知f (-x ) = f (x ) ,x ∈R ,∴ f (-x ) = f (2-x ) ,x ∈R ,将上式中-x 以x 代换,得f (x ) = f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x )≥0,x ∈[0,1].∵ f (21)= f (n ·n 21) = f (n 21+(n -1)·n 21)= f (n 21) · f ((n -1)·n 21)= f (n 21) · f (n 21) · … ·f (n 21)= [ f (n 21)]n ,f (21) = 21a ,∴ f (n 21) = n a 21.∵ f (x )的一个周期是2,∴ f (2n +n 21) = f (n 21),因此a n = n a 21,……12分 ∴ ()∞→∞→=n n n a lim ln lim (a n ln 21) = 0.……14分。
数据结构考研真题及其答案
一、选择题1. 算法的计算量的大小称为计算的( B )。
【北京邮电大学2000 二、3 (20/8分)】A.效率 B. 复杂性 C. 现实性 D. 难度2. 算法的时间复杂度取决于(C )【中科院计算所 1998 二、1 (2分)】A.问题的规模 B. 待处理数据的初态 C. A和B3.计算机算法指的是(C),它必须具备(B)这三个特性。
(1) A.计算方法 B. 排序方法 C. 解决问题的步骤序列D. 调度方法(2) A.可执行性、可移植性、可扩充性 B. 可执行性、确定性、有穷性C. 确定性、有穷性、稳定性D. 易读性、稳定性、安全性【南京理工大学 1999 一、1(2分)【武汉交通科技大学 1996 一、1( 4分)】4.一个算法应该是( B )。
【中山大学 1998 二、1(2分)】A.程序 B.问题求解步骤的描述 C.要满足五个基本特性D.A和C.5. 下面关于算法说法错误的是( D )【南京理工大学 2000 一、1(1.5分)】A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的6. 下面说法错误的是( C )【南京理工大学 2000 一、2 (1.5分)】 (1)算法原地工作的含义是指不需要任何额外的辅助空间(2)在相同的规模n下,复杂度O(n)的算法在时间上总是优于复杂度O(2n)的算法(3)所谓时间复杂度是指最坏情况下,估算算法执行时间的一个上界(4)同一个算法,实现语言的级别越高,执行效率就越低4A.(1) B.(1),(2) C.(1),(4) D.(3)【武汉交通科技大学 1996 7.从逻辑上可以把数据结构分为( C )两大类。
一、4(2分)】A.动态结构、静态结构 B.顺序结构、链式结构C.线性结构、非线性结构 D.初等结构、构造型结构8.以下与数据的存储结构无关的术语是( D )。
2001年考研数学二试题答案与解析
考生还有更方便的解法,事实上,等式的左端等于 ( y arcsin x)' , 关系式变成
( y arcsin x)' =1,两边积分得
y arcsin x = x + C,
再以
y
⎛⎜⎜⎜⎝ 12 ⎞⎠⎟⎟⎟
=
0代入得C
=
−
1 2
.
(5)设方程 ⎛⎜⎜⎜⎜⎜⎜⎜⎝11a
1 a 1
11a⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎛⎝⎜⎜⎜⎜⎜⎜⎜
x t−sin
x
,
记此极限为
f
(x) ,求函数
f
(x) 的间断点并指出其类型。
( ) 解 因 f x = e , lim t→x
sin
x t−sin
x
ln
sin sin
t x
cos t
而由洛必达法则得, lim t→x
x sin t −sin
x
ln
sin t sin x
= lim t→x
x⋅
sin t cos t
π
∫ ( ) (3)
2 −π
x3 + sin2 x cos2 xdx =
2
答 应填 π 8
分析 这是对称区间上的定积分,一般都可利用积分性质而化简计算,所以
π
π
∫ ( ) ∫ 2 −π
x3 + sin2 x cos2 xdx = 2
2 sin2 x cos2 xdx
0
2
π
= 2∫ (2 sin2 x −sin4 x)dx
e2
x− y
⎛⎜⎜⎜⎝2
+
dy dx
⎞⎠⎟⎟⎟
+
2001考研数学二真题及答案解析
x→1
(2)【答案】 x−2y+2=0.
【详解】在等式 e2x+ y − cos(xy) = e −1 两边对x求导, 其中 y 视为 x 的函数,得
e2x+y (2x + y)′ + sin(xy) ( xy)′ = 0 ,即 e2x+y ⋅ (2 + y ') + sin(xy) ⋅ ( y + xy ') =0
= f (1) f= '(1) 1, 则
()
(A)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f (x) < x .
❤
(B)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f (x) > x .
(C)在 (1− δ ,1) 内, f (x) < x .在 (1,1+ δ ) 内, f (x) > x .
又由 y(1) = 0, 解得 C = − 1 . 故曲线方程为: y arcsin x= x − 1 .
2
2
2
(5)【答案】 -2 【详解】方法1:利用初等行变换化增广矩阵为阶梯形,有
a 1 1 1
1 1 a −2
A = 1 a 1 1
1 a
1
−2
1, 3行 互换
1 a
a 1
1 1
1
1
1 1 a −2
求 f (x) .
七、(本题满分 7 分)
❤
设函数 f (x), g(x) 满足 f ′(= x) g(x), g′(= x) 2ex − f (x) ,且= f (0) 0= , g(0) 2 ,
∫ 求
(整理)2001—年江苏专转本高等数学真题(附答案) (2).
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2001-数一真题、标准答案及解析
形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
(2)设函数
f
( x,
y)
在点 (0, 0)
附近有定义,且
f
' x
( 0, 0)
=
3,
f
' y
( 0, 0 )
= 1,则
| (A) dz = 3dx + dy. (0,0)
(B)曲面 z = f ( x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相
关系数等于
(A)-1
(B)0
(C) 1 2
(D)1 【】
-5-
【答】 应选(A)
【详解】 设 X 和Y 分别表示正面向上和反面向上的次数,则有Y = n − X ,因此 X 和Y 的 相关系数为 r = −1
∫ ∫ (3)交换二次积分的积分次序:
0
dy
1−y f ( x, y)dx =
−1 2
.
∫ ∫ 【答】
2
dx
1− x
f
( x, y)dy .
1
0
【详解】 因为
∫ ∫ ∫ ∫ 0 dy
1−y f ( x, y)dx = −
0
dy
2
f ( x, y)dx,
−1 2
−1 1− y
积分区域为
D = {( x, y) | −1 ≤ y ≤ 0,1− y ≤ x ≤ 2},
ex cos x 线性无关,故 b (c1 − c2 ) + cc1 = 2c2 , b (c1 + c2 ) + cc2 = −2c1 ,解得 b = −2, c = 2
2001-2013年河南专升本高数真题及答案
2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( )A .x x y cos = B. 13++=x x yC. 222x x y --= D. 222x x y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n 解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b 32sin - C.t a b 2cos D.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22 ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx 11)(,则=)(x f ( )A. x 1-B. 21x- C. x 1 D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a a dx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B.19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰b adx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件 解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121- C.dy dx 21- D.dy dx 21+解:dy ydx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C.23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(ydx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 142221041031332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n n n n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n n v u +∑∞=收敛C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222n nn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
数学二解析2001
2001年数学(二)真题解析一、填空题(1)【答案】72T【解】方法一i . 丿3 —工—%/ ] + g lim X-*l x 2 x 一 21. %/3 — x — V 1 ~F lim —----——--------x->i (jc + 2) (jc 一1)lim --------------- ]------ ----Li (x + 2)(丿3 — 工 + 丿1 + 工)2(1 ―工)x 一 1方法二lim = lim -4-7工~* 1 x + 工一2工一1 + 111x 2 x 一 2 a /3 — x 2 丿]+ 匚(2)【答案】夕=*工+1.【解】e 2x+y — cos xy = e — 1两边对x 求导得严•+ sin xy •夕+熄) = 0,将X =0,y = 1代入得字I = — 2 ,ckr 丨 z=o则法线方程为夕一1 = *(久一0),即夕=*広+ 1-(3)【答案】 v-O【解】方法一sin 2 x cos 2 x dx — 2 sin 2 x cos 2 x dr4 J 。
,三=2 I 2 sin 2 j; • (1 一 sin 2 jc )dz = 2(12 — I 4 )2” (z 3 + sin 2 jc )cosx dx =方法二(x 3 + sin 2 )cos 2jc dj?=2 sin 2 x cos 2 jc dj? J 0丄72 sin 2 d(2工)=*sin 2x djro2 J 0 o(4)【答案】j/arcsin x = x【解】方法一丄由 j/arcsin x H — …一 =19得(jyarcsin x Y = 19解得 j/arcsin x = x + C 9J \ — 2因为曲线经过点(j,0),所以C=-y,故所求曲线为jarcsin x =x ----.方法二jy'arcsin x ~\-------------= 1 化为 y' ~\—,… ------------y =-----\-----,71-x 2 Jl —/arcsin z arcsln 工f d~r _ f 1 丄解得夕=([——?——e +C )e =(工 +c )・ ———\J arcsin x / arcsin x 因为曲线经过点(y,o ),所以C=-y,1x 2故所求曲线为—丄arcsin x因为r (A ) y^r (A ),所以方程组无解;(5)【答案】—2.a11【解】由题意得1a 1=(a + 2) (a 一 1 )2=0,解得 a = — 2 ,或 a = 1,11a /I 111 \I 1111 \当a =1时,才=b11100—3 ,\i11—2丿'o0 '当 a = — 2 时,A =_2111 \1-2111-2—2)因为r (A )=r (A )=2 V 3,所以a = —2时方程组有无数个解.二、选择题(6)【答案】(E ).【解】y[y (z )] = ]'9丨心)丨€1,丨心)丨>1,而 I /(J7 ) | ^ 1 (一°°<工 <+ °°),故 /[/(J : )] = 1 ,从而 f)]} =1,应选(E ).(7)【答案】(E ).1 2【解】(1 — cos x )ln ( 1 + z 2)〜—x 4 , x sin 工”〜x n+i , e" — 1 ~ j ?2 , 由题意得2 < n+l<4,解得n =2,应选(E ).(8)【答案】(C ).【解】<‘ = C ; • 2(工一3)2+© • 2(工一1) • 2(工一 3) +C ; • 2(工一I )?,令夕"=4 (3工 $ — 12_z + 11) = 0,得工 16+V336 — 4^3工2当工<C X 1时当久1 •< X X 2时j/'<0,当鼻 > 工2时j/‘>0,故曲线有两个拐 点,应选(C ).(9) 【答案】(A ).【解】 由拉格朗日中值定理得/(工)一/(1)= /'(£)(工一1),其中e 介于1与工之间,当工 6 (1-^,1)时 HVWV 1,再由 f'(x )单调递减得 > /(I ) =1,于是 y z ($)(— 1)<工一1,即 y (x )•— 1<久一1,或 f (兀)<工;当工e (1,1十厂 时1 vw <工,再由单调递减得1 =y'(i )>/"(£),于是 — 1) <工一1,即/•(#) — 1 V# — 1,或/(工)<工,应选(A ).(10) 【答案】(D ).【解】 从题设图形可见,在夕轴的左侧,曲线夕=/■&)是严格单调增加的,因此当工<0时,一定有于'(工)〉0,对应夕=于'(工)的图形必在工轴的上方,由此可排除(A ),(C ); 又的图形在y 轴右侧有三个零点,因此由罗尔中值定理可知,其导函数y=f\x )的图形在y 轴右侧一定有两个零点,进一步可排除(E ).应选(D ).三、解答题(11)【解】djr(2jc 12 + 1)丿兴 + ]1(]___\ 2 3_(1 + j//2 ) 2 ' 4工丿 (4jc + 1) 2Z )= 肿一 I = ~~2'sec 21(2tan 2i + 1 )sec tdtr cos tJ 2sinS + cosL弓豐將=arctan(sin/)+C=arctan .- + C.Jx 2 + 1(12) 【解】f(x ) =Sin "B ,nr = lim [(1 + $1叮一 sm ”)t-~x 'sin x / L 、 sin x /fCx)的间断点为工=kit (k e z),由lim/(j?) = e 得工=0为/(j :)的可去间断点;•z —*0由f (n — Q) — + °°,/(7r + 0) = 0得工=7T 为第二类间断点,同理工=kn(k 6 Z 且怡H0)为第二类间断点.(13) 【解】“=士,『=—— ,2 V j c 4工』工4«zdp _ dp / dj? ds ds / dr131••4( 4 工 +1)2--------------- ---------=6 J~x , 丿4无+ ]2 J~x6d 2 p d ( 6 \/~t ) /dj?2 \[x 6& $ ds/dx g + 1+ 12则^兽-伴)(4h +l)72一;… 一 — 36 无=9.J 4 无 + ](14)【解】gCt)dt x 2e 两边求导,得g[_f (j? )]/,(jc ) = (jc 2 +2工)『9 即) = (e + 2)e° 9积分得 /(^) = (h +1)『+ C9由 /(O) = 0 得 C = — 1,故/'(z ) = («z + 1)『一1.(15)【解】 由 g"Q ) = 2e J 一厂(2 )得 g 〃(H ) + g(z ) = 2e J ,解得 g (工)=C] cos x + C 2 sin x + e r ・ 由 g (0)=2 得 Ci = 1 ;由 g'(0) = 2 — /(0) = 2 得 C 2 = 19从而 g (jc ) = cos x + sin jr + e * 9 于是 fCx)= sin jc — cos 无 + e° ,rg(H )1 + zg (工)/(j ?)_1+乂 (1 + )2dj : +/(j : )d土)J 0g&) 1, fCx )i+7d " +TT7lo _Jg (#)1 +Ax_/(7T )_e n + 1= i + tt = 7t + r(16)r 解】(i )丨 op |=好 +$2,切线方程为Y —y =j/(X —乂),令X = 0,则切线在y 轴上的截距为Y = y — xy',由题意得y — xy' = Jx 2 + j^2,整理得字=2 — /1 + (―),dr jc \ \戈丿令u =—,则"+ z 学 =u — \/1 + z/2,变量分离得 d ----=——工 山 丿1 + / 工______ ______ 「积分得 ln(“ + \/m 2 + 1 ) = In C — In x ,即"+ a /m 2 + 1 = 一,x 再由 -“ + vV +1 =咅得“=*岸-咅),或$=*9 -青),因为曲线经过点(*,0),所以C=y,故所求曲线为夕=土一工2.(H)曲线汁* —在第一象限与两坐标轴所围成的面积为设切点为P1X 22) 9切线为y —=一 2a (jc 一 a ) 9令夕=0得z =二 + #;令工=0得,=++/oa z 4切线与L 及两个坐标轴围成的位于第一象限的面积为4a112 5Sa • 4a令s'++斜4a 2T + fl24a 24)=°得「古所求的切线方程为丿—(土―召),整理得(17)[解】 设/时刻雪堆的半径为r(Z ),r(0) =r 0,v 2 3 Q 9 2 dV 2 "V = —nr , o = Z7tr 9 -7— = Z7ir • —3 dt dtdV" d 厂由题意得不=TS,整理得不=T,解得")=f+c°,由厂(0)=厂 ° 得 C =r Q= —kt +r 09再由 r (3) = #•得怡=¥•,故 r ⑺=----t + r 0 ,Z令r (?) =0得t =6,故雪堆全部融化需要6小时.(18) ( I )【解】/(^)的带拉格朗日余项的一阶麦克劳林公式为/(J?) = /(0) + /''(0)工 + I ;£)乂2= /,(0)jf + [『力2,其中£介于0与工之间.(II )【证明】/(j : ) =/,(0)j' +食,)工2两边在[—a ,a ]上积分得[/(jc)dj- = _1_[ /7,($)2d:r ,J —au J —a因为f'\x )在[—a ,a ]上连续,所以f'\x )在[—a ,a ]上取到最小值m 和最大值M,由W */"(£)広2 C yMjr 2 得扌a 3 C yj 厂(£)工'dr < y-a 3 ,m ra m 3 f a即百^3 W /(工)clr W —a 3 9或 Tzz — /(j : )djc M ,3 J —a 3 a J —a由介值定理,存在少E [—a,a],使得/'"(可)=弓[/'(工)山,a J —a故 a "/■"(”)=3〕/ ( jc ) d j ?.(19)【解】 由 AXA +BXB =AXB + BXA + E 得(A -B)XCA -B) =E,解得 X = [(A -B)2]"1 ,/I — 1 — 1而A - B = 0 1 一 1'o 0 1/!-1一1\J 1(AB)2=01-11 0'001丿'0I 1_ 2-110°\I 1由01-2010 -* 0'0100J'0-1-1I 1-2一1\1-1=01-201/'o 01 100125\10012|得0100/]25\X =-012 •、00J(20)【解】0] ,p 2,“3,04为AX =0的基础解系的充分必要条件是01 ,庆,/h ,力线性无关,1t0100t '而(01 902 9 03,04)=(。
2001年河北省中考数学试题及参考答案(word解析版)
2001年河北省中考数学试题及参考答案一、填空题(本大题共10小题,每小题2分,满分20分)1.(2分)用科学记数法表示12 700的结果是 .2.(2= . 3.(2分)分解因式:x 2﹣xy+xz ﹣yz= .4.(2分)如果∠A=35°18′,那么∠A 的余角等于 .5.(2分)用换元法解分式方程22301x x x x -++=-时,若设1x y x =-,则原方程化成的关于y 的整式方程是 .6.(2分)若三角形的三边长分别为3、4、5,则其外接圆直径的长等于 .7.(2分)如图,AB 是⊙O 的弦,AC 切⊙O 于点A ,且∠BAC=45°,AB=2,则⊙O 的面积为 .8.(2分)点A (a ,b )、B (a ﹣1,c )均在函数1y x=的图象上.若a <0,则b c (填“>”、“<”或”=”).9.(2分)在Rt △ABC 中,锐角A 的平分线与锐角B 的邻补角的平分线相交于点D ,则∠ADB= 度.10.(2分)在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分,那么,他至少选对了 道题.二、选择题(本大题共10小题,每小题2分,满分20分)11.(2分)计算(2﹣1)2结果等于( )A .2B .4C .14D .1212.(2分)有一边长为4的正n 边形,它的一个内角为120°,则其外接圆的半径为( )A. B .4 C. D .213.(2分)若x 1,x 2是一元二次方程3x 2+x ﹣1=0的两个根,则1211x x +的值是( ) A .﹣1 B .0 C .1 D .214.(2分)已知三角形三条边的长分别是2、3和a ,则a 的取值范围是( )A .2<a <3B .0<a <5C .a >2D .1<a <515.(2分)在一元二次方程ax 2+bx+c=0(a≠0)中,若a 与c 异号,则方程( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .根的情况无法确定16.(2分)如图所示,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,AC=3,则CD的长为( )A .1B .4C .3D .217.(2分)某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,则这所中学现在的初中在校生和高中在校生人数分别是( )A .1400人和2800人B .1900人和2300人C .2800人和1400人D .2300人和1900人18.(2分)已知二次函数的图象经过(1,0)、(2,0)和(0,2)三点,则该函数的解析式是( )A .y=2x 2+x+2B .y=x 2+3x+2C .y=x 2﹣2x+3D .y=x 2﹣3x+219.(2分)如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是( )A .bc ﹣ab+ac+c 2B .ab ﹣bc ﹣ac+c 2C .a 2+ab+bc ﹣acD .b 2﹣bc+a 2﹣ab20.(2分)已知等腰三角形三边的长为a 、b 、c ,且a=c .若关于x 的一元二次方程20ax c +=)A .15°B .30°C .45°D .60°三、解答题(本大题共8小题,满分80分)21.(7分)先化简,再求值:2222x x x x -+-+-,其中x = 22.(7分)已知:P 是正方形ABCD 的边BC 上的点,且BP=3PC ,M 是CD 的中点,试说明:△ADM ∽△MCP .23.(7分)如图,⊙O 表示一个圆形工件,图中标注了有关尺寸AB=15cm ,OM=8cm ,并且MB :MA=1:4.求工件半径的长.24.(8分)某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图(如图)图中从左到右各小组的小长方形的高的比为1:3:6:4:2,最右边一组的频数是6,结合直方图提供的信息,解答下列问题:(1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以上(不含60分)的学生占全班参赛人数的百分率.25.(12分)甲乙两辆汽车在一条公路上匀速行驶.为了确定汽车的位置,我们用数轴Ox表示这条公路,原点O为零千米路标(如图),并作如下约定:①速度v>0.表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止.②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处.遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图请解答下列问题:(1(2)甲乙两车能否相遇如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说理由.26.(12分)在△ABC中,D为BC边的中点,E为AC边上的任意一点,BE交AD于点O.某学生在研究这一问题时,发现了如下的事实:(1)当11211AEAC==+时,有22321AOAD==+(如图)(2)当11312AEAC==+时,有22422AOAD==+(如图)(3)当11413AEAC==+时,有22523AOAD==+(如图)在图中,当11AEAC n=+时,参照上述研究结论,请你猜想用n表示AOAD的一般结论,并给出证明(其中n是正整数)27.(13分)某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价为70元时,日均销售60千克;单价每降低1元,日均多销售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.(1)求y与x的二次函数关系式,并指出自变量x的取值范围;(2)将(1)中所求出的二次函数配方成y=a(x﹣h)2+k的形式.写出顶点坐标,并在图中画出草图;观察图象,指出单价定为多少时日均获利最多是多少?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?28.(14分)如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.参考答案与解析一、填空题(本大题共10小题,每小题2分,满分20分)1.(2分)用科学记数法表示12 700的结果是.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:用科学记数法表示12 700的结果是1.27×104.【点评】用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥1时,n为非负整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).2.(2=.【考点】分母有理化.【分析】分母有理化就是指通过分子分母同时乘以同一个数,来消去分母中的根号,从而使分母变为有理数.完成分母有理化,常要用到平方差公式.【解答】解:原式1==,【点评】要正确使用平方差公式,去掉分母中的根号.3.(2分)分解因式:x2﹣xy+xz﹣yz=.【考点】56:因式分解﹣分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.【解答】解:x2﹣xy+xz﹣yz,=(x2﹣xy)+(xz﹣yz),=x(x﹣y)+z(x﹣y),=(x﹣y)(x+z).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.4.(2分)如果∠A=35°18′,那么∠A的余角等于.【考点】余角和补角.【分析】根据余角的定义计算.【解答】解:如果∠A=35°18′,那么∠A的余角等于90°﹣35°18′=54°42′.故填54°42′.【点评】本题考查余角的定义,和为90°的两角互为余角.5.(2分)用换元法解分式方程22301x xx x-++=-时,若设1xyx=-,则原方程化成的关于y的整式方程是.【考点】换元法解分式方程.。
2001年国家公务员考试《行测》真题答案及解析
2001 年《行政职业能力测验》试卷参考答案及解析第一部分常识判断1.A 【解析】E-mail 又称电子邮件,实际上是人们通过网络发送的文件,只不过更为方便和快捷,故正确答案为 A。
2.D 【解析】四个选项中只有海涅是德国著名诗人,其余均是法国著名文学家。
故正确答案为D。
3.B 【解析】这是一道医学常识题,白细胞又叫白血球或白血细胞,可分为嗜中性白细胞,嗜酸性白细胞,嗜碱性白细胞,淋巴细胞和单核细胞 5 种。
其中,嗜中性白细胞的数量最多,常聚集于炎症组织的周围。
人体内有炎症时,它的数量就增多。
成年人外周血液中正常的白细胞数值为每立方毫米 5 000~10 000 个,人体患炎症后,每立方毫米血液中的白细胞会上升至 16 000 个左右,答案为 B。
4.A 【解析】这是一道关于生物的常识题,含羞草的感应性是指在受到外力作用时它的叶子会自动合拢,可见是为了防止损伤枝叶。
在自然界中有很多动植物都会用巧妙的方式来避免受到伤害或尽量降低伤害程度,含羞草便是其中的一种。
5.D 【解析】这是一道历史题,北宋的国都是开封,南宋的国都是杭州,明朝的国都是南京和北京,四个选项中只有洛阳自宋朝以来没做过国都,故正确答案为 D。
6.C 【解析】在我国,少数民族中人口最多的是壮族,有 1 500 多万人,人口在 400 万以上的有满族、回族、苗族、维吾尔族、彝族土家族、蒙古族和藏族,故正确答案为C。
7.A 【解析】Internet 方便、快捷、高效、用途广泛,我们平时用 E-mail 就是用它来传输文件,用 QQ 可实现即时通话和语音聊天,可见 B、C、D 提到的功能 Internet 都具备。
而众所周知,病毒是困扰电脑和网络的一大难题,可见 Internet 的缺点是不够安全,故正确答案为 A。
8.A 【解析】这是一道关于环保的常识题。
正是因为氟利昂会破坏臭氧层,导致环境恶化,我们才提倡使用无氟冰箱,故正确答案为 A。
2001年河南专升本高等数学真题和详细答案
2001年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试一、选择题 (每小题1 分,共30 分,每小题选项中只有一个是正确的,请 将正确答案的序号填在括号内). 1.函数 )y x=-的定义域为( ) A .[0,3) B .(0,3) C .(0,3] D. [0,3] 2.已知 2211f x x x x⎛⎫+=+ ⎪⎝⎭,则()f x 等于( ) A .22x + B .()22x + C .22x - D. ()22x -3.设()1cos 2f x x =-,2()g x x =,则当0→x 时,()x f 是()g x 的( )A .高阶无穷小B .低阶无穷小C .等价无穷小D .同阶但不等价无穷小4.对于函数24(2)x y x x -=-,下列结论中正确的是( )A .0x =是第一类间断点,2x =是第二类间断点;B .0x =是第二类间断点,2x =是第一类间断点;C .0x =是第一类间断点,2x =是第一类间断点;D .0x =是第二类间断点,2x =是第二类间断点.5.设()02f '= ,则()()limh f h f h h→--的值为( )A .1B .2C .0D .4 6.设cos xy e =,则dy 等于( )A .sin xxe e dx - B .sin xxe e - C .sin xxe e dx D .sin xe dx - 7.已知椭圆的参数方程为cos ,(0,0)sin ,x a t a b y b t =⎧>>⎨=⎩,则椭圆在4t π=对应点处切线的斜率为( )A .b aB .a bC .b a -D .ab-8.函数()y f x =在点0x 处可导是它在0x 处连续的( ) A . 充分必要条件 B .必要条件 C . 充分条件 D .以上都不对9.曲线323y x x =-的拐点为( )A .(1,2)-B .1C .(0,0)D .(2,4)- 10. 下列函数中,在[]1,1-上满足罗尔定理条件的是( ) A . y x = B .3x C .2x D .1x11.设()F x 是()f x 的一个原函数,则()2f x dx ⎰等于( )A .()12F x C + B .()122F x C + C .()F x C + D .()12F x C +12.下列式子中正确的是( )A .()()dF x F x =⎰B .()()d dF x F xC =+⎰C .()()df x dx f x dx dx=⎰ D .()()d f x f x dx =⎰ 13.设1210I x dx =⎰,2120x I e dx =⎰,则它们的大小关系是( )A .12I I >B .12I I =C .12I I <D .12I I ≥14.定积分203tan limxx tdt x →⎰等于( )A .+∞B .16 C . 0 D . 1315.下列广义积分中收敛的是( ) A.1+∞⎰B.1+∞⎰C .11dx x +∞⎰D .11ln dx x+∞⎰16.0x y →→ )A . 0 B.12 C .12- D .+∞17.设3z xy x =+,则11|y x dz ==等于( )A . 4dx dy +B .dx dy +C .4dx dy +D .3dx dy + 18.函数()22,221f x y x y x y =+--+的驻点是( )A .()0,0B .()0,1C .()1,0D .()1,1 19.平面3250x y z +-+=与240x y z ---=的位置关系是( ) A .平行 B . 垂直 C .重合 D . 斜交 20.设(){}222,|,0D x y xy R y =+≤≥,则在极坐标系下,()22Df x y dxdy +⎰⎰可表示为( )A.()2Rd f r dr πθ⎰⎰ B.()222Rd f r rdr ππθ-⎰⎰C.()2Rd f r rdr πθ⎰⎰ D.()220Rd f r dr πθ⎰⎰21.设级数()11nn u ∞=-∑收敛,则lim n n u→∞等于()A .1B .0C .+∞D .不确定 22.下列级数中收敛的是( ) A.1n ∞= B .123n n n ∞=∑ C .12n n n ∞=∑ D .21143n n n ∞=⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑23.设正项级数1nn u∞=∑收敛,则下列级数中一定收敛的是( )A .1nn nu∞=∑ B.1n ∞= C .11n n u ∞=∑ D .21n n u ∞=∑24.下列级数中,条件收敛的是( )A .211sin n n ∞=∑ B .211(1)n n n ∞=-∑ C.1(1)n n ∞=-∑ D .11(1)2n n n ∞=-∑ 25.设幂级数n n nx a∑∞=0(n a 为常数,Λ,2,1=n )在点2x =处收敛,则该级数1x =-处( )A 发散B .条件收敛C .绝对收敛D .敛散性无法判定26.某二阶常微分方程的下列解中为通解的是( )A .sin y C x =B .12sin cos yC x C x =+C .sin cos y x x =+D .()12cos y C C x =+27.下列常微分方程中为线性方程的是( ) A .x yy e-'= B .sin yy y x '+=C .()22x dx y xy dy '=+D .20xxy y e'+-=28.微分方程y x '''=的通解是( )A .42123124y x C x C x C =+++ B .32123112y x C x C x C =+++ C .42123112y x C x C x C =+++ D .32123118y x C x C x C =+++29.微分方程40y y ''-=的通解是( ) A .2212xx y C eC e -=+ B .()212x y C C x e =+C .212xy C C e =+ D .12cos 2sin 2y C x C x =+30.对于微分方程22y y x ''-=利用待定系数法求特解*y 时,下列特解设法正确的是( ) A .*2.y ax bx c =++ B .()*22y x ax bx c =++ C .()*y x ax b =+ D .()*2y x ax bx c =++二、填空题 (每小题 2分,共 20分) 1.()1lim 1sin xx x →+=________.2.设()33xf x x =+,则()()40f=________.3.曲线arctan 2y x =在()0,0点的法线方程为________.4.sin x xe e dx ⎰=________.5.由曲线2,0,1y x y x ===所围成的平面图形绕x 轴旋转一周所生成的旋转体的体积是_______. 6.设 yxz x y =+,则zx∂=∂________. 7.交换积分()11,xI dx f x y dy =⎰⎰的积分次序,则I =________.8.幂级数15nn x ∞=-的收敛半径为________.9.幂级数02!n nn x n ∞=∑的和函数()s x 为________.10. 方程22sec tan sec tan 0x ydx y xdy +=①的通解为________. 三、计算题 (每小题4 分,共36 分) 1.求极限0ln cot lim ln x xx+→ 2.求函数12(12)xy x +=+的导数.3.已知 (),z f xy x y =+且f 可微分,求,z z x y∂∂∂∂. 4.计算2ln(1)x x dx +⎰.5.计算1.6.计算2DI xy dxdy =⎰⎰,其中D 为224,0x y x +==所围的右半圆. 7.计算积分()3(sin )Lxy dx x y dy --+⎰,其中L 是曲线2y x =上从点()0,0到点()1,1之间的一段有向弧.8.求过点(1,1,1,)P 且平行于平面1:2340x y z π-+-=与2:60x y z π+--=的直 线方程. 9.将函数()2123f x x x=-+展开为麦克劳林级数,并写出收敛区间. 四、应用题 (每小题5分,共 10 分)1.某工厂生产某产品需两种原料A 、B ,且产品的产量z 与所需A 原料数x 及B 原料数y 的关系式为2287z x xy y =++.已知A 原料数x 的单价为1万元/吨,B 原料数的单价为2万元/吨.现有100万元,如何购置原料,才能使该产品的产量最大?2.已知位于第一象限的凸曲线经过原点(0,0)和点()1,1A 且对于该曲线上的任一点(),P x y ,曲线弧OP ⋂与直线OP 所围成的平面图形的面积为3x . 求曲线弧的方程.五、证明题 (4 分)证明方程203021x xdt e t --=+⎰在区间()0,1内有唯一实根.答案1,【答案】A. 【解析】要求0x ≥;ln(3)x -要求30x ->,即 3.x <取二者之交集,得0 3.x ≤<应选A.2,【答案】C.【解析】因为2221112f x x x x x x ⎛⎫⎛⎫+=+=+- ⎪ ⎪⎝⎭⎝⎭,故2()2f x x =-,应选C.3,【答案】D.【解析】因为()()2220001(2)1cos 22lim lim lim 2x x x x f x xg x x x→→→-===,所以由定义知,()x f 是()g x 的同阶但不等价无穷小.选D.4,【答案】B .【解析】 因为204lim(2)x x x x →-=∞-,故0x =第二类间断点,且0x =为无穷型间断点; 又因为22224(2)(2)2limlim lim 2(2)(2)x x x x x x x x x x x x→→→--++===--,故2x =是第一类间断点,且为可去型间断点.所以选B .5,【答案】D. 【解析】()()0limh f h f h h→--()()()0(0)0lim h f h f f h f h →----⎡⎤⎡⎤⎣⎦⎣⎦=()()[]000()(0)00limlim h h f h f f h f h h→→+--+-=+- ()()00 4.f f ''=+=选 D.6,【答案】A.【解析】因为(cos )sin ()sin xxxxxy e e e e e '''==-=-,所以sin xxdy y dx e e dx '==-, 故选A. 7,【答案】C. 【解析】cos dy b t dt = ,sin dx a t dt =- ,所以=dx dy =dt dx dt dy cot .bt a- 故椭圆在4t π=对应点处切线斜率为4b y a π⎛⎫'=-⎪⎝⎭,应选C.8,【答案】选C. 9,【答案】A.【解析】 ()236f x x x '=-;()()6661f x x x ''=-=-.令()0f x ''=,得1x =;无二阶不可导点.又当1x <时,()0f x ''<,而当1x >时,()0f x ''>,故(1,2)-为拐点,选A.10,【答案】C . 【解析】(1).x 在0=x 处不可导,故x 在()1,1-内不可导,排除A ; (2).3x 在端点1x =-及1x =处的值不相等,排除B ;(3).1x 在0x =处无定义,故1x在[]1,1-上不连续,排除D.选C.11,【答案】B .【解析】()2f x dx ⎰()()1122(2).22f x d x F x C ==+⎰ 选B .12,【答案】D. 13,【答案】C.【解析】因为当[]0,1x ∈时,21x ≤,而21x e≥,且2x e 不恒等于2x ,故12I I <,选C.14,【答案】D.【解析】 203tan limxx tdt x →⎰222200tan 1lim lim .333x x x x x x →→===选D.15,【答案】A. 【解析】1+∞⎰()32112lim 12012x x dx +∞-+∞⎡⎤==-=--=--=⎢⎥⎣⎦⎰,故1+∞⎰收敛,选 A.16,【答案】B.【解析】00x y →→0012x y →→==,选 B.17,【答案】C. 【解析】23zy x x∂=+∂;z x y ∂=∂.故()23.z z dz dx dy y x dx xdy x y ∂∂=+=++∂∂所以,114|y x dz dx dy ===+. 选C .18,【答案】D. . 【解析】 由方程组()(),220,,220,x y f x y x f x y y '=-=⎧⎪⎨'=-=⎪⎩ 得1,1,x y =⎧⎨=⎩ 故驻点为()1,1.选D.19,【答案】B.【解析】 平面 3250x y z +-+=的法向量为{}13,2,1n =-u r;平面240x y z ---=法向量为{}21,2,1n =--u u r .因为12.0n n =u r u u r ,所以1n u r ⊥2n u u r,平面3250x y z +-+=与240x y z ---=垂直,选B .20,【答案】C.21,【答案】A .【解析】因为()11nn u ∞=-∑收敛,故由级数收敛的必要条件知()lim 10n n u →∞-=所以,()lim 1lim 110 1.n n n n u u →∞→∞=--=-=选A.22,【答案】B. 【解析】 (1)n ∞=1121n n∞==∑为112p =<的p—级数,故1n ∞=发散,排除A ;(2)123n n n ∞=∑123nn ∞=⎛⎫= ⎪⎝⎭∑为公比213q =<的等比级数,故收敛,选B ;(3)记2(1,2,...)n n u n n ==,因为1lim 2lim 211n n n nu nu n ρ+→∞→∞===>+,故由达朗贝尔比值审敛法知12n n n ∞=∑发散,排除C ;(4)因为211n n ∞=∑为21p =>的p —级数,故211n n ∞=∑收敛;又143n n ∞=⎛⎫ ⎪⎝⎭∑为公比的等比级数,故143nn ∞=⎛⎫⎪⎝⎭∑发散.所以由级数的性质知21143n n n ∞=⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑发散.23,【答案】D. 【解析】(1)取21n u n =,则1n n u ∞=∑收敛,但111n n n nu n ∞∞===∑∑发散,排除A ;(2)取21n u n =,则1n n u ∞=∑收敛,但111n n n ∞∞===∑发散,排除,选B ;(3)记21n u n =,则1n n u ∞=∑收敛,但2111n n n n u ∞∞===∑∑发散,排除C ; (4)因为1n n u ∞=∑收敛,故lim 0n n u →∞=;所以由2lim lim 0n n n n nu u u →∞→∞==,且1n n u ∞=∑收敛知,21n n u ∞=∑也收敛.选D.24,【答案】C. 【解析】(1)211sin n n ∞=∑211sin n n ∞==∑,因为2211limsin 1n n n →∞=且211n n∞=∑收敛,故211sin n n ∞=∑绝对收敛,排除A ;(2)211(1)nn n ∞=-∑211n n ∞==∑收敛,故211(1)n n n ∞=-∑绝对收敛,排除B ; (3)11(1)2nn n ∞=-∑112n n ∞==∑收敛,故11(1)2n n n ∞=-∑绝对收敛,排除D ;(4)记1,2,...)n u n ==,则显然{}n u 单减,且lim 0n n u →∞=,所以由莱布尼兹审敛法知1(1)n n ∞=-∑收敛;但1(1)nn ∞=-∑1n ∞==发散,故1(1)n n ∞=-∑条件收敛.25,【答案】C.【解析】由题意,n n n x a∑∞=0在点2x =处收敛,故由Abel 收敛定理知,n n n x a ∑∞=0在22x <=的点x 处均绝对收敛,又因为12-<,所以n n n x a∑∞=0在点1-=x 处绝对收敛.选C.26,【答案】B . 由通解的定义知,应选B .27,【答案】D . 所谓线性方程,指的是未知函数及其各阶导数都是一次的,据此定义知,应选D .28,【答案】A . 【解析】21122y xdx x C ''==+⎰; 23112112226y x C dx x C x C ⎛⎫'=+=++ ⎪⎝⎭⎰; 34212123112624y x C x C dx x C x C x C ⎛⎫=++=+++⎪⎝⎭⎰29,【答案】A .【解析】微分方程40y y ''-=的齐次方程的特征方程为240r -=所以,特征根为:122, 2.r r =-=故通解为2212x x y C eC e -=+,选A.30,【答案】A .【解析】微分方程22y y x ''-=的齐次方程的特征方程为 220r -=所以,特征根为:12r r ==这里右端项()220xf x x x e ==,因为0λ=非特征根,故可设 ()*022.y x ax bx c ax bx c =++=++故选A.填空1,【答案】填e .【解析】()10lim 1sin x x x →+=()sin 11sin 0lim 1sin x x x x x e e →⎡⎤+==⎢⎥⎣⎦.2,【答案】填4ln 3.【解析】()233ln3x f x x '=+;()263ln 3x f x x ''=+;()363ln 3x f x '''=+; ()()443ln 3x fx =.所以,()()440ln 3f =.3, 【答案】填20x y +=.【解析】()221221(2)14y x x x''==++ ;故切线斜率为()02y '=.所以法线方程为 10(0)2y x -=--,即 20x y +=.4,【答案】填cos x e c -+【解析】sin x x e e dx ⎰ ()sin cos .x x x e d e e c ==-+⎰5, 【答案】填15π.【解析】 ()212015V x dx ππ==⎰.6,【答案】填1ln y x yxy y -+. 【解析】1ln y x z yx y y x -∂=+∂.7,【答案】填()100,yI dy f x y dx =⎰⎰. 【解析】积分区域D 是由直线,1y x y ==及y 轴所围成的三角形区域,交换积分次序后()100,y I dy f x y dx =⎰⎰.8,【答案】填1.【解析】记1,2,...)n u n ==,因为1lim 1n n n n a a ρ+→∞===,所以收敛半径为1 1.R ρ==9,【答案】填2x e .【解析】由展式()0,,.!nx n x e x n ∞==∈-∞+∞∑知()20022.!!nn n x n n x x e n n ∞∞====∑∑10,【答案】填tan .tan .x y C =【解析】①式可化为22sec sec tan tan x y dx dy x y=- ② ②两边积分,得 22sec sec tan tan x y dx dy x y=-⎰⎰,即 11(tan )(tan )ln tan ln tan ln .tan tan d x d y x y C x y =-⇒=-+⎰⎰也就是ln tan .tan ln .x y C =所以原方程的通解为tan .tan .x y C =计算题1,【解析】0ln cot lim ln x x x +→(洛必达)201cot .(csc )lim 1x x x x+→-=-----------------------------------------2分 0lim sin .cos x x x x+→=- ------------------------------------------3分 0lim 1cos x x x x +→=-=---------------------------------------------4分 2,【解析】()ln 12ln(12)y x x =++ --------------------------------------------------1 分上式两端关于x 求导,得()11.2ln(12)(12)..1212y x x x y x ⎡⎤''=++++⎢⎥+⎣⎦-------------------------2分 即1.2ln(12)2y x y '=++ ----------------------------------------------------3分 所以[]()[]122ln(12)212.2ln(12)2.x y y x x x +'=++=+++---------------4分3,【解析】由微分形式的不变性知()()12..dz f d xy f d x y ''=++-------------------------------------------------------2分即()()12dz f ydx xdy f dx dy ''=+++()()1212yf f dx xf f dy ''''=+++----------------------------------------------- ----4分所以12z yf f x∂''=+∂;12z xf f y ∂''=+∂.---------------------------------------------------5分4,【解析】2ln(1)x x dx +⎰22ln(1)2x x d ⎛⎫=+ ⎪⎝⎭⎰-----------------------------------------------------1分 (分部)2222.ln(1)(ln(1))22x x x d x =+-+⎰----------------------------------------2分 2322.ln(1)21x x x dx x =+-+⎰2322().ln(1)21x x x x x dx x +-=+-+⎰--------3分 222.ln(1)21x x x xdx dx x=+-++⎰⎰ ()222221.ln(1)12221x x x x d x x=+-+++⎰ 22221.ln(1)ln(1).222x x x x C =+-+++------------------------------------4分5,【解析】令tan x t =,则2sec dx dt =----------------------------------------------------1分原式化为2221441cos .sec tan .sec sin t tdt dt t t tππ==⎰⎰------------------------2分24411(sin )sin sin |d t t t ππ==-⎰-----------------------3分3=-=----------------------------------4分注意:倒数第二步用到(sin arctan=====6,【解析】2DI xy dxdy=⎰⎰122Dxy dxdy=⎰⎰------------------------------------------1 分(极坐标)2222002cos.sin.d r r rdrπθθθ=⎰⎰-------------------------------------------3分2223342200001182cos.sin.2sin.343||d r dr rππθθθθ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰.-----------4分7,【解析】L的参数方程为2,:01,y xxx x⎧=→⎨=⎩-----------------------------------------2分故()3(sin)Lx y dx x y dy--+⎰()1322(sin).2x x x x x dx⎡⎤=--+⎣⎦⎰()11322003sin.2x x dx x xdx=--⎰⎰()114322001sin4|x x x d x⎛⎫=--⎪⎝⎭⎰12035cos cos1.44|x=-+=-------------4分8,【解析】1π的法向量是{}12,3,1n=-u r;2π的法向量是{}21,1,1n=-u u r.--------------1分可取所求直线的方向向量为{}122312352,3,5111i j ks n n i j k=⨯=-=++=-r r rr u r u u r r r r----------------------------3分故所求直线方程为111.235x y z---==------------------------------------------4分9,【解析】()()21111232(1)21f x x x x x x x ===--+--------------------------------1分 其中 ()100111111.,2,22222212122nn n n n x x x x x x ∞∞+==⎛⎫==-=-=-∈- ⎪-⎛⎫⎝⎭--- ⎪⎝⎭∑∑-------------2分 ()011,1,111n n x x x x ∞==-=-∈---∑ -------------------------------------------------------3分 所以()()1011,1,12n n n f x x x ∞+=⎛⎫=-∈- ⎪⎝⎭∑.-------------------------------------------4分应用题1,【解析】本题即为求函数()22,87z f x y x xy y ==++在条件2100x y +=下的条件极值问题.宜用拉格朗日乘数法解之.为此令()()22,,872100F x y x xy y x y λλ=++++-.由 280,14820,1000.x y F x y F y x F x y λλλ'⎧=++=⎪'=++=⎨⎪'=+-=⎩解之,100,3200.3x y ⎧=⎪⎪⎨⎪=⎪⎩由于驻点100200,33⎛⎫⎪⎝⎭唯一,实际中确有最大值.所以,当1003x =吨,2003y =吨时可使该产品的产量最大.2,【解析】 设所求曲线弧的方程为()(01)y y x x =≤≤.据题意,曲线弧OP ⋂与直线OP 所围成的平面图形的面积为 ()()301.2xy x dx x y x x -=⎰ ① ①式两边关于x 求导,得()()()21.32y x y x x y x x '-+=⎡⎤⎣⎦,即 ()()2.6y x x y x x '-=,亦即所以()()1.6y x y x x x'-=- ② ②为一阶线性微分方程,其通解为()116dx dx x x y x e xe dx C ---⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰[]ln ln 666x x e xe dx C x dx C x x C -⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦⎰⎰③ 又将()11y =代入③,得7C =.所以,所求曲线弧方程为267y x x =-+.证明题【解析】 构造函数()20321x xdt f x e t =--+⎰ -------------------------------------------1 分 则()x f 在闭区间 []0,1上连续,在开区间()0,1内可导.因()1002f =-<,而()31024f e π=-->----------------------------------------------2分 故由闭间上连续函数的根值定理知,至少存在一点ξ()0,1∈,使得().0=ξf 即方程()0=x f 在()0,1内至少有一个实根------------------------------3分 又()2101x f x e x'=->+,故方程()0=x f 在()0,1内至多有一个实根. ----------4分 因此,方程()0=x f 在()0,1内有且仅有一个实根.注意:证明中用到当()0,1x ∈时,1x e >,且2111x <+,故()2101x f x e x '=->+. .。
全国2001年10月自学考试小学数学教学论试题及答案解析
全国2018年10月自学考试小学数学教学论试题课程代码:00411第一部分选择题一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题干后的括号内。
1.标志着中国古代数学体系形成的著作是( )A.《周髀算经》B.《孙子算经》C.《九章算术》D.《几何原本》2.目前许多国家都允许并鼓励小学哪个年级的学生使用计算器( )A.低年级B.中年级C.低、中年级D.中、高年级3.我国解放后的第一个小学数学教学大纲是( )A.《小学算术教学大纲(草案)》B.《全日制小学算术教学大纲(草案)》C.《小学算术课程暂行标准(草案)》D.《九年义务教育全日制小学数学教学大纲(试用)》4.熟练地掌握表内乘除法和两位数加减一位数是整数教学中哪一个循环圈的教学重点( )A.20以内的数B.100以内的数C.10000以内的数D.多位数5.强调“影响学习的唯一最重要的因素就是学习者已经知道了什么。
”的教育心理学家是( )A.布鲁纳B.皮亚杰C.奥苏贝尔D.杜威6.在小学数学教学过程中,学生是( )A.能动的主体B.被动的主体C.能动的客体D.被动的客体7.小学生由具体形象思维向抽象逻辑思维过渡依靠的中介环节是( )A.观察B.操作C.表象D.想象8.录像是一种( )A.光学教学媒体B.音响教学媒体C.声像教学媒体D.综合性教学媒体9.新授课最常用的一种课型是( )A.探究研讨课B.讲练课C.自学辅导课D.引导发现课10.教学评价的数量化原则主张评价应尽可能( )A.定量B.定性C.定量与定性相结合D.以上答案都不正确11.从产生根源上,可把学习动机分为( )A.内在动机与外在动机B.主导动机和辅助动机C.远景动机和近景动机D.生理动机和社会动机12.11~15岁的学生的心理发展处于皮亚杰所说的( )A.感觉动作阶段B.前运算阶段C.具体运算阶段D.形式运算阶段13.把数学思维划分为再造性思维与创造性思维的依据是( )A.小学生数学思维的发展阶段B.数学思维活动的总体规律C.解决数学问题的方向D.数学思维品质14.教师知识结构中的核心部分应是( )A.教育学知识B.教育心理学知识C.教学论知识D.所教学科的专业知识15.用一根拉紧了的线绳来表示“直线”,这种概念的表示法是( )A.规定外延的方式B.发生式定义C.原始概念描述法D.属差式定义16.质数与合数这两个概念从外延上看是( )A.并列关系B.交叉关系C.矛盾关系D.对立关系17.能够考查学生对概念理解、巩固和简单应用的题型是( )A.匹配题B.是非题C.序列题D.填空题18.1978年的《全日制十年制学校小学数学教学大纲(试行草案)》中的几何教学内容增加了( )A.平行线B.圆柱C.圆锥D.扇形19.有利于教师及时获得反馈信息的教学方法是( )A.讲解法B.谈话法C.演示法D.操作实验法20.视线能完全沿着图形轮廓不断地积极活动,这是几岁孩子观察图形时的特点( )A.3岁B.4岁C.5岁D.6岁二、多项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的五个选项中有二至五个选项是符合题目要求的,请将正确选项前的字母填在题干后的括号内。
河南专升本高等数学真题和详细答案
精品文档2001年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试一、选择题 (每小题1 分,共30 分,每小题选项中只有一个是正确的,请 将正确答案的序号填在括号内). 1.函数 )y x=-的定义域为( ) A .[0,3) B .(0,3) C .(0,3] D. [0,3] 2.已知 2211f x x x x⎛⎫+=+ ⎪⎝⎭,则()f x 等于( ) A .22x + B .()22x + C .22x - D. ()22x -3.设()1cos 2f x x =-,2()g x x =,则当0→x 时,()x f 是()g x 的( )A .高阶无穷小B .低阶无穷小C .等价无穷小D .同阶但不等价无穷小4.对于函数24(2)x y x x -=-,下列结论中正确的是( )A .0x =是第一类间断点,2x =是第二类间断点;B .0x =是第二类间断点,2x =是第一类间断点;C .0x =是第一类间断点,2x =是第一类间断点;D .0x =是第二类间断点,2x =是第二类间断点.5.设()02f '= ,则()()limh f h f h h→--的值为( )A .1B .2C .0D .4 6.设cos xy e =,则dy 等于( )A .sin xxe e dx - B .sin xxe e - C .sin xxe e dx D .sin xe dx - 7.已知椭圆的参数方程为cos ,(0,0)sin ,x a t a b y b t =⎧>>⎨=⎩,则椭圆在4t π=对应点处切线的斜率为( )A .b aB .a bC .b a -D .ab-8.函数()y f x =在点0x 处可导是它在0x 处连续的( ) A . 充分必要条件 B .必要条件 C . 充分条件 D .以上都不对精品文档9.曲线323y x x =-的拐点为( )A .(1,2)-B .1C .(0,0)D .(2,4)- 10. 下列函数中,在[]1,1-上满足罗尔定理条件的是( ) A . y x = B .3x C .2x D .1x11.设()F x 是()f x 的一个原函数,则()2f x dx ⎰等于( )A .()12F x C + B .()122F x C + C .()F x C + D .()12F x C +12.下列式子中正确的是( )A .()()dF x F x =⎰B .()()d dF x F xC =+⎰C .()()df x dx f x dx dx=⎰ D .()()d f x f x dx =⎰ 13.设1210I x dx =⎰,2120x I e dx =⎰,则它们的大小关系是( )A .12I I >B .12I I =C .12I I <D .12I I ≥14.定积分203tan limxx tdt x →⎰等于( )A .+∞B .16 C . 0 D . 1315.下列广义积分中收敛的是( ) A.1+∞⎰B.1+∞⎰C .11dx x +∞⎰D .11ln dx x+∞⎰16.0x y →→ )A . 0 B.12 C .12- D .+∞17.设3z xy x =+,则11|y x dz ==等于( )A . 4dx dy +B .dx dy +C .4dx dy +D .3dx dy + 18.函数()22,221f x y x y x y =+--+的驻点是( )A .()0,0B .()0,1C .()1,0D .()1,1 19.平面3250x y z +-+=与240x y z ---=的位置关系是( ) A .平行 B . 垂直 C .重合 D . 斜交 20.设(){}222,|,0D x y xy R y =+≤≥,则在极坐标系下,()22Df x y dxdy +⎰⎰可表示为( )A.()2Rd f r dr πθ⎰⎰ B.()222Rd f r rdr ππθ-⎰⎰C.()2Rd f r rdr πθ⎰⎰ D.()220Rd f r dr πθ⎰⎰21.设级数()11nn u ∞=-∑收敛,则lim n n u→∞等于()A .1B .0C .+∞D .不确定 22.下列级数中收敛的是( ) A.1n ∞= B .123n n n ∞=∑ C .12n n n ∞=∑ D .21143n n n ∞=⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑23.设正项级数1nn u∞=∑收敛,则下列级数中一定收敛的是( )A .1nn nu∞=∑ B.1n ∞= C .11n n u ∞=∑ D .21n n u ∞=∑24.下列级数中,条件收敛的是( )A .211sin n n ∞=∑ B .211(1)n n n ∞=-∑ C.1(1)n n ∞=-∑ D .11(1)2n n n ∞=-∑ 25.设幂级数n n nx a∑∞=0(n a 为常数,Λ,2,1=n )在点2x =处收敛,则该级数1x =-处( )A 发散B .条件收敛C .绝对收敛D .敛散性无法判定26.某二阶常微分方程的下列解中为通解的是( )A .sin y C x =B .12sin cos yC x C x =+C .sin cos y x x =+D .()12cos y C C x =+27.下列常微分方程中为线性方程的是( ) A .x yy e-'= B .sin yy y x '+=C .()22x dx y xy dy '=+D .20xxy y e'+-=28.微分方程y x '''=的通解是( )A .42123124y x C x C x C =+++ B .32123112y x C x C x C =+++ C .42123112y x C x C x C =+++ D .32123118y x C x C x C =+++29.微分方程40y y ''-=的通解是( ) A .2212xx y C eC e -=+ B .()212x y C C x e =+C .212xy C C e =+ D .12cos 2sin 2y C x C x =+30.对于微分方程22y y x ''-=利用待定系数法求特解*y 时,下列特解设法正确的是( ) A .*2.y ax bx c =++ B .()*22y x ax bx c =++ C .()*y x ax b =+ D .()*2y x ax bx c =++二、填空题 (每小题 2分,共 20分) 1.()1lim 1sin xx x →+=________.2.设()33xf x x =+,则()()40f=________.3.曲线arctan 2y x =在()0,0点的法线方程为________.4.sin x xe e dx ⎰=________.5.由曲线2,0,1y x y x ===所围成的平面图形绕x 轴旋转一周所生成的旋转体的体积是_______. 6.设 yxz x y =+,则zx∂=∂________. 7.交换积分()11,xI dx f x y dy =⎰⎰的积分次序,则I =________.8.幂级数15nn x ∞=-的收敛半径为________.9.幂级数02!n nn x n ∞=∑的和函数()s x 为________.10. 方程22sec tan sec tan 0x ydx y xdy +=①的通解为________. 三、计算题 (每小题4 分,共36 分) 1.求极限0ln cot lim ln x xx+→ 2.求函数12(12)xy x +=+的导数.3.已知 (),z f xy x y =+且f 可微分,求,z z x y∂∂∂∂. 4.计算2ln(1)x x dx +⎰.5.计算1.6.计算2DI xy dxdy =⎰⎰,其中D 为224,0x y x +==所围的右半圆. 7.计算积分()3(sin )Lxy dx x y dy --+⎰,其中L 是曲线2y x =上从点()0,0到点()1,1之间的一段有向弧.8.求过点(1,1,1,)P 且平行于平面1:2340x y z π-+-=与2:60x y z π+--=的直 线方程. 9.将函数()2123f x x x=-+展开为麦克劳林级数,并写出收敛区间. 四、应用题 (每小题5分,共 10 分)1.某工厂生产某产品需两种原料A 、B ,且产品的产量z 与所需A 原料数x 及B 原料数y 的关系式为2287z x xy y =++.已知A 原料数x 的单价为1万元/吨,B 原料数的单价为2万元/吨.现有100万元,如何购置原料,才能使该产品的产量最大?2.已知位于第一象限的凸曲线经过原点(0,0)和点()1,1A 且对于该曲线上的任一点(),P x y ,曲线弧OP ⋂与直线OP 所围成的平面图形的面积为3x . 求曲线弧的方程.五、证明题 (4 分)证明方程203021x xdt e t --=+⎰在区间()0,1内有唯一实根.答案1,【答案】A. 【解析】要求0x ≥;ln(3)x -要求30x ->,即 3.x <取二者之交集,得0 3.x ≤<应选A.2,【答案】C.【解析】因为2221112f x x x x x x ⎛⎫⎛⎫+=+=+- ⎪ ⎪⎝⎭⎝⎭,故2()2f x x =-,应选C.3,【答案】D.【解析】因为()()2220001(2)1cos 22lim lim lim 2x x x x f x xg x x x→→→-===,所以由定义知,()x f 是()g x 的同阶但不等价无穷小.选D.4,【答案】B .【解析】 因为204lim(2)x x x x →-=∞-,故0x =第二类间断点,且0x =为无穷型间断点; 又因为22224(2)(2)2limlim lim 2(2)(2)x x x x x x x x x x x x→→→--++===--,故2x =是第一类间断点,且为可去型间断点.所以选B .5,【答案】D. 【解析】()()0limh f h f h h→--()()()0(0)0lim h f h f f h f h →----⎡⎤⎡⎤⎣⎦⎣⎦=()()[]000()(0)00limlim h h f h f f h f h h→→+--+-=+- ()()00 4.f f ''=+=选 D.6,【答案】A.【解析】因为(cos )sin ()sin xxxxxy e e e e e '''==-=-,所以sin xxdy y dx e e dx '==-, 故选A. 7,【答案】C. 【解析】cos dy b t dt = ,sin dx a t dt =- ,所以=dx dy =dt dx dt dy cot .bt a- 故椭圆在4t π=对应点处切线斜率为4b y a π⎛⎫'=-⎪⎝⎭,应选C.8,【答案】选C. 9,【答案】A.【解析】 ()236f x x x '=-;()()6661f x x x ''=-=-.令()0f x ''=,得1x =;无二阶不可导点.又当1x <时,()0f x ''<,而当1x >时,()0f x ''>,故(1,2)-为拐点,选A.10,【答案】C . 【解析】(1).x 在0=x 处不可导,故x 在()1,1-内不可导,排除A ; (2).3x 在端点1x =-及1x =处的值不相等,排除B ;(3).1x 在0x =处无定义,故1x在[]1,1-上不连续,排除D.选C.11,【答案】B .【解析】()2f x dx ⎰()()1122(2).22f x d x F x C ==+⎰ 选B .12,【答案】D. 13,【答案】C.【解析】因为当[]0,1x ∈时,21x ≤,而21x e≥,且2x e 不恒等于2x ,故12I I <,选C.14,【答案】D.【解析】 203tan limxx tdt x →⎰222200tan 1lim lim .333x x x x x x →→===选D.15,【答案】A. 【解析】1+∞⎰()32112lim 12012x x dx +∞-+∞⎡⎤==-=--=--=⎢⎥⎣⎦⎰,故1+∞⎰收敛,选 A.16,【答案】B.【解析】00x y →→0012x y →→==,选 B.17,【答案】C. 【解析】23zy x x∂=+∂;z x y ∂=∂.故()23.z z dz dx dy y x dx xdy x y ∂∂=+=++∂∂所以,114|y x dz dx dy ===+. 选C .18,【答案】D. . 【解析】 由方程组()(),220,,220,x y f x y x f x y y '=-=⎧⎪⎨'=-=⎪⎩ 得1,1,x y =⎧⎨=⎩ 故驻点为()1,1.选D.19,【答案】B.【解析】 平面 3250x y z +-+=的法向量为{}13,2,1n =-u r;平面240x y z ---=法向量为{}21,2,1n =--u u r .因为12.0n n =u r u u r ,所以1n u r ⊥2n u u r,平面3250x y z +-+=与240x y z ---=垂直,选B .20,【答案】C.21,【答案】A .【解析】因为()11nn u ∞=-∑收敛,故由级数收敛的必要条件知()lim 10n n u →∞-=所以,()lim 1lim 110 1.n n n n u u →∞→∞=--=-=选A.22,【答案】B. 【解析】 (1)n ∞=1121n n∞==∑为112p =<的p—级数,故1n ∞=发散,排除A ;(2)123n n n ∞=∑123nn ∞=⎛⎫= ⎪⎝⎭∑为公比213q =<的等比级数,故收敛,选B ;(3)记2(1,2,...)n n u n n ==,因为1lim 2lim 211n n n nu nu n ρ+→∞→∞===>+,故由达朗贝尔比值审敛法知12n n n ∞=∑发散,排除C ;(4)因为211n n ∞=∑为21p =>的p —级数,故211n n ∞=∑收敛;又143n n ∞=⎛⎫ ⎪⎝⎭∑为公比的等比级数,故143nn ∞=⎛⎫⎪⎝⎭∑发散.所以由级数的性质知21143n n n ∞=⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑发散.23,【答案】D. 【解析】(1)取21n u n =,则1n n u ∞=∑收敛,但111n n n nu n ∞∞===∑∑发散,排除A ;(2)取21n u n =,则1n n u ∞=∑收敛,但111n n n ∞∞===∑发散,排除,选B ;(3)记21n u n =,则1n n u ∞=∑收敛,但2111n n n n u ∞∞===∑∑发散,排除C ; (4)因为1n n u ∞=∑收敛,故lim 0n n u →∞=;所以由2lim lim 0n n n n nu u u →∞→∞==,且1n n u ∞=∑收敛知,21n n u ∞=∑也收敛.选D.24,【答案】C. 【解析】(1)211sin n n ∞=∑211sin n n ∞==∑,因为2211limsin 1n n n →∞=且211n n ∞=∑收敛,故211sin n n ∞=∑绝对收敛,排除A ;(2)211(1)nn n ∞=-∑211n n ∞==∑收敛,故211(1)n n n ∞=-∑绝对收敛,排除B ; (3)11(1)2nn n ∞=-∑112n n ∞==∑收敛,故11(1)2n n n ∞=-∑绝对收敛,排除D ;(4)记1,2,...)n u n ==,则显然{}n u 单减,且lim 0n n u →∞=,所以由莱布尼兹审敛法知1(1)n n ∞=-∑收敛;但1(1)nn ∞=-∑1n ∞==发散,故1(1)n n ∞=-∑条件收敛.25,【答案】C. 【解析】由题意,nn nx a∑∞=0在点2x =处收敛,故由Abel 收敛定理知,n n n x a ∑∞=0在22x <=的点x 处均绝对收敛,又因为12-<,所以n n nx a∑∞=0在点1-=x 处绝对收敛.选C.26,【答案】B . 由通解的定义知,应选B .27,【答案】D . 所谓线性方程,指的是未知函数及其各阶导数都是一次的,据此定义知,应选D .28,【答案】A . 【解析】21122y xdx x C ''==+⎰; 23112112226y x C dx x C x C ⎛⎫'=+=++⎪⎝⎭⎰; 34212123112624y x C x C dx x C x C x C ⎛⎫=++=+++ ⎪⎝⎭⎰29,【答案】A .【解析】微分方程40y y ''-=的齐次方程的特征方程为240r -=所以,特征根为:122, 2.r r =-=故通解为2212xx y C e C e -=+,选A.30,【答案】A .【解析】微分方程22y y x ''-=的齐次方程的特征方程为220r -=所以,特征根为:12r r ==这里右端项()220xf x x x e ==,因为0λ=非特征根,故可设()*022.y x ax bx c ax bx c =++=++故选A.填空1,【答案】填e .【解析】()10lim 1sin xx x →+=()sin 11sin 0lim 1sin xxxx x e e →⎡⎤+==⎢⎥⎣⎦.2,【答案】填4ln 3.【解析】()233ln3xf x x '=+;()263ln 3xf x x ''=+;()363ln 3xf x '''=+;()()443ln 3x f x =.所以,()()440ln 3f =.3,【答案】填20x y +=. 【解析】()221221(2)14y x x x''==++ ;故切线斜率为()02y '=.所以法线方程为 10(0)2y x -=--,即 20x y +=.4,【答案】填cos xe c -+【解析】sin x x e e dx ⎰ ()sin cos .x x x e d e e c ==-+⎰5,【答案】填15π.【解析】 ()212015V x dx ππ==⎰. 6,【答案】填1ln y x yx y y -+.【解析】1ln y x zyx y y x-∂=+∂. 7,【答案】填()1,yI dy f x y dx =⎰⎰.【解析】积分区域D 是由直线,1y x y ==及y 轴所围成的三角形区域,交换积分 次序后()1,yI dy f x y dx =⎰⎰.8,【答案】填1.【解析】记1,2,...)n u n ==,因为1lim 1n n n na a ρ+→∞===,所以收敛半径为11.R ρ==9,【答案】填2xe .【解析】由展式()0,,.!nxn x e x n ∞==∈-∞+∞∑知()20022.!!nn n x n n x x e n n ∞∞====∑∑10,【答案】填tan .tan .x y C = 【解析】①式可化为22sec sec tan tan x ydx dy x y=- ② ②两边积分,得22sec sec tan tan x ydx dy x y=-⎰⎰,即 11(tan )(tan )ln tan ln tan ln .tan tan d x d y x y C x y =-⇒=-+⎰⎰也就是ln tan .tan ln .x y C = 所以原方程的通解为tan .tan .x y C =计算题1,【解析】0ln cot lim ln x x x +→(洛必达)201cot .(csc )lim 1x x x x +→-=-----------------------------------------2分 0lim sin .cos x xx x+→=- ------------------------------------------3分0lim 1cos x xx x+→=-=---------------------------------------------4分2,【解析】()ln 12ln(12)y x x =++ --------------------------------------------------1 分上式两端关于x 求导,得 ()11.2ln(12)(12)..1212y x x x y x ⎡⎤''=++++⎢⎥+⎣⎦-------------------------2分 即 1.2ln(12)2y x y'=++ ----------------------------------------------------3分 所以[]()[]122ln(12)212.2ln(12)2.xy y x x x +'=++=+++---------------4分3,【解析】由微分形式的不变性知()()12..dz f d xy f d x y ''=++-------------------------------------------------------2分即()()12dz f ydx xdy f dx dy ''=+++()()1212yf f dx xf f dy ''''=+++----------------------------------------------- ----4分所以12zyf f x∂''=+∂;12z xf f y ∂''=+∂.---------------------------------------------------5分4,【解析】2ln(1)x x dx +⎰22ln(1)2x x d ⎛⎫=+ ⎪⎝⎭⎰-----------------------------------------------------1分 (分部)2222.ln(1)(ln(1))22x x x d x =+-+⎰----------------------------------------2分 2322.ln(1)21x x x dx x =+-+⎰2322().ln(1)21x x x x x dx x +-=+-+⎰--------3分 222.ln(1)21x x x xdx dx x =+-++⎰⎰ ()222221.ln(1)12221x x x x d x x=+-+++⎰ 22221.ln(1)ln(1).222x x x x C =+-+++------------------------------------4分5,【解析】令tan x t =,则2sec dx dt =----------------------------------------------------1分 原式化为2221441cos .sec tan .sec sin ttdt dt t ttππ==⎰⎰------------------------2分24411(sin )sin sin |d t t t ππ==-⎰-----------------------3分3=-=----------------------------------4分注意:倒数第二步用到(sin arctan =====6,【解析】 2DI xy dxdy =⎰⎰ 122D xy dxdy =⎰⎰ ------------------------------------------1 分(极坐标)222202cos .sin .d r r rdr πθθθ=⎰⎰-------------------------------------------3分222334220001182cos .sin .2sin .343||d r dr r ππθθθθ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰.-----------4分7,【解析】 L 的参数方程为2,:01,y x x x x ⎧=→⎨=⎩-----------------------------------------2分 故()3(sin )Lxy dx x y dy --+⎰()13220(sin ).2x x x x x dx ⎡⎤=--+⎣⎦⎰()11322003sin .2x x dx x xdx =--⎰⎰ ()114322001sin 4|x x x d x ⎛⎫=-- ⎪⎝⎭⎰12035cos cos1.44|x =-+=-------------4分8,【解析】1π的法向量是{}12,3,1n =-u r ;2π的法向量是{}21,1,1n =-u u r.--------------1分可取所求直线的方向向量为{}122312352,3,5111i j ks n n i j k =⨯=-=++=-r r r r u r u u r r r r----------------------------3分故所求直线方程为111.235x y z ---== ------------------------------------------4分9,【解析】()()21111232(1)21f x x x x x x x ===--+--------------------------------1分其中()100111111.,2,22222212122nn n n n x x x x x x ∞∞+==⎛⎫==-=-=-∈- ⎪-⎛⎫⎝⎭--- ⎪⎝⎭∑∑-------------2分()011,1,111n n x x x x ∞==-=-∈---∑ -------------------------------------------------------3分 所以()()1011,1,12n n n f x x x ∞+=⎛⎫=-∈- ⎪⎝⎭∑.-------------------------------------------4分应用题1,【解析】本题即为求函数()22,87z f x y x xy y ==++在条件2100x y +=下的条件极值问题.宜用拉格朗日乘数法解之.为此令()()22,,872100F x y x xy y x y λλ=++++-.由 280,14820,1000.x y F x y F y x F x y λλλ'⎧=++=⎪'=++=⎨⎪'=+-=⎩解之,100,3200.3x y ⎧=⎪⎪⎨⎪=⎪⎩由于驻点100200,33⎛⎫⎪⎝⎭唯一,实际中确有最大值.所以,当1003x =吨,2003y =吨时可使该产品的产量最大.2,【解析】 设所求曲线弧的方程为()(01)y y x x =≤≤.据题意,曲线弧OP ⋂与直线OP 所围成的平面图形的面积为()()31.2xy x dx x y x x -=⎰ ① ①式两边关于x 求导,得()()()21.32y x y x x y x x '-+=⎡⎤⎣⎦,即 ()()2.6y x x y x x '-=,亦即 所以()()1.6y x y x x x'-=- ② ②为一阶线性微分方程,其通解为()116dxdx xxy x e xe dx C ---⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰[]ln ln 666x x e xe dx C x dx C x x C -⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦⎰⎰③又将()11y =代入③,得7C =.所以,所求曲线弧方程为267y x x =-+.证明题【解析】 构造函数()20321x xdtf x e t=--+⎰ -------------------------------------------1 分 则()x f 在闭区间 []0,1上连续,在开区间()0,1内可导. 因()1002f =-<,而()31024f e π=-->----------------------------------------------2分 故由闭间上连续函数的根值定理知,至少存在一点ξ()0,1∈,使得().0=ξf 即方程()0=x f 在()0,1内至少有一个实根------------------------------3分 又()2101xf x e x'=->+,故方程()0=x f 在()0,1内至多有一个实根. ----------4分 因此,方程()0=x f 在()0,1内有且仅有一个实根. 注意:证明中用到当()0,1x ∈时,1xe >,且2111x <+,故()2101xf x e x '=->+. .。
考研数学二解答题专项强化真题试卷44(题后含答案及解析)
考研数学二解答题专项强化真题试卷44(题后含答案及解析)题型有:1.1.证明方程lnx=在区间(0,+∞)内有且仅有两个不同实根.正确答案:当0<x<e时,F’(x)<0,F(x)严格单调减少;当e<x<+∞时,F’(x)>0,F(x)严格单调增加,因此,F(x)在区间(0,e),和(e,+∞)内分别至多有一个零点.由闭区间上连续函数的零点定理可知,F(x)在(e一3,e)和(e,e4)内分别至少有一个零点,综上所述,方程在(0,+∞)内有且仅有两个不同的实根.2.(2000年)设曲线y=aχ2(a>0,χ≥0)与y-1-χ2交于点A,过坐标原点O和点A的直线与曲线y=aχ2围成一平面图形.问a为何值时,该图形绕χ轴旋转一周所得的旋转体体积最大?最大体积是多少?正确答案:当χ≥0时,由解得,故直线OA的方程为令=0,并由a >0得唯一驻点a=4 由题意知a=4时,旋转体体积最大,最大体积为V=涉及知识点:一元函数积分学3.(1999年试题,八)设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f’’(ξ)=3.正确答案:由题设f(x)具有三阶连续导数,且f’(0)=0,则由麦克劳林公式得其中η介于0与x之间,且x∈[-1,1].在上式中分别令x=一1和x=1,并由已知条件f(一1)=0,f(1)=1,f’(0)=0,得两式相减,得f’’(η1)+f’’(η2)=6由已知f’’(x)连续,则在闭区间[η1,η2]上有最大值和最小值,设它们分别为M和m,则有则由连续函数的介值定理知,至少存在一点ξ∈[η1,η2]c(一1,1),使解析:在泰勒展开式中一般取x’为一阶导数值是已知的点(例如f’(x0)=1)或隐含已知的点,比如极值点,最值点等,ξ的选取在x0与x之间,一般还随着x的变化而变化.知识模块:一元函数微分学4.讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
2001-2013年河南专升本高数真题及答案
2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且21)1()21(lim 0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b32sin - C.t a b 2cos D.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22t a bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a adx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数xz∂∂和y z ∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件 解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121-C.dy dx 21-D.dy dx 21+ 解:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰42),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f dC.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d 解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 142221041031332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n nv u +∑∞=收敛 C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
考研数学二(一元函数积分学)历年真题试卷汇编1(题后含答案及解析)
考研数学二(一元函数积分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2012年试题,一)设(k=1,2,3),则有( ).A.l1先比较l1,l2,由于l2-l1=因此l2<l1.再比较l2,l3,l3一l2=ξ2>0,ξ2∈(2π,3π).因此l3>l2最后比较l1,l3.l2一l1=令t=x一2π,则l3一l1因此l3>l1,综上有l3>l1>l2,选D.知识模块:一元函数积分学2.(2003年试题,二)设则极限等于( ).A.B.C.D.正确答案:B解析:由题设,所以由于所以选B.[评注]考查定积分的计算和求数列极限.知识模块:一元函数积分学3.(2002年试题,二)设函数f(x)连续,则下列函数中,必为偶函数的是( ).A.B.C.D.正确答案:D解析:由题设,逐一分析4个选项,设f1(x)=则,因此f(x)为奇函数.设f2(x)=则由于f(x)的奇偶性未给定,所以f2(x)的奇偶性不确定,设f3(x)=,则因此f(x)为奇函数.设f4(x)=则,因此f4(x)为偶函数,综上,选D.[评注]的奇偶性与f(x)奇偶性的关系是:若f(x)为奇函数,则为偶函数;若f(x)为偶函数,则为奇函数.知识模块:一元函数积分学4.(1999年试题,二)设则当x→0时,α(x)是β(x)的( ).A.高阶无穷小B.低阶无穷小C.同阶但不等价的无穷小D.等价无穷小正确答案:C解析:由题设,因此当x→0时,α(x)是β(x)的同阶但不等价无穷小,选C.[评注]考查无穷小量的比较及极限的计算.知识模块:一元函数积分学5.(1997年试题,二)设则F(x)( ).A.为正常数B.为负常数C.恒为零D.不为常数正确答案:A解析:由题设,被积函数f(x)=esinx.sinx具有周期2π,所以[评注]判定F(x)是否为常数,看F’(x)是否恒为0即可,然后再取特殊值即可判定F(x)是正常数,还是负常数或恒为0等.知识模块:一元函数积分学6.(2010年试题,4)设m,n是正整数,则反常积分的收敛性( ).A.仅与m的取值有关B.仅与n有关C.与mn取值都有关D.与m,n取值都无关正确答案:D解析:无界函数的反常积分有两个瑕点x=0和x=1,同理,x→0+时,In2(1一x)一x2,设q为一个常数,则又因为m,n是正整数,所以则必然存在q∈(0,1),使得极限存在.同理,因x→1-时,对于任意小的δ∈(0,1),有所以,根据无界函数的反常积分的审敛法2可知,该反常积分始终是收敛的,即它的敛散性与m,n均无关,故正确答案为D.知识模块:一元函数积分学7.(2009年试题,一)设函数y=f(x)在区间[一1,3]上的图形如图1—3—4所示,则函数的图形为( ).A.B.C.D.正确答案:D解析:由定积分的性质可知y=f(x)的图像与x轴、y轴及x=x所围图形面积的代数和为所求函数F(x),观察图形可得出如下结论:(I)当x∈[一1,0]时,F(x)≤0,为线性函数,且单调递增,从而排除A,C选项;(Ⅱ)当x∈[0,1]时,F(x)≤0且单调递减;(Ⅲ)当x∈[1,2]时,F(x)单调递增;(Ⅳ)当x∈[23]时,F(x)为常数函数,且连续,从而排除B选项.综上可知,正确选项为D. 知识模块:一元函数积分学8.(2008年试题,一)如图1—3—5所示,设图中曲线方程为y=f(x),函数f(x)在区间[0,a]上有连续导数,则定积分表示( ).A.曲边梯形ABOD的面积B.梯形ABOD的面积C.曲边三角形ACD的面积D.三角形ACD的面积正确答案:C解析:定积分因为af(a)是矩形ABOG的面积是曲边梯形ABOD的面积,二者之差就是曲边三角形ACD的面积.故应选C.知识模块:一元函数积分学9.(2007年试题,一)如图1—3—6所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设则下列结论正确的是( ).A.B.C.D.正确答案:C解析:的大小跟曲线y=f(x)与x轴所围面积大小有关.因为F(3)故应选C.[评注]应用定积分的几何意义做本题较为简便,若直接去计算定积分,则十分复杂.知识模块:一元函数积分学填空题10.(2001年试题,一)_________.正确答案:解析:已知f(x)为连续函数,若f(x)为奇函数,则若f(x)为偶函数,则知识模块:一元函数积分学11.(1999年试题,一)函数在区间上的平均值为__________.正确答案:由平均值的定义知解析:理解平均值的概念,像曲率、弧长等概念也值得注意.知识模块:一元函数积分学12.(2009年试题,二)已知,则k=_________.正确答案:因为,所以极限存在.故k从而k=一2.涉及知识点:一元函数积分学13.(2010年试题,12)当0≤0≤π时,对数螺线r=eθ的弧长为__________.正确答案:题设曲线的弧长涉及知识点:一元函数积分学14.(2003年试题,一)设曲线的极坐标方程为p=eπθ(a>0),则该曲线上相应于θ,从0变到2π的一段弧与极轴所围成的图形的面积为__________.正确答案:由已知p=eπθ,则由极坐标下平面图形的面积公式知所求图形面积为解析:考查极坐标下平面图形的面积计算,极坐标下的面积微元为参数方程定义的曲线面积微元为dS=y(θ)x’(θ)dθ.知识模块:一元函数积分学15.(2002年试题,一)位于曲线y=xe-x(0≤x解析:无界图形的面积可由广义积分计算.知识模块:一元函数积分学16.(1998年试题,一)曲线y=一x3+x2+2x与x轴围成的图形的面积(不考虑负面积)S=__________.正确答案:先由已知y=一x3+x2+2x可得其与戈轴的三个交点,x1=一1,x2=0,x3=2,作出草图(见图1——11)可有助于用定积分表示面积S,因此涉及知识点:一元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(B)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f ( x) > x.
(C)在 (1− δ ,1) 内, f ( x) < x, 在 (1,1+ δ ) 内, f ( x) > x.
(D)在 (1− δ ,1) 内, f ( x) > x, 在 (1,1+ δ ) 内, f ( x) < x.
解得 y = e
−∫ e
⎡
∫ = 1−
x2
1 arcsin
x
dx
⎢⎢c ⎢⎣
+
1
∫
e
arcsin x
1
dx ⎤
1−x2 arcsin x dx⎥⎥
⎥⎦
1
(c+ x),
arcsin x
y
⎛ ⎜⎝
1 2
⎞ ⎟⎠
=
0
⇒
c
=
−
1 2
.
-2-
故曲线方程为:
y arcsin x = x − 1 . 2
⎡a 1 1⎤ ⎡ x1 ⎤ ⎡ 1 ⎤
( ) ∫ 三、求
dx
.
2x2 +1 x2 +1
【详解】设 x = tan t, 则 dx = sec2 t.
( ) ∫ ∫ ∫ 原式 =
sec2 tdt
=
cos tdt = d sin t
sec t ⋅ 2 tan2 t +1 2sin2 t + cos2 t 1+ sin2 t
= arctan (sin t ) + C
M
3
⎥ ⎥
→
⎢⎣1 1 a M −2⎥⎦ ⎢⎣0 1− a 1− a2 M 1+ 2a⎥⎦
⎡1 1
a
M −2 ⎤
⎢⎢0 a −1
(a −1)
M
3
⎥ ⎥
,
⎢⎣0 0 (a −1)(a + 2) M 2(a + 2)⎥⎦
( ) 可见,只有当 a = −2 时才有秩 r A = r ( A) = 2 < 3, 对应方程组有无穷多个解.
(A)1.
(B)2.
(C)3.
(D)4. 【】
【答】 应选(B).
【详解] 由题设,知
( ) (1− cos x) ln 1+ x2
lim
x→0
x sin xn
= lim x→0
1 x2 ⋅ x2 2
x ⋅ xn
=
1 lim
2 x→0
1 xn−3
=
1 lim x3−n 2 x→0
= 0.
n应满足 n ≤ 2;
-4-
(D)3. 【】
y' = 4( x −1)( x − 2)( x − 3)
( ) y'' = 4 3x2 −12x +11 ,
y''' = 24 ( x − 2).
令 y'' = 0, 即 3x2 −12x +11 = 0, 因为 ∆ = 122 − 4 ⋅ 3⋅11 = 12 > 0, 所以 yn = 0 有两个根,且不
( y arcsin x)' = 1,
两边直接积分,得
y arcsin x = x + c.
又由
y
⎛ ⎜⎝
1 2
⎞ ⎟⎠
=
0,
解得
c
=
−
1 2
.
故所求曲线方程为:
方法二:
y arcsin x = x − 1 . 2
将原方程写成一阶线性方程的标准形式
y' +
1
y= 1 .
1− x2 arcsin x arcsin x
为 2 ,因在此两点处,三阶导数 y''' ≠ 0, 因此曲线有两个拐点.
故正确选项为(C).
(4) 已 知 函 数 f ( x) 在 区 间 (1− δ ,1+ δ ) 内 具 有 二 阶 导 数 , f ' ( x) 严 格 单 调 减 少 , 且
f (1) = f ' (1) = 1, 则 (A)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f ( x) < x.
可见 F ( x) 在 x = 1 处取极大值,即在 (1− δ ,1) 和 (1,1+ δ ) 内均有 F ( x) < F (1) = 0,
也即 f ( x) < x.
故正确选项为(A). 方法二:
因为 f ' ( x) 严格单调减少,且 f ' (1) = 1,
-5-
则在 (1− δ ,1) 内, f ' ( x) > f ' (1) = 1
x
x
而 lim f ( x) = lim esin x 与 lim f ( x) = lim esin x 均不存在,
x→(kπ )−
x→(kπ )−
x→(kπ )+
x→(kπ )+
故 x = kπ (k = ±1, ±2,L) 是函数 f ( x) 的第二类(或无穷)间断点.
-7-
方法二:
= lim e = e = 原式
x
⋅x sin
x
sin x ⎥⎦
x
= esin x ,
x
即
f ( x) = esin x ,
显然 f ( x) 的间断点为:
x = 0, x = kπ (k = ±1, ±2,L)
x
由于 lim f ( x) = lim esin x = e,
x→0
x→0
所以 x = 0 是函数 f ( x) 的第一类(或可去)间断点;
1 4
sin 2
2xdx
∫ = 1 8
π
2 −π
(1
−
cos
4
x
)dx
2
=π. 8
(4)过点
⎛ ⎜⎝
1 2
,
0
⎞ ⎟⎠
且满足关系式
y'
arcsin
x
+
y = 1的曲线方程为 1− x2
.
【答】 y arcsin x = x − 1 . 2
【详解】 方法一:
原方程 y' arcsin x + y = 1可改写为 1− x2
(5)设方程 ⎢⎢1
a
1
⎥ ⎥
⎢ ⎢
x2
⎥ ⎥
=
⎢ ⎢
1
⎥ ⎥
有无穷多个解,则
a
=
.
⎢⎣1 1 a⎥⎦ ⎢⎣ x3 ⎥⎦ ⎢⎣−2⎥⎦
【答】 -2
【详解】 方法一:
利用初等行变换化增广矩阵为阶梯形,有
⎡a 1 1 M 1 ⎤ ⎡1 1 a M −2 ⎤
A = ⎢⎢1
a
1M
1
⎥ ⎥
→
⎢⎢0
a −1
1− a
抛物线上介于点
A(1,1) 与
M
之间的弧长,计算 3ρ
d2ρ ds2
−
⎛ ⎜⎝
dρ ds
⎞2 ⎟⎠
的值.(在直角坐标系下曲
y ''
率公式为 K =
)
3
( ) 1+ y'2 2
【详解】 y' = 1 , y'' = − 1 ,
2x
4 x3
抛物线在点 M ( x, y)( x ≥ 1) 处三维曲率半径
3
求 f (x).
【详解】 等式两边对 x 求导得
g ⎡⎣ f ( x)⎤⎦ f ' ( x) = 2xex + x2ex
而
g ⎡⎣ f ( x)⎤⎦ = x,
故
xf ' ( x) = 2xex + x2ex .
当 x ≠ 0 时,有
f ' ( x) = 2ex + xex
积分得
f ( x) = ( x +1) ex + C
【答】 应选(A). 【详解】 方法一:
令 F ( x) = f ( x) − x,
【】
则 F ' ( x) = f ' ( x) −1 = f ' ( x) − f ' (1),
由于 f ' ( x) 严格单调减少,
因此当 x ∈ (1− δ ,1) 时, F ' ( x) < 0, 且在 x = 1 处, F ' (1) = 0.
又由 lim x→0
x sin xn ex2 −1
=
lim
x→0
x n +1 x2
= lim xn−1 x→0
= 0,
知 n ≥ 2. 故 n = 2.
因此正确选项为(B).
(3)曲线 y = ( x −1)2 ( x − 3)2 的拐点个数为
(A)0.
(B)1.
(C)2.
【答】 应选(C). 【详解】 因为
-6-
时,一定有 f ' ( x) > 0 对应 y = f ' ( x) 图形必在 x 轴的上方,由此可排除(A),(C); 又 y = f ( x) 的图形在 y 轴右侧有三个零点,因此由罗尔中值定理知,其导函数 y = f ' ( x) 图
形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
⎛ = arctan ⎜
x
⎞ ⎟ + C.