基本初等函数2复习

合集下载

2024年高考数学总复习第二章《函数与基本初等函数》2

2024年高考数学总复习第二章《函数与基本初等函数》2

2024年高考数学总复习第二章《函数与基本初等函数》§2.7函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件?提示f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,求f (x ),g (x )的关系.提示g (x )=2b -f (2a -x )题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.(×)(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.(×)(3)函数y =f (x )与y =-f (x )的图象关于原点对称.(×)(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.(×)题组二教材改编2.[P35例5(3)]函数f (x )=x +1x的图象关于()A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案C 解析函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P32T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是.答案(-1,1]解析在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.下列图象是函数y 2,x <0,-1,x ≥0的图象的是()答案C6.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案y =解析根据伸缩变换方法可得,所求函数解析式为y =7.(2018·太原调研)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案(0,+∞)解析在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一作函数的图象分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解(1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的辨识例1(1)函数y =x 2ln|x ||x |的图象大致是()答案D 解析从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x 0,1e 上单调递减,在区间1e,+∞ D.(2)设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)答案C 解析题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.跟踪训练1(1)函数f (x )=1+log 2x 与g (x )=12x 在同一直角坐标系下的图象大致是()答案B 解析因为函数g (x )=12为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B.(2)函数y =1ln|e x -e -x |的部分图象大致为()答案D 解析令f (x )=1ln|e x -e -x |,则f (-x )=1ln|e -x -e x |=1ln|e x -e -x |=f (x ),∴f (x )是偶函数,图象关于y 轴对称,排除B ,C.当x >1时,y =1ln|e x -e -x |=1ln (e x -e -x ),显然y >0且函数单调递减,故D 正确.题型三函数图象的应用命题点1研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是()A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0)答案C 解析将函数f (x )=x |x |-2x去掉绝对值,得f (x )x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________.答案(4,+∞)解析画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.命题点2解不等式例3函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为.答案-π2,-1∪1,π2解析当x ∈0,π2y =cos x >0.当x ∈π2,4y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数,所以在[-4,0]上,f (x )cos x<0-π2,-1,所以f (x )cos x<0-π2,-1∪1,π2命题点3求参数的取值范围例4(1)已知函数f (x )12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是.答案(0,1]解析作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是.答案解析先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)(2018·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案C 解析画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是.答案[-1,+∞)解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()答案B 解析当x ∈0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈π4,3π4时,1+5,22.∵22<1+5,∴D ,故选B.(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |x B .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x答案A 解析由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.(3)(2018·全国Ⅱ)函数f (x )=e x -e -x x 2的图象大致为()答案B 解析∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.二、函数图象的变换问题例2已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()答案D 解析方法一先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y=-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.方法三当x =0时,y =-f (2-0)=-f (2)=-4.故选D.三、函数图象的应用例3(1)已知函数f (x )|,x ≤m ,2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是.答案(3,+∞)解析在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.(2)不等式3sin π2x-12log x<0的整数解的个数为.答案2解析不等式3sin π2x12log x<0,即3sinπ2x<12log x.设f(x)=3sinπ2x,g(x)=12log x,在同一坐标系中分别作出函数f(x)与g(x)的图象,由图象可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin π2x12log x<0的整数解的个数为2.(3)已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.答案(2,2021)解析函数f(x)sinπx,0≤x≤1,log2020x,x>1的图象如图所示,不妨令a<b<c,由正弦曲线的对称性可知a+b=1,而1<c<2020,所以2<a+b+c<2021.1.(2018·浙江)函数y=2|x|sin2x的图象可能是()答案D解析由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()答案C解析当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()答案A解析先作出函数f(x)=log a x(0<a<1)的图象,当x>0时,y=f(|x|+1)=f(x+1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图象关于y轴对称翻折到y轴左边,得到x<0时的图象,故选A.4.若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于()A.-12B.-54C.-1D.-2答案C解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)2x+5,x<-1,ln(x+2),x≥-1,故f(-3)=2×(-3)+5=-1,故选C.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.(2018·承德模拟)已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为() A.(-∞,1)B.(-∞,1]C .(0,1)D .(-∞,+∞)答案A解析当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为.答案{x |x ≤0或1<x ≤2}解析画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0>1,x )≤0<1,x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =.答案-2解析由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是.答案-13,解析由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b },a ≤b ,,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为.答案(4,5)解析作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y=m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )2(1-x )+1,-1≤x <0,3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是.答案[1,3]解析先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x )2+2x -1,x ≥0,2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是()A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案D解析函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是.答案解析f (x )+1x -1,x >1,1+11-x,x <1,g (x )+x ,x ≥0,,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x=x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x -∞,5-12∪1+52,+∞15.已知函数f (x )-x 2+x ,x ≤1,13logx ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________.答案-∞,74∪94,+∞解析对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是-∞,74∪94,+∞16.已知函数f (x )(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,求实数k 的取值范围.解由题意知,直线y =kx 与函数y =f (x )(x ∈[0,6])的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k ,1 6.。

2_基本初等函数知识点小结

2_基本初等函数知识点小结

第二章 基本初等函数知识点小结一.【课标要求】1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型 2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.知道指数函数x a y =与对数函数x y alog =互为反函数(a >0,a ≠1)。

4.幂函数(1)了解幂函数的概念(2)结合函数y=x, ,y=x 2, y=x 3,y=x 21,y=x1的图象,了解它们的变化情况二.【要点精讲】1.指数与对数运算(1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。

即若a xn=,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n②性质:1)a a nn =)(;2)当n 为奇数时,a ann=;3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n。

(2).幂的有关概念①规定:1)∈⋅⋅⋅=n a a a a n ( N *;2))0(10≠=a a ; n 个 3)∈=-p aapp(1Q ,4)m a a anmnm,0(>=、∈n N *且)1>n②性质:1)r a a a a s r s r ,0(>=⋅+、∈s Q ); 2)r a a a s r s r ,0()(>=⋅、∈s Q ); 3)∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

1.3.2 余弦函数、正切函数的图象与性质第一课时 余弦函数的图象与性质1.余弦函数的图象(1)把正弦曲线向左平移π2个单位就可以得到余弦函数的图象.余弦函数y =cos x 的图象叫做余弦曲线.(2)余弦曲线.除了上述的平移法得到余弦曲线,还可以用:①描点法:按照列表,描点,连线顺序可作出余弦函数图象的方法.②五点法:观察余弦函数的图象可以看出,(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1)这五点描出后,余弦函数y =cos x ,x ∈[0,2π]的图象的形状就基本上确定了.【自主测试1】画出函数y =-cos x ,x ∈[0,2π]的简图.分析:运用五点作图法,首先要找出起关键作用的五个点,然后描点连线. 解:列表:ω>0)的周期为T =2πω.今后,可以使用这个公式直接求这类函数的周期.【自主测试2-1】函数y =2cos x +1的最大值和最小值分别是( ) A .2,-2 B .3,-1 C .1,-1 D .2,-1 答案:B【自主测试2-2】已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R ),f (-x )=f (x ),∴函数f (x )是偶函数. 答案:D正弦函数与余弦函数的图象和性质的区别与联系(4)sin x +cos x =1题型一 用“五点法”作函数y =A cos(ωx +φ)的图象 【例题1】用“五点法”画出函数y =2cos 2x 的简图.分析:先找出此函数图象上的五个关键点,画出其在一个周期上的函数图象,再进行扩展得到在整个定义域内的简图.解:因为y =2cos 2x 的周期T =2π2=π,所以先在区间[0,π]上按五个关键点列表如下.然后把y =2cos 2x 在[0,π]上的图象向左、右平移,每次平移π个单位长度,则得到y =2cos 2x 在R 上的简图如下.反思在用“五点法”画出函数y =A cos(ωx +φ)的图象时,所取的五点应由ωx +φ=0,π2,π,3π2,2π来确定,而不是令x =0,π2,π,3π2,2π.题型二 三角函数的图象变换【例题2】函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象平移得到,若使平移的距离最短,则应( )A .向左平移π8个单位长度B .向右平移7π8个单位长度C .向左平移π4个单位长度D .向右平移π8个单位长度解析:y =cos ⎝ ⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4 =sin ⎝ ⎛⎭⎪⎫3π4-2x =-sin ⎝⎛⎭⎪⎫2x -3π4 =sin ⎝ ⎛⎭⎪⎫2x -3π4+π=sin ⎝ ⎛⎭⎪⎫2x +π4 =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8,故函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象向右平移π8个单位长度得到.故选D .答案:D反思一定要注意看清变换的顺序,即看清是以哪个函数图象作为基准. 题型三 函数的定义域问题【例题3】求函数y =36-x 2+lg cos x 的定义域.分析:首先根据函数解析式列出使函数有意义的条件不等式组,然后分别求解,最后求交集即可.解:要使函数有意义,只需⎩⎪⎨⎪⎧36-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-6≤x ≤6,2k π-π2<x <2k π+π2k ∈Z .利用数轴求解,如图所示:所以函数的定义域为⎣⎢⎡⎭⎪⎫-6,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,6. 反思利用数轴或者单位圆取解集的交集或并集非常简捷、清晰,但要注意区间的开闭情况.题型四 余弦函数的最值或值域【例题4】(1)求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π3,2π3的值域;(2)求函数y =2+cos x2-cos x的最值;(3)求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的值域.分析:(1)结合y =cos x 的图象在区间⎣⎢⎡⎦⎥⎤-π3,2π3上先增后减即可求解;(2)利用|cos x |≤1这一性质;(3)利用配方法,结合二次函数的性质求解.解:(1)∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增,在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,∴y ma x =cos 0=1,y min =cos 2π3=-12,∴y =cos x 的值域为⎣⎢⎡⎦⎥⎤-12,1. (2)由y =2+cos x 2-cos x ,求得cos x =2y -1y +1.∵|cos x |≤1,∴⎪⎪⎪⎪⎪⎪2y -1y +1≤1,∴[2(y -1)]2≤(y +1)2.解得13≤y ≤3,∴y ma x =3,y min =13.(3)y =3cos 2x -4cos x +1=3⎝⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y ma x =154.当cos x =12,即x =π3时,y min =-14.∴函数y =3cos 2x -4cos x +1的值域为⎣⎢⎡⎦⎥⎤-14,154.反思求函数的最值的方法有以下几种:(1)直接法.根据函数值域的定义,由自变量的取值范围求出函数值的取值范围. (2)利用函数的单调性.(3)利用函数的图象,转化为求函数图象上最高点和最低点的纵坐标的问题.(4)利用换元法,转化为一次函数、二次函数、指数函数、对数函数等基本初等函数问题.题型五 余弦函数图象的应用【例题5】求函数y =cos ⎝⎛⎭⎪⎫2x +π4的对称中心、对称轴方程、单调递减区间和最小正周期.分析:利用整体换元,设t =2x +π4,则问题转化为考查函数y =cos t 的相关性质.解:设t =2x +π4,则函数y =cos t 的图象如图所示.令t =k π(k ∈Z ),则2x +π4=k π(k ∈Z ).故x =k ·π2-π8(k ∈Z )即为所求的对称轴方程.令t =k π+π2(k ∈Z ),则2x +π4=k π+π2(k ∈Z ),则x =k ·π2+π8(k ∈Z ).故⎝ ⎛⎭⎪⎫k ·π2+π8,0(k ∈Z )即为所求的对称中心.当t ∈[2k π,2k π+π](k ∈Z )时,2x +π4∈[2k π,2k π+π](k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). ∵cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π4+2π=cos ⎣⎢⎡⎦⎥⎤2x +π+π4, ∴最小正周期T =π.反思整体换元思想是解决较复杂三角函数问题常用的一种方法,它能将问题化归为对基本三角函数的考查.〖互动探究〗若将本例中的函数改为“y =⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫2x +π4”呢? 解:设t =2x +π4,则问题转化为考查函数y =|cos t |,如图所示:解答过程同例题,可得无对称中心.令t =k ·π2(k ∈Z ),则2x +π4=k ·π2(k ∈Z ),∴对称轴为x =k ·π4-π8(k ∈Z );令t ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ), ∴2x +π4∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8故其单调递减区间为⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8(k ∈Z ).最小正周期T =π2.反思(1)若三角函数式子中带绝对值号,则通常通过观察图象得到周期和单调区间. (2)正弦函数y =sin x 和余弦函数y =cos x 取绝对值后,周期缩为原来的一半,即 ①y =|sin x |的周期为π; ②y =|cos x |的周期为π.1.下列说法不正确的是( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1]B .余弦函数当且仅当x =2k π(k ∈Z )时取得最大值1,当且仅当x =(2k +1)π(k ∈Z )时取得最小值-1C .正弦函数在每个区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )上都是减函数 D .余弦函数在每个区间[2k π-π,2k π](k ∈Z )上都是减函数 答案:D2.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2答案:A3.(2012·重庆期末)把函数y =cos ⎝⎛⎭⎪⎫2x +π3图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到图象的解析式为( )A .y =cos ⎝ ⎛⎭⎪⎫x +π6B .y =cos ⎝ ⎛⎭⎪⎫x +π3C .y =cos ⎝ ⎛⎭⎪⎫4x +2π3D .y =cos ⎝⎛⎭⎪⎫4x +π3 答案:D4.若函数y =a cos x +b 的最小值为-12,最大值为32,则a =__________,b =__________.解析:由于y ma x =32,y min =-12,且-1≤cos x ≤1,则当a >0时,有⎩⎪⎨⎪⎧a +b =32,-a +b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.当a <0时,有⎩⎪⎨⎪⎧-a +b =32,a +b =-12,解得⎩⎪⎨⎪⎧a =-1,b =12.综上,a =±1,b =12.答案:±1 125.函数y =|cos x |的单调增区间为________,单调减区间为________,最小正周期为________.解析:函数y =|cos x |的图象,如图所示.由图可知它的最小正周期为π.又因为在一个周期⎣⎢⎡⎦⎥⎤-π2,π2上,函数的增区间是⎣⎢⎡⎦⎥⎤-π2,0,减区间是⎣⎢⎡⎦⎥⎤0,π2.而函数的周期是k π(k ∈Z ),因此函数y =|cos x |的增区间是⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) π 6.函数f (x )的定义域为[0,1],则f (cos x )的定义域是__________.解析:由已知0≤cos x ≤1,得2k π-π2≤x ≤2k π+π2(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ) 7.已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π4,x ∈R . (1)用“五点法”画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求函数f (x )的最大值,并求出取得最大值时自变量x 的取值集合; (3)求函数f (x )的单调增区间. 解:(1)列表:(2)当2x -π4=2k π(k ∈Z ),即x =k π+π8(k ∈Z )时,y ma x =3,此时x 取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π8,k ∈Z. (3)当2k π-π≤2x -π4≤2k π(k ∈Z )时,k π-3π8≤x ≤k π+π8,k ∈Z ,故函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

专题2基本初等函数

专题2基本初等函数

专题二:基本初等函数1、函数12y x =的图象大致是( )A . B. C. D.2、已知lg3a =,lg 2b =,1lg 2c =,那么a ,b ,c 的大小关系为( )A. c b a >>B. c a b >>C. a c b >>D. a b c >> 3、如果函数a f(x)=x 的图像经过点(2,8),那么a 等于( ) A. 1 B. 2 C..3 D.. 44、已知四个函数22,,2,log x y x y x y y x ====,其中偶函数是( ) A.2y x = B. y x = C. 2x y = D. 2log y x =5、已知函数2,0,(),0.x x f x x x ⎧≥=⎨-<⎩如果0()2f x =,那么实数0x 的值为( )6、在函数1222lg ,1,,y x y x y x x y x ==+=-=中,偶函数是( ). A .lg y x = B .21y x =+ C .2y x x =- D .12y x = 7、实数22log 6log 3-的值为( ).A .12B . 1C . 2D . 2log 38、如果函数()(1)x f x a a =>的图像经过点(3,8),那么实数a 的值为( ) A. 2 B. 3 C.4 D. 24 9、实数lg 42lg5+的值为( )10、如果函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩那么(2)f 等于( )A.0B. 14C..12D..1(A )4(B )0(C )1或4(D )1或2-(A )2(B )5(C )10(D )2011、已知函数2,0,()1,0.x x f x x x -⎧⎪=⎨-<⎪⎩≥如果01()2f x =,那么0x 等于( )A. 1或2-B. 1-或2C. 1或2D. 1-或2-12、已知四个函数3y x =,2y x =,3x y =,3log y x =,其中奇函数是( )A. 3y x =B. 2y x =C. 3x y =D.3log y x =13、已知函数2x y =的图象经过点()01,y -,那么0y 等于( ) (A)12 (B)12- (C) 2 (D)2- 14、四个函数1y x -=,12y x =,2y x =,3y x =中,在区间()0,+∞上为减函数的是( ) (A) 1y x -= (B) 12y x = (C) 2y x = (D) 3y x = 15、函数()2log 1y x =+的图象大致是( )(A) (B) (C) (D)17、函数2log (1)y x =+的定义域是( )18、在函数3y x =,2x y =,2log y x =,y )19、已知函数()(0,1)x f x a aa =≠在区间[]1,0上最大值是2,那么a 等于( )A .14 B .12C .2D .4 20、在函数cos y x =,3y x =,x y e =,ln y x =中,奇函数是( )A . cos y x =B . 3y x =C . x y e =D . ln y x =21、计算131()log 12-+的结果为.(A )(0,)+∞(B )(1,)-+∞(C )(1,)+∞(D )[1,)-+∞(A )3y x =(B )2x y =(C )2log y x =(D )y22、如果函数2log y x =的图像经过点0(4,)A y ,那么0y = .23、已知函数()2x f x =,如果a =lg3,lg 2,b =那么()f a ()f b (填上“>”,“=”或“<”)24、已知二次函数2()4f x x x =-+的图像顶点为C ,与x 轴相交与A B 、两点,那么tan ACB ∠= 。

学业水平考试复习《第二章基本初等函数》(第二课时)

学业水平考试复习《第二章基本初等函数》(第二课时)
▲实战 导引P45 . A第25题.
湖南省长沙市一中卫星远程学校
★要点解读
6.函数的奇偶性.
①对于函数f(x)的定义域内任意一个x, 若f(-x)=f(x),则函数f(x)叫做 偶函数 .
若f(-x)= - f(x),来自函数f(x)叫做 奇函数 . ②函数f(x)是偶函数等价于图像 关于y轴对称 . 函数f(x)是奇函数等价于图像 关于原点对称 .
▲实战 导引P48 . B第12题.
湖南省长沙市一中卫星远程学校
★要点解读
例1.判断下列函数是奇函数还是偶函数. 1 1 (1) f ( x ) x ; ( 2) f ( x ) 2 ; x x
( 3) f ( x ) x 1 1 x .
2 2
1 a (a R) 例2.已知函数 f ( x ) x 3 1 1 2 是奇函数,则a =______________.
★要点解读
7.函数的图象的三个境界.
①画图. ②识图. ③用图.
例4. ▲详见导引P48第10题.
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
★要点解读
8.指数与指数函数;对数与对数函数.
阅读 P38-40
例题1.计算:
① log 2 12 log 2 3
②27 2
1 3 log 2 3
湖南省长沙市一中卫星远程学校
①画图. ②识图. ③用图.
例2. ▲详见导引A组第12题.
湖南省长沙市一中卫星远程学校
★要点解读
7.函数的图象的三个境界.
①画图. ②识图. ③用图.
例3. ▲详见导引A组第23题. 转化为函数图像问题: 设f (x)=x2 -3ax+2a2 一根比1小,一根比1大

专题二:函数与基本初等函数(知识点梳理)

专题二:函数与基本初等函数(知识点梳理)
(2)偶函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为奇函数.奇函数图象关于原点对称.
(3) 奇、偶函数的性质: ① 奇、偶函数的定义域一定关于原点对称. ② 如果 f (x) 为奇函数,且在原点有定义,则 f (0) 0. ③ 如果 f (x) 为偶函数,则 f (x) f (x) f ( x ). ④奇函数的图像关于原点对称,图像关于原点对称的函数是奇函数;偶函数
步骤:取值—作差—变形—定号—判断
格式:解:设 x1, x2 a,b 且 x1 x2 ,则: f x1 f x2 =…
2、奇偶性
(1)奇函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为偶函数.偶函数图象关于 y 轴对称.
高考数学必记知识点归纳总结 第三章 函数
一、函数的概念: 1、函数的定义:在某一个变化过程中有两个变量 x 和 y,设变量 x 的取值 范围为数集 D,如果对于 D 内的每一个 x 值,按照某个对应法则 f,y 都有 唯一确定的值与之对应,那么,把 x 叫做自变量,把 y 叫做 x 的函数.记为:
y f(x)
的图像关于 y 轴对称,图像关于 y 轴对称的函数是偶函数.
⑤奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的 区间上的单调性相反. ⑥在公共定义域内:两个奇函数的和是奇函数,两个奇函数的积是偶函数; 两个偶函数的和与积都是偶函数;一个奇函数与一个偶函数的积是奇函数.
注意:判断函数的奇偶性时,首先判断定义域是否关于原点对称,若定义域
⑴当 a 1时,
f (x) 0 loga f (x) loga g(x) g(x) 0

2024年高考数学总复习第二章《函数与基本初等函数》2

2024年高考数学总复习第二章《函数与基本初等函数》2

2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。

高中数学:第2章2节 基本初等函数 对数函数 幂函数总复习试题及答案

高中数学:第2章2节 基本初等函数 对数函数 幂函数总复习试题及答案

2.2 对数函数 2.2.1 对数与对数运算一、选择题(本大题共7小题,每小题5分,共35分) 1.以下四个命题中是真命题的为( ) ①若log 5x =3,则x =15; ②若log 25x =12,则x =5;③若log x5=12,则x =5;④若log 5x =-3,则x =1125.A .①②B .①③C .②④D .③④ 2.log849log27的值是( )A .2 B.32C .1 D.233.已知对数式log a -2(5-a )=b ,则实数a 的取值X 围是( ) A .(-∞,5) B .(2,5) C .(2,3)∪(3,5) D .(2,+∞)4.已知lg 2=a ,lg 3=b ,则lg 12等于( ) A .a 2+b B .2a +b C .a +2b D .a +b 25.对数式2lg 22+lg 25+3lg 2lg 5- lg 2化简的结果是( ) A .1 B .-lg 2C .lg 5 D.126.计算log 2(22)-log (2-1)(3-22)+e ln 2的值为( )A .3B .2C .1D .0 7.lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·lgab2=( )A .2B .4C .6D .8二、填空题(本大题共4小题,每小题5分,共20分) 8.方程lg x +lg(x -1)=1-lg 5的根是x =________. 9.已知m >0,且10x =lg(10m )+lg1m,则x =________.10.2lg 4+lg 91+12lg 0.36+13lg 8=________.11.已知log 147=a ,log 145=b ,则用a ,b 表示log 3514=________. 三、解答题(本大题共2小题,共25分) 12.(12分)解方程(lg x )2+lg x 5-6=0.13.(13分)计算:(1)[(1-log 63)2+log 62·log 618]÷log 64;(2)lg23-lg 9+1(lg 27+lg 8-lg 1000)lg 0.3·lg 1.2.14.(5分)定义a ⊗b =a 12+b -13,a *b =lg a 2-lg b 12.若M =94⊗8125,N =2*125,则M +N =________.15.(15分)已知log 23=a ,3b =7,求log 1256.答案2.2.1 对数与对数运算1.C [解析] 由对数的定义可知,②④中的命题是真命题. 2.D [解析]log849log27=log272log223÷log 27=23.3.C [解析] 由对数的定义,log a -2(5-a )必满足⎩⎪⎨⎪⎧5-a>0,a -2>0,a -2≠1,解得2<a <5且a ≠3,∴a ∈(2,3)∪(3,5).4.B [解析] lg 12=lg 4+lg 3=2lg 2+lg 3=2a +b .5.A [解析] 2lg 22+lg 25+3lg 2lg 5-lg 2=lg 5(lg 5+3lg 2)+2lg 22-lg 2=(1-lg 2)(1-lg 2+3lg 2)+2lg 22-lg 2=(1-lg 2)(1+2lg 2)+2lg 22-lg 2=1.6.A [解析] 原式=log2(2)3-log (2-1)(2-1)2+2=3-2+2=3.7.B [解析] 由已知得,lg a +lg b =2,即lg(ab )=2,且lg a ·lg b =12,所以lg(ab )·lgab2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×22-4×12=2×2=4,故选B.8.2 [解析] 方程变形为lg x (x -1)=lg 2,所以x (x -1)=2,解得x =2或x =-1.经检验x =-1不合题意,舍去,所以原方程的根为x =2.9.0 [解析] ∵lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,∴10x =1=100,∴x =0.10.2 [解析] 原式=2(lg 4+lg 3)1+lg 0.36+lg38=2lg 121+lg 0.6+lg 2=2lg 12lg (10×0.6×2)=2.11.1a +b[解析] log 3514=log1414log1435=1log147+log145=1a +b.12.解:原方程可化为(lg x )2+5lg x -6=0,即(lg x +6)(lg x -1)=0, 所以lg x =-6或lg x =1,解得x =10-6或x =10.经检验x =10-6和x =10都是原方程的解. 所以原方程的解为x =10-6或x =10. 13.解:(1)原式=log 6632+log 62·log 6362÷log 64=[(log 62)2+log 62(log 636-log 62)]÷log 64 =[(log 62)2+2log 62-(log 62)2]÷log 64 =2log 62÷log 64=log 64÷log 64=1.(2)原式=lg23-2lg 3+1⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32(lg 3-1)·(lg 3+2lg 2-1)=(1-lg 3)·32(lg 3+2lg 2-1)(lg 3-1)·(lg 3+2lg 2-1)=-32.14.5[解析] M =⎝ ⎛⎭⎪⎫9412+⎝⎛⎭⎪⎫8125-13=32+52=4, N =lg(2)2-lg⎝ ⎛⎭⎪⎫12512=lg 2+lg 5=1,故M +N =5. 15.解:∵log 23=a ,∴log 32=1a. 又3b =7,∴log 37=b ,故log 1256=log356log312=log37+log38log33+log34=log37+3log321+2log32=b +3·1a 1+2·1a=ab +3a +2.2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)一、选择题(本大题共7小题,每小题5分,共35分)1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =12x ,x>1,则A ∩B =( )A.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12 B .{y |0<y <1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y<1 D .∅ 2.函数y =log a (2x -3)+1的图像恒过定点P , 则点P 的坐标是( ) A .(2,1) B .(2,0) C .(2,-1) D .(1,1) 3.函数f (x )=12-log3x的定义域是( )A .(-∞,9]B .(-∞,9)C .(0,9]D .(0,9)4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值X 围为( ) A .(2,+∞) B .0,12∪(2,+∞)C.12,2 D .(0,1)∪(2,+∞)5.函数f (x )=log 2(1-x )的图像为( )图L2­2­16.已知x =20.5,y =log 52,z =log 50.7,则x ,y ,z 的大小关系为( ) A .x <y <z B .z <x <y C .z <y <x D .y <z <x7.已知0<a <1,log am <log an <0,则() A .1<n <m B .1<m <n C .n <m <1 D .m <n <1二、填空题(本大题共4小题,每小题5分,共20分) 8.函数f (x )=log2x -2的定义域是________.9.已知对数函数f (x )的图像过点P (8,3),则f ⎝ ⎛⎭⎪⎫132=________.10.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________.11.设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2014)=9,则f (x 21)+f (x 2)+…+f (x 2014)的值等于________.三、解答题(本大题共2小题,共25分) 12.(12分)判断函数f (x )=log 2(x +1+x2)的奇偶性.13.(13分)已知函数f (x )=lg (3x -3).(1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,某某数t 的取值X 围.14.(5分)设函数f (x )=⎩⎪⎨⎪⎧log2(x -1),x ≥2,12x -1,x<2,若f (x 0)>1,则x0的取值X 围是________.15.(15分)已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝⎛⎭⎪⎫log2x 2·⎝ ⎛⎭⎪⎫log2x 4的值域.答案2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)1.A [解析] 因为A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12,所以A ∩B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12.2.A [解析] 当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 3.D [解析] 要使函数有意义,只需2-log 3x >0,即log 3x <2,所以0<x <9. 4.A [解析] 依题意有log 2x >1,所以x >2.5.A [解析] 由定义域知x <1,排除选项B ,D.又f (x )=log 2(1-x )是定义域上的减函数,故选A.6.C [解析] 因为x =20.5>20=1,0<y =log 52<1,z =log 50.7<0,所以z <y <x . 7.A [解析] 原式变形为log a m <log a n <log a 1,根据减函数的性质得m >n >1.8.[4,+∞) [解析] 由已知得⎩⎪⎨⎪⎧x>0,log2x -2≥0,解得x ≥4.9.-5 [解析] 设f (x )=log a x ,将点P (8,3)代入得3=log a 8,所以a 3=8,所以a =2,所以f (x )=log 2x ,所以f132=log 2132=log 22-5=-5.10.2 [解析] 根据题意,得3x -a >0,∴x >a 3,∴a 3=23,解得a =2.11.18 [解析] 因为f (x 1x 2…x 2014)=log a (x 1x 2…x 2014)=9,所以f (x 21)+f (x 2)+…+f (x 2014)=log a x 21+log a x 2+…+log a x 2014=log a (x 21x 2…x 2014)=log a (x 1x 2…x 2014)2=2log 2(x 1x 2…x 2014)=2×9=18. 12.解:要使函数有意义,需满足x +1+x2>0,∴x ∈R ,故函数的定义域为R ,关于原点对称.∵f (-x )+f (x )=log 2(-x +1+x2)+log 2(x +1+x2)=log 2(1+x 2-x 2)=log 21=0,∴f (-x )=-f (x ),即函数为奇函数.13.解:(1)由3x -3>0得x >1,所以定义域为(1,+∞). 因为(3x -3)∈(0,+∞),所以值域为R . (2)因为h (x )=lg(3x -3)-lg(3x +3)=lg3x -33x +3=lg1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数,所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值X 围是t ≥0.14.(-∞,-1)∪(3,+∞) [解析] 当x 0≥2时,log 2(x 0-1)>1,得log 2(x 0-1)>1=log 22,所以x 0-1>2,得x 0>3;当x 0<2时,12x 0-1>1,即12x 0>2=12-1,所以x 0<-1.所以x 0的取值X 围是(-∞,-1)∪(3,+∞).15.解:y =⎝⎛⎭⎪⎫log2x 2·⎝ ⎛⎭⎪⎫log2x 4=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2.∵-3≤log 12x ≤-12,∴12≤log 2x ≤3.令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3,y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322-14,∴t =32时,y min =-14;t =3时,y max =2.故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.第2课时 对数函数及其性质(二)一、选择题(本大题共7小题,每小题5分,共35分)1.若log 3a <0,13b >1,则( )A .a >1,b >0B .0<a <1,b >0C .a >1,b <0D .0<a <1,b <0 2.下列函数中,在(0,2)上为增函数的是( ) A .y =log 12(x +1)B .y =log 2x2-1C .y =log 21xD .y =log12(x 2-4x +5)3.设f (x )=⎩⎪⎨⎪⎧2ex -1,x<2,log3(x2-1),x ≥2,则f [f (2)]的值为( )A .0B .1C .2D .34.已知a >0,且a ≠1,则函数y =a -x 与y =log a (-x )的图像可能是( )图L2­2­25.设a =30.7,b =0.43,c =log 30.5,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <a6.已知函数f (x )=2x +a ·2-x ,则对于任意实数a ,函数f (x )不可能( ) A .是奇函数B .既是奇函数,又是偶函数C .是偶函数D .既不是奇函数,又不是偶函数7.已知y =log a (8-3ax )在[1,2]上是减函数,则实数a 的取值X 围是( ) A .(0,1) B .1,43C.43,4 D .(1,+∞)二、填空题(本大题共4小题,每小题5分,共20分) 8.函数y =log 12(1-2x )的单调递增区间为________.9.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f 12=0,则不等式f (log 4x )<0的解集是________.10.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系为________.11.函数y =log 12(x 2-6x +17)的值域为________.三、解答题(本大题共2小题,共25分)12.(12分)已知函数f (x )=log2(1-x )-log2(1+x ). (1)求函数f (x )的定义域; (2)判断f (x )的奇偶性.13.(13分)解不等式:log a (x -4)>log a (x -2).14.(5分)若不等式lg 1+2x +(1-a )3x3≥(x -1)lg 3对任意的x ∈(-∞,1]恒成立,则a 的取值X 围是( )A .(-∞,0]B .(-∞,1]C .[0,+∞)D .[1,+∞)15.(15分)已知定义在R 上的函数y =f (x )是偶函数,且x ≥0时,f (x )=ln(x 2-2x +2). (1)求f (x )的解析式; (2)求出f (x )的单调递增区间.答案第2课时 对数函数及其性质(二)1.D [解析] 由函数y =log 3x ,y =13x 的图像知,0<a <1,b <0.2.D [解析] A ,C 中函数为减函数,(0,2)不是B 中函数的定义域.D 中,函数y =x 2-4x +5在(0,2)上为减函数,又∵12<1,故y =log12(x 2-4x +5)在(0,2)上为增函数,故选D.3.C [解析] f [f (2)]=f [log 3(22-1)]=f (1)=2e 1-1=2. 4.C [解析] a >1时,y =a -x =1ax 是减函数,y =loga (-x )是减函数,且其图像位于y轴左侧;当0<a <1时,y =a -x =1ax 是增函数,y =loga (-x )是增函数,且其图像位于y 轴左侧.由此可知C 正确.5.B [解析] a =30.7>30=1,0<b =0.43<0.40=1,c =log 30.5<log 31=0,所以c <b <a .6.B [解析] 验证可知,当a =-1时,f (x )=2x -2-x ,f (-x )=2-x -2x =-f (x ),所以a =-1时,函数f (x )是奇函数,当a =1时,f (-x )=f (x )=2x +2-x ,函数f (x )是偶函数.当a =0时,函数f (x )既不是奇函数,又不是偶函数.故选B.7.B [解析] 因为a >0,所以t =8-3ax 为减函数,而当a >1时,y =log a t 是增函数,所以y =log a (8-3ax )是减函数,于是a >1.由8-3ax >0,得a <83x在[1,2]上恒成立,所以a <83xmin =83×2=43.8.-∞,12[解析] 令u =1-2x ,函数u =1-2x 在区间-∞,12内递减,而y =log12u 是减函数,故函数y =log 12(1-2x )在-∞,12内递增.9.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x<2 [解析] 由题意可知,由f (log 4x )<0得-12<log 4x <12,即log 44-12<log 4x <log 4412,得12<x <2.10.a =b >c [解析] 由已知得a =32log 23,b =log 232-12=32log 23>32,c =log 32<1.故a =b >c .11.(-∞,-3] [解析] 令t =x 2-6x +17=(x -3)2+8≥8,因为y =log 12t 为减函数,所以y =log 12t ≤log 128=-3.12.解:(1)要使函数有意义,则⎩⎪⎨⎪⎧1-x>0,1+x>0,∴-1<x <1,故函数的定义域为(-1,1).(2)∵f (-x )=log 2(1+x )-log 2(1-x )=-f (x ),∴f (x )为奇函数.13.解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧x -4>x -2,x -4>0,x -2>0,该不等式组无解;当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧x -4<x -2,x -4>0,x -2>0,解得x >4.所以当a >1时,原不等式的解集为空集;当0<a <1时,原不等式的解集为(4,+∞). 14.B [解析] 不等式lg1+2x +(1-a )3x3≥(x -1)lg 3变为lg1+2x +(1-a )3x3≥lg 3x -1,即1+2x +(1-a )3x3≥3x -1,整理得a ≤13x +23x .因为y =13x +23x 是减函数,所以y ≥131+231=1. 若不等式lg1+2x +(1-a )3x3≥(x -1)lg 3对任意的x ∈(-∞,1]恒成立,则a ≤13x+23xmin =1.15.解:(1)x <0时,-x >0,∵x ≥0时,f (x )=ln(x 2-2x +2), ∴x <0时,f (-x )=ln(x 2+2x +2).∵y =f (x )是偶函数,∴f (-x )=f (x ),即x <0时,f (x )=ln(x 2+2x +2).故f (x )=⎩⎪⎨⎪⎧ln (x2+2x +2),x<0,ln (x2-2x +2),x ≥0.(2)当x ≥0时,f (x )=ln(x 2-2x +2),函数的单调递增区间即为t =x 2-2x +2的增区间,增区间为(1,+∞);当x <0时,f (x )=ln(x 2+2x +2),函数的递增区间为(-1,0). 故函数f (x )的单调递增区间是(-1,0),(1,+∞).2.3 幂函数一、选择题(本大题共7小题,每小题5分,共35分)1.下列函数是幂函数的是( )A .y =x xB .y =3x 12C .y =x 12+1 D .y =x -22.若函数f (x )=(2m +3)xm 2-3是幂函数,则实数m 的值为( ) A .-1 B .0 C .1 D .23.已知幂函数f (x )=x α的图像经过点3,33,则f (4)的值为( )A.12B.14C.13D .24.下列函数中既是偶函数,又在(0,+∞)上单调递增的是( ) A .y =x B .y =-x 2 C .y =2x D .y =|x |5.函数y =x 23图像的大致形状是( )图L2­3­16.幂函数f (x )=(m 2-4m +4)xm 2-6m +8在(0,+∞)上为减函数,则m 的值为( ) A .1或3 B .1 C .3 D .27.如图L2­3­2所示,曲线C 1,C 2,C 3,C 4是幂函数y =x α在第一象限内的图像,已知α分别取±1,12,2四个值,对应于曲线C 1,C 2,C 3,C 4的α分别为( )图L2­3­2A .-1,12,1,2B .2,1,12,-1C.12,1,2,-1D .2,1,-1,12二、填空题(本大题共4小题,每小题5分,共20分)8.由幂函数的图像可知,使x 3-x 2>0成立的x 的取值X 围是________.9.若函数f (x )=⎩⎪⎨⎪⎧x -12,x>0,-2,x =0,(x +3)12,x<0,则f {f [f (0)]}=________.10.已知幂函数f (x )=k ·x α的图像过点⎝ ⎛⎭⎪⎪⎫12,22,则k +α=________.11.已知f (x )=a x,g (x )为幂函数,若F (x )=f (x )+g (x )的图像过点A (1,2)和B 2,52,则F (x )=________.三、解答题(本大题共2小题,共25分)12.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数. (1)求a 的值;(2)求函数g (x )=f (x )+[f (x )]2在⎣⎢⎡⎦⎥⎤0,12上的值域. 13.(13分)已知函数f (x )=x -k 2+k +2(k ∈N ),满足f (2)<f (3).(1)求k 的值与f (x )的解析式;(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m 的值;若不存在,请说明理由. 14.(5分)给出下面三个不等式,其中正确的是________.①-8-13<-1913;②4.125>3.8-25>(-1.9)-35;③0.20.5>0.40.3.15.(15分)已知幂函数y =x 3m -9(m ∈N *)的图像关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m 3的a 的取值X 围.答案 2.3 幂函数1.D [解析] 由幂函数的定义,幂函数满足三个条件:①系数为1,②底数为自变量,③指数为常数.故选D.2.A [解析] 依题意2m +3=1,得m =-1.3.A [解析] 依题意有33=3α,所以α=-12,所以f (x )=x -12,所以f (4)=4-12=12.4.D [解析] A 中的函数不具备奇偶性;B 中的函数是偶函数,但是在区间(0,+∞)上是减函数;C 中的函数不具备奇偶性;D 中的函数是偶函数且在(0,+∞)上单调递增.5.D [解析] 因为y =x 23是偶函数,且在第一象限图像沿x 轴递增,所以选项D 正确.6.C [解析] 因为f (x )为幂函数,所以m 2-4m +4=1,解得m =3或m =1,所以f (x )=x -1或f (x )=x 3.因为f (x )为(0,+∞)上的减函数,所以m =3.7.B [解析] 由幂函数的图像性质,C 1:y =x 2;C2:y =x ;C 3:y =x 12;C 4:y =x-1.8.(1,+∞) [解析] 在同一坐标系中作出y =x 3及y =x 2的图像(图略),可得不等式成立的x 的取值X 围是(1,+∞).9.1 [解析] f (0)=-2,f (-2)=1,f (1)=1,即f {f [f (0)]}=1.10.32 [解析] 因为函数是幂函数,所以k =1,又因为其图像过点⎝ ⎛⎭⎪⎪⎫12,22,所以22=⎝ ⎛⎭⎪⎫12α,解得α=12,故k +α=32.11.1x+x [解析] 设g (x )=x b ,则F (x )=a x+x b ,依题意a 1+1b =2且a 2+2b =52,解得a=b =1,所以F (x )=1x+x .12.解:(1)因为函数f (x )=(a 2-a +1)x a +1为幂函数, 所以a 2-a +1=1,解得a =0或a =1.当a =0时,f (x )=x ,函数是奇函数;当a =1时,f (x )=x 2,函数是偶函数.故a =0.(2)由(1)知g (x )=x +x 2=⎝ ⎛⎭⎪⎫x +122-14.当x =0时,函数取得最小值g (0)=0;当x =12时,函数取得最大值g ⎝ ⎛⎭⎪⎫12=12+14=34.故g (x )在区间⎣⎢⎡⎦⎥⎤0,12上的值域为⎣⎢⎡⎦⎥⎤0,34.13.解:(1)由f (2)<f (3),得-k 2+k +2>0,解得-1<k <2, 又k ∈N ,则k =0,1. 当k =0,1时,f (x )=x 2.(2)由已知得g (x )=x 2-2x +m =(x -1)2+m -1,当x ∈[0,2]时,易求得g (x )∈[m -1,m ], 由已知值域为[2,3],得m =3. 故存在满足条件的m ,且m =3. 14.①② [解析] ①-1913=-9-13,由于幂函数y =x -13在(0,+∞)上是减函数,所以8-13>9-13,因此-8-13<-9-13,故①正确;②由于4.125>1,0<3.8-25<1,(-1.9)-35<0,故②正确;③由于y =0.2x 在R 上是减函数,所以0.20.5<0.20.3,又y =x 0.3在(0,+∞)上是增函数,所以0.20.3<0.40.3,所以0.20.5<0.40.3,故③错误.15.解:∵函数y =x 3m -9在(0,+∞)上递减, ∴3m -9<0,解得m <3.又m ∈N *,∴m =1,2. 又函数图像关于y 轴对称,∴3m -9为偶数,故m =1, ∴原不等式为(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均单调递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a , 解得23<a <32或a <-1.滚动习题(五)[X 围2.1~2.3] [时间:45分钟 分值:100分]一、选择题(本大题共7小题,每小题5分,共35分)1.(lg 9-1)2=( )A .lg 9-1B .1-lg 9C .8D .222.若集合A ={x |lg x ≤0},B ={y |y =1-x 2},则A ∩B =( ) A .(-∞,1] B .(0,1) C .(0,1] D .[1,+∞) 3.函数y =ln (x +1)-x2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1] 4.若a >1,b <-1,则函数y =a x +b 的图像必不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.函数f (x )=4x +12x( )A .既是奇函数又是偶函数B .为非奇非偶函数C .为奇函数D .为偶函数6.设偶函数f (x )=log a |x +b |在(0,+∞)上单调递增,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)>f (a +1)B .f (b -2)=f (a +1)C .f (b -2)<f (a +1)D .不能确定7.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(本大题共4小题,每小题5分,共20分) 8.设a =log 75,b =log 67,则a ,b 的大小关系是________.9.已知0<x <y <1,m =log2x +log2y ,则m 的取值X 围是________.10.已知f (x )=2+log3x ,x ∈[1,9],则函数y =f 2(x )+f (x 2)的最大值是________.11.关于下列命题:①若函数y =2x 的定义域是{x |x ≤0},则它的值域是{y |y ≤1};②若函数y =1x 的定义域是{x |x >2},则它的值域是⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤12;③若函数y =x 2的值域是{y |0≤y ≤4},则它的定义域一定是{x |-2≤x ≤2}; ④若函数y =log 2x 的值域是{y |y ≤3},则它的定义域是{x |0<x ≤8}.其中不正确的命题的序号是________(注:把你认为不正确的命题的序号都填上). 三、解答题(本大题共3小题,共45分)12.(15分)(1)化简:4x 14·(-3x 18y -16)2÷(-6x -12y -23)(结果保留根式形式);(2)计算:log 34273·log 5[412log 210-(33)23-7log 72].13.(15分)记函数f (x )=x2-1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .(1)求区间A ;(2)若B ⊆A ,某某数a 的取值X 围.14.(15分)已知函数f (x )满足f (log a x )=x -1-x ,其中a >0且a ≠1.(1)求函数f (x )的解析式,判断并证明奇偶性;(2)对于函数f (x ),当x ∈(-1,1)时,f (1-m )+f (1-m 2)>0,某某数m 的取值X 围.答案 滚动习题(五)1.B [解析] 因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.2.C [解析] 由已知得集合A ={x |lg x ≤0}={x |0<x ≤1},B ={y |y =1-x 2}={y |y ≤1},故A ∩B =(0,1].3.C [解析] 要使函数有意义,则有x +1>0且-x 2-3x +4>0,即x >-1且x 2+3x -4<0,解得-1<x <1.4.B [解析] 函数y =a x +b 的图像可以看成是由y =a x 的图像平移得到的.因为a >1,所以函数y =a x 单调递增且图像在x 轴的上方.又因为b <-1,所以把y =a x 的图像向下平移|b |个单位即可得到函数y =a x +b 的图像,易知y =a x +b 的图像必不经过第二象限.5.D [解析] f (-x )=4-x +12-x =1+4x 2x =f (x ),故f (x )为偶函数.6.C [解析] ∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2).7.C [解析] 因为f (x )是定义在R 上的偶函数,所以b =f (log 123)=f (-log 23)=f (log 23),log 23=log 49>log 47>1,0<0.20.6<1. 因为f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,所以f (x )在(0,+∞)上是减函数,所以b <a <c .8.a <b [解析] 因为a =log 75<log 77=1,b =log 67>log 66=1,所以a <b .9.m <0 [解析] 由0<x <y <1,得0<xy <1,故m =log 2x +log 2y =log 2xy <log 21=0.10.13 [解析] 由f (x )=2+log 3x ,x ∈[1,9],得f (x 2)=2+log 3x 2,x 2∈[1,9],则y =(2+log 3x )2+2+log 3x 2,即y =(log 3x )2+6log 3x +6=(log 3x +3)2-3.令log 3x =t ,0≤t ≤1,则y =(t +3)2-3,当t =log 3x =1,即x =3时,y max =13.11.①②③ [解析] 作出这四个函数的图像(图略),可知只有④是正确的,①②③都是不正确的.12.解:(1)原式=4x 14·3x 14·y -13÷(-6x -12·y -23)=-2x 3y . (2)原式=(log 3334-log 33)·log 5[4log 210-(332)23-7log 72] =34-1·log 5(10-3-2)=-14. 13.解:(1)由x 2-1≥0,得x ≤-1或x ≥1,故A =(-∞,-1]∪[1,+∞).(2)因为(x -a -1)(2a -x )>0,且a <1,所以2a <x <a +1,所以B =(2a ,a +1).由于B ⊆A ,从而有2a ≥1或a +1≤-1,即a ≥12或a ≤-2,结合a <1,故12≤a <1或a ≤-2.故实数a 的取值X 围为(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1. 14.解:(1)令t =log a x ,则x =a t ,故f (t )=a -t -a t ,即f (x )=a -x -a x . 因为f (-x )=a x -a -x =-f (x ),故函数f (x )为奇函数.(2)①当a >1时,函数f (x )在(-1,1)上单调递减且为奇函数,则由f (1-m )+f (1-m 2)>0得f (1-m )>f (m 2-1),所以⎩⎪⎨⎪⎧1>1-m>-1,-1<m2-1<1,1-m<m2-1,解得1<m <2.②当0<a <1时,函数f (x )在(-1,1)上单调递增且为奇函数,则由f (1-m )+f (1-m 2)>0得f (1-m )>f (m 2-1),所以⎩⎪⎨⎪⎧1>1-m>-1,-1<m2-1<1,1-m>m2-1,解得0<m <1. 综上知,当a >1时,m ∈(1,2);当0<a <1时,m ∈(0,1).。

2-2基本初等函数

2-2基本初等函数

专题2 第2讲 基本初等函数一、选择题1.(2011·北京文,3)如果log 12x <log 12<0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x[答案] D[解析] log 12x <log 12y <0=log 121,因为函数y =log 12x 是单调减函数,所以1<y <x .2.(2011·山东理,3)若点(a,9)在函数y =3x 的图像上,则tan a π6的值为( )A .0 B.33C. 1D. 3[答案] D[解析] 依题意:9=3a ,∴a =2,∴tan a π6=tan π3=3,故选D.3.(文)(2011·全国新课标理,2)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |[答案] B[解析] 对于A ,y =x 3不是偶函数,A 错误;B 正确,既是偶函数又在(0,+∞)上单增;对于C ,在(0,+∞)上单调递减,错误;对于D ,在(0,+∞)上单调递减,错误,故选B.(理)(2011·安徽文,5)若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( ) A .(1a ,b )B .(10a,1-b )C .(10a,b +1) D .(a 2,2b )[答案] D[解析] 由题意知b =lg a ,对于A 选项,lg 1a =-lg a =-b ≠b ,对B 选项lg(10a )=1+lg a =1+b ≠1-b . 对C 选项lg10a=1-lg a =1-b ≠b +1,对D ,lg a 2=2lg a =2b ,故(a 2,2b )在图像上.4.(2010·湖北文,3)已知函数f (x )=⎩⎨⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4 D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19=f (-2)=2-2=14.5.(2011·成都一诊)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a[答案] C[解析] 由x ∈(e -1,1)得-1<ln x <0,a -b =-ln x >0,a >b ,a -c =ln x (1-ln 2x )<0,a <c ,因此有b <a <c ,选C.6.(2011·湘潭五模)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)[答案] C[解析] 由题可知,函数f (x )在(-∞,+∞)上单调递增,所以⎩⎨⎧a >2log a 1≥a -3,解得2<a ≤3,故选C.7.(2011·南昌一模)已知实数a ,b ∈(0,+∞),a +b =1,M =2a +2b ,则M 的整数部分是( )A .1B .2C .3D .4[答案] B[解析] 设x =2a,则有x ∈(1,2).依题意得M =2a+21-a=2a+22a =x +2x.易知函数y =x+2x 在(1,2)上是减函数,在(2,2)上是增函数.因此有22≤M <3,M 的整数部分是2,选B.8.(文)(2011·天津文,5)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b[答案] B[解析] ∵a =log 23.6>1,c =log 43.6<1.∴a >c . 又∵c =log 43.6>log 43.2=b .∴a >c >b .(理)(2011·天津理,7)已知a =5log 23.4,b =5log 43.6,c =(15)log 20.3,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b [答案] C[解析] a =5log 23.4,b =5log 43.6=5log 2 3.6,c =(15)log 20.3=5log 2103,显然有log 23.4>log 2103>log 2 3.6,由对数函数、指数函数单调性,有a >c >b ,故选C. 二、填空题9.(2011·四川理,13)计算(lg 14-lg25)÷100-12=________.[答案] -20[解析] 原式=lg0.01÷100-12=lg0.01÷110012=-2×10=-20.10.函数y =(12)2x -x 2的值域为__________.[答案] [12,+∞)[解析] 令t =2x -x 2,得t ∈(-∞,1], ∴y =(12t 的值域为[12,+∞).11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是__________.[答案] 1[解析] 结合f (x )与g (x )的图像,h (x )=⎩⎪⎨⎪⎧log 2x (0<x ≤2)-x +3 (x >2),易知h (x )的最大值为h (2)=1.12.已知集合P ={x |12x ≤3},函数f (x )=log 2(ax 2-2x +2)的定义域为Q .(1)若P ∩Q =[12,23),P ∪Q =(-2,3],则实数a 的值为__________;(2)若P ∩Q =∅,则实数a 的取值范围为__________. [答案] (1)a =-32(2)a ≤-4[解析] (1)f (x )=log 2(ax 2-2x +2)的定义域为ax 2-2x +2>0的解集,而P ∩Q =[12,23),P ∪Q =(-2,3],可知-2为ax 2-2x +2=0的一个根,将x =-2代入ax 2-2x +2=0得a =-32.(2)由P ∩Q =∅,可知⎩⎪⎨⎪⎧a (12)2-2×12+2≤0,a ·32-2×3+2≤0⇒⎩⎪⎨⎪⎧a ≤-4,a ≤49⇒a ≤-4. 三、解答题13.(2011·江苏镇江)定义在R 上的奇函数f (x )有最小正周期2,且x ∈(0,1)时,f (x )=2x 4x +1.(1)求f (x )在[-1,1]上的解析式;(2)判断f (x )在(0,1)上的单调性,并给予证明. [解析] (1)当x ∈(-1,0)时,-x ∈(0,1). ∵f (x )为奇函数,∴f (x )=-f (-x )=2-x 4-x +1=-2x4x +1.又f (0)=-f (-0)=-f (0)⇒f (0)=0, f (-1)=f (-1+2)=f (1),f (-1)=-f (1). ∴f (1)=-f (-1)=f (-1)=0.∴f (x )=⎩⎨⎧-2x4x +1x ∈(-1,0)0 x =0或x =±12x 4x+1 x ∈(0,1).(2)f (x )在(0,1)上是减函数. 证明如下: 设0<x 1<x 2<1,则f (x 1)-f (x 2)=2x 14x 1+12x 24x 2+1=2x 1(4x 2+1)-2x 2(4x 1+1)(4x 1+1)(4x 2+1)=(2x 2-2x 1)(2x 1×2x 2-1)(4x 1+1)(4x 2+1),∵x 1<x 2,∴2x 1<2x 2,∴2x 2-2x 1>0. 又当0<x 1,x 2<1时,2x 1×2x 2-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴f (x )在(0,1)上单调递减.14.已知函数f (x )=-x 2+2ax +1-a 在0≤x ≤1时有最大值2,求a 的值.[解析] (1)当对称轴x =a <0时,如图①所示.当x =0时,y 有最大值,y max =f (0)=1-a ,所以1-a =2,即a =-1,且满足a <0,∴a =-1;(1)当对称轴0≤a ≤1时,如图②所示. 当x =a 时,y 有最大值,y max =f (a )=-a 2+2a 2+1-a =a 2-a +1. ∴a 2-a +1=2,解得a =1±52.∵0≤a ≤1,∴a =1±52(舍去); (3)对称轴x =a ,当a >1时,如图③所示. 当x =1时,y 有最大值,y max =f (1)=2a -a =2,∴a =2,且满足a >1,∴a =2. 综上可知,a 的值为-1或2.15.(2011·上海理,20)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足a ·b ≠0. (1)若a ·b >0,判断函数f (x )的单调性;(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围.[解析] (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2,则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2)∵2x 1<2x 2,a >0⇒a (2x 1-2x 2)<0,3x 1<3x 2,b >0⇒b (3x 1-3x 2)<0, ∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0,当a <0,b >0时,(32)x >-a 2b ,则x >log 1.5(-a 2b );当a >0,b <0时,(32)x <-a 2b ,则x <log 1.5(-a2b ).。

基本初等函数复习教案 2

基本初等函数复习教案 2

教师姓名学生姓名填写时间年级高一学科数学上课时间阶段基础(√)提高()强化()课时计划第()次课共()次课教学目标1 、基本初等函数教学重难点教学重点:基本初等函数基础知识点的熟练掌握教学难点:基本初等函数的实际应用教学过程课后作业:知识点一:指数与对数的运算 1、n 次方根*∈>N n n ,1有如下恒等式:()a a nn=;⎩⎨⎧=为偶数为奇数n a n a a n n ,,2、规定正数的分数指数幂:n mnm a a =;nmnmnm a aa 11==-()1,,,0>∈>*n N n m a 且例1、求下列各式的值:(1)()()*∈>-N n n n n且,13π; (2)()2y x -例2、化简:(1))3()6)(2(656131212132b a b a b a -÷-;(2))0,0()(3421413223>>⋅b a abb a ab b a ;练习:化简(1)46394369)()(a a (2)65612121213231)3()(b a b a b a -⋅(3)13256)71(027.0143231+-+-----=__________.(4)321132132)(----÷ab b a bab a =__________.(5)48373)27102(1.0)972(032221+-++--π=__________。

(6))31()3)((656131212132b a b a b a ÷-=__________。

(7)4160.2503432162322428200549-⨯+--⨯--()()()() =__________。

3、对数与指数间的互化关系:当10≠>a a ,且时,N a b N b b =⇔=log4、负数与零没有对数;1log ,01log ==a a a5、对数的运算法则:(1)()N M N M a a a log log log +=⋅, (2)N M NMa a a log log log -=, (3)M n M a n a log log =, (4)M mnM a n a m log log =(5)a N N b b a log log log =, (6)ab b a log 1log = 其中1,0≠>a a 且,0>M ,0>N ,R n ∈.例3、将下列指数式化为对数式,对数式化为指数式: (1)128127=-; (2)273=a ; (3)1.0101=-;(4)532log 21-=; (5)3001.0lg -=; (6)606.4100ln =.例4、计算下列各式的值:(1)001.0lg ; (2)8log 4 ; (3)e ln .例5、已知 ()[]0log log log 234=x ,那么21-x 等于例6、求下列各式的值:(1)8log 22; (2)3log 9.例7、求下列各式中x 的取值范围:(1)()3log 1+-x x ; (2)()23log 21+-x x .例8、若1052==b a ,则=+ba 11 ;方程()13lg lg =++x x 的解=x ________例9、(1)化简:7log 17log 17log 1235++;(2)设4log 2006log 5log 4log 3log 20062005432=∙∙⋅⋅⋅∙∙∙m ,求实数m 的值.例10、(1)已知518,9log 18==b a ,试用b a ,表示45log 18的值;(2)已知b a ==5log ,7log 1414,用b a ,表示28log 35知识点二:指数函数、对数函数与幂函数的性质与图象1、指数性质:定义域为R ,值域为()+∞,0;当0=x 时,1=y ,即图象过定点(0,1);当 0<a <1时,在R 上是减函数,当1>a 时,在R 上是增函数. 例1、求下列函数的定义域: (1)xy -=312; (2) xy -=5)31(; (3)1001010010-+=x x y例2、求下列函数的值域:(1)132)31(-=x y ; (2)124++=x x y变式练习1、求下列函数的定义域和值域(1)121x y =- (2)222)31(-=x y2、设集合2{|3,},{|1,}xS y y x R T y y x x R ==∈==-∈,则ST 是 ( )A 、∅B 、TC 、SD 、有限集 3、函数f(x)=x 21-的定义域是 ( )A 、(]0,∞-B 、[0,+∞)C 、(-∞,0)D 、(-∞,+∞)例3、函数()b x a x f -=的图象如图,其 中b a ,为常数,则下列结论正确的是( ). A .0,1<>b a B .0,1>>b a C .0,10><<b a D .0,10<<<b a例4、已知函数 ()()1,032≠>=-a a a x f x 且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性变式练习:函数()1,01≠>+=a a a y x 且的图象必经过点例5、按从小到大的顺序排列下列各数:23 ,23.0 ,22,22.0 .变式练习:1、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>2、设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是( )A. 1<<a bB. 1<<b aC. a b <<1D.b a <<13、311213,32,2-⎪⎭⎫⎝⎛的大小顺序有小到大依次为_____________。

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

第二章基本初等函数复习课名师课件

第二章基本初等函数复习课名师课件

5
8
2 求函数y log x-1(3 - x)的定义域
{x |1 x 2或2 x 3}
3



y

1 2
x

2
-2
x-1







-
,1。
4 设0 x 的最大值
__2_,2_则_5_函__数,最y 小4值x-12___3_1_27_x __5_.
(a r )s a rs (a 0, r, s R) (ab)r arbr (a 0,b 0, r R)
(n a )n a
区别:
n an a (?)
一般地,如果ax Na 0, 且a 1 ,那么数x叫
叫做以a为底N的对数,N叫做真数。
当a>0,a 1 时,a x N x log a N.
负数和零没有对数; 常用关系式:
log a 1 0, log a a 1, aloga N N
log a a x x
对数运算性质如下:
如果a>0,且a≠1,M>0,N>0 ,那么:
(1) loga (M N) loga M loga N;
M
(2)
log
a
N
loga M - loga N;
(3) log a Mn n log a M(n R).
函数y=xα叫做幂函数,其中x是自变量,α是常数.
对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1
0<a<1
图y
y

0 (1,0)
x

新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程

新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程

新高考数学复习考点知识专题讲义第2讲基本初等函数、函数与方程[考情分析]1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例1(1)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案C解析画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)已知函数f (x )=e x +2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,1e B .(-∞,e) C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝ ⎛⎭⎪⎫-e ,1e 答案B解析由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解, 即e -x +2-ln(x +a )-2=0在(0,+∞)上有解,即函数y =e -x 与y =ln(x +a )的图象在(0,+∞)上有交点. 函数y =ln(x +a )可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a <0时,向右平移,两函数总有交点,当a >0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y=ln(x+a),得1=ln a,即a=e,∴a<e.规律方法(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化.跟踪演练1(1)函数f(x)=ln(x2+2)-e x-1的大致图象可能是()答案A解析当x→+∞时,f(x)→-∞,故排除D;函数f(x)的定义域为R,且在R上连续,故排除B;f(0)=ln2-e-1,由于ln2>ln e=12,e-1<12,所以f(0)=ln2-e-1>0,故排除C.(2)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-1 2的解集是()A.(-∞,-1) B.(-∞,-1] C.(1,+∞) D.[1,+∞)答案A解析当x >0时,f (x )=1-2-x >0. 又f (x )是定义在R 上的奇函数,所以f (x )<-12的解集和f (x )>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1, 即x >1,则f (x )<-12的解集是(-∞,-1).故选A.考点二函数的零点 核心提炼判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1函数零点的判断例2(1)(2022·长沙调研)已知函数f (x )=⎩⎨⎧x e x ,x ≤0,2-|x -1|,x >0,若函数g (x )=f (x )-m 有两个不同的零点x 1,x 2,则x 1+x 2等于()A.2B.2或2+1 eC.2或3D.2或3或2+1 e答案D解析当x≤0时,f′(x)=(x+1)e x,当x<-1时,f′(x)<0,故f(x)在(-∞,-1)上单调递减,当-1<x≤0时,f′(x)>0,故f(x)在(-1,0]上单调递增,所以x≤0时,f(x)的最小值为f(-1)=-1e.又当x≥1时,f(x)=3-x,当0<x<1时,f(x)=x+1.作出f(x)的图象,如图所示.因为g(x)=f(x)-m有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y=m与f(x)的图象有两个不同的交点,且交点的横坐标分别为x1,x2,由图可知1<m<2或m=0或m=-1e.若1<m<2,则x1+x2=2;若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e .(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,则关于x 的方程f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为()A .1B .2C .3D .4 答案C解析对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,且函数f (x )是定义在R 上的偶函数,且f (6)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根.考向2求参数的值或取值范围例3(1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________. 答案[-3,0)解析设t =3-|x -2|(0<t ≤1), 由题意知a =t 2-4t 在(0,1]上有解, 又t 2-4t =(t -2)2-4(0<t ≤1), ∴-3≤t 2-4t <0,∴实数a 的取值范围是[-3,0).(2)已知函数f (x )=⎩⎨⎧x +3,x >a ,x 2+6x +3,x ≤a ,若函数g (x )=f (x )-2x 恰有2个不同的零点,则实数a 的取值范围为____________________. 答案[-3,-1)∪[3,+∞)解析由题意得g (x )=⎩⎪⎨⎪⎧x +3-2x ,x >a ,x 2+6x +3-2x ,x ≤a ,即g (x )=⎩⎪⎨⎪⎧3-x ,x >a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点,即g(x)的图象与x轴有两个交点.若当x≤a时,g(x)=x2+4x+3有两个零点,则令x2+4x+3=0,解得x=-3或x=-1,则当x>a时,g(x)=3-x没有零点,所以a≥3.若当x≤a时,g(x)=x2+4x+3有一个零点,则当x>a时,g(x)=3-x必有一个零点,即-3≤a<-1,综上所述,a∈[-3,-1)∪[3,+∞).规律方法利用函数零点的情况求参数值(或取值范围)的三种方法跟踪演练2(1)已知偶函数y=f(x)(x∈R)满足f(x)=x2-3x(x≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x >0,-1x,x <0,则y =f (x )-g (x )的零点个数为()A .1B .3C .2D .4 答案B解析作出函数f (x )与g (x )的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f (x )-g (x )有3个零点.(2)(多选)已知函数f (x )=⎩⎨⎧x +2a ,x <0,x 2-ax ,x ≥0,若关于x 的方程f (f (x ))=0有8个不同的实根,则a 的值可能为() A .-6B .8C .9D .12 答案CD解析当a ≤0时,f (x )仅有一个零点x =0,故f (f (x ))=0有8个不同的实根不可能成立.当a >0时,f (x )的图象如图所示,当f (f (x ))=0时,f 1(x )=-2a ,f 2(x )=0,f 3(x )=a .又f (f (x ))=0有8个不同的实根,故f 1(x )=-2a 有三个根,f 2(x )=0有三个根,f 3(x )=a 有两个根,又x 2-ax =⎝ ⎛⎭⎪⎫x -a 22-a24,所以-2a >-a 24且a <2a ,解得a >8且a >0,综上可知,a >8.专题强化练一、单项选择题1.(2022·全国Ⅰ)设a log 34=2,则4-a 等于() A.116B.19C.18D.16 答案B解析方法一因为a log 34=2, 所以log 34a =2, 所以4a =32=9, 所以4-a =14a =19. 方法二因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4log 94-=14log 94-=9-1=19.2.函数f (x )=ln x +2x -6的零点一定位于区间()A.(1,2) B.(2,3) C.(3,4) D.(4,5)答案B解析函数f(x)=ln x+2x-6在其定义域上连续且单调,f(2)=ln2+2×2-6=ln2-2<0,f(3)=ln3+2×3-6=ln3>0,故函数f(x)=ln x+2x-6的零点在区间(2,3)上.3.在同一直角坐标系中,函数f(x)=2-ax和g(x)=log a(x+2)(a>0且a≠1)的大致图象可能为()答案A解析由题意知,当a>0时,函数f(x)=2-ax为减函数.若0<a<1,则函数f(x)=2-ax的零点x0=2a∈(2,+∞),且函数g(x)=log a(x+2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax的零点x0=2a∈(0,2),且函数g(x)=log a(x+2)在(-2,+∞)上为增函数.故A 正确.4.(2022·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则()A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案B解析4a =6>4,a >1,b =12log 4=-2,c 3=35<1,0<c <1,故a >c >b .5.(2022·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3)() A .60B .63C .66D .69 答案C 解析因为I (t )=K1+e -0.23(t -53),所以当I (t *)=0.95K 时,*0.23531et K⎛⎫-- ⎪⎝⎭+=0.95K ,即*0.235311et ⎛⎫-- ⎪⎝⎭+=0.95,即1+*0.2353et ⎛⎫-- ⎪⎝⎭=10.95,即*0.2353et ⎛⎫-- ⎪⎝⎭=10.95-1,∴*0.2353et ⎛⎫- ⎪⎝⎭=19,∴0.23(t *-53)=ln19, ∴t *=ln190.23+53≈30.23+53≈66.6.(2022·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是() A .1<a <2B .0<a <2,a ≠1 C .0<a <1D .a ≥2 答案A解析令u (x )=x 2-ax +1,函数y =log a (x 2-ax +1)有最小值,∴a >1,且u (x )min >0,∴Δ=a 2-4<0,∴1<a <2,∴a 的取值范围是1<a <2.7.(2022·太原质检)已知函数f (x )=⎩⎨⎧e x ,x >0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g (x )=f (x )+kx 恰好有两个零点,则实数k 等于() A .-2eB .eC .-eD .2e 答案C解析g (x )=f (x )+kx =0,即f (x )=-kx ,如图所示,画出函数y =f (x )和y =-kx 的图象, -2x 2+4x +1=-kx ,即2x 2-(4+k )x -1=0, 设方程的两根为x 1,x 2,则Δ=(4+k )2+8>0,且x 1x 2=-12, 故g (x )在x <0时有且仅有一个零点, y =-kx 与y =f (x )在x >0时相切.当x >0时,设切点为(x 0,-kx 0),f (x )=e x , f ′(x )=e x ,f ′(x 0)=0e x =-k ,0e x =-kx 0, 解得x 0=1,k =-e.8.已知函数f (x )=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的解,则a 的取值范围是() A .(1,2) B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 答案D解析作出f (x )=⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0的图象如图所示.设t =f (x ),则原方程化为2t 2-(2a +3)t +3a =0, 解得t 1=a ,t 2=32.由图象可知,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f (x )的图象有三个不同的交点时才满足条件, 所以1<a <2.又方程2t 2-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2-4×2×3a =(2a -3)2>0, 解得a ≠32,综上,得1<a <2,且a ≠32. 二、多项选择题9.(2022·临沂模拟)若10a =4,10b =25,则() A .a +b =2B .b -a =1 C .ab >8lg 22D .b -a >lg6 答案ACD解析由10a =4,10b =25,得a =lg4,b =lg25,则a +b =lg4+lg25=lg100=2,故A 正确;b-a=lg25-lg4=lg 254>lg6且lg254<1,故B错误,D正确;ab=lg4·lg25=4lg2·lg5>4lg2·lg4=8lg22,故C正确.10.已知函数f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,则()A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数答案AB解析∵f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,∴f(x)+g(x)=log a(x+1)+log a(1-x),由x+1>0且1-x>0得-1<x<1,故A对;由f(-x)+g(-x)=log a(-x+1)+log a(1+x)=f(x)+g(x),得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵-1<x<1,∴f(x)+g(x)=log a(1-x2),∵y=1-x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1-0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C错;∵f(x)-g(x)=log a(x +1)-log a(1-x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1-x)在(0,1)上单调递增,函数f(x)-g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D错.11.(2022·淄博模拟)已知函数y =f (x )是R 上的奇函数,对于任意x ∈R ,都有f (x +4)=f (x )+f (2)成立.当x ∈[0,2)时,f (x )=2x -1.给出下列结论,其中正确的是() A .f (2)=0B .点(4,0)是函数y =f (x )图象的一个对称中心C .函数y =f (x )在区间[-6,-2]上单调递增D .函数y =f (x )在区间[-6,6]上有3个零点 答案AB解析对于A ,因为f (x )为奇函数且对任意x ∈R ,都有f (x +4)=f (x )+f (2),令x =-2,则f (2)=f (-2)+f (2)=0,故A 正确;对于B ,由A 知,f (2)=0,则f (x +4)=f (x ),则4为f (x )的一个周期,因为f (x )的图象关于原点(0,0)成中心对称,则(4,0)是函数f (x )图象的一个对称中心,故B 正确;对于C ,因为f (-6)=0,f (-5)=f (-5+4)=f (-1)=-f (1)=-1,-6<-5,而f (-6)>f (-5),所以f (x )在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f (0)=0,f (2)=0,所以f (-2)=0,又4为f (x )的一个周期,所以f (4)=0,f (6)=0,f (-4)=0,f (-6)=0,所以函数y =f (x )在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f (x )=⎩⎪⎨⎪⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞),则下列结论正确的是()A .任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1B .函数y =f (x )在[4,5]上单调递增C .函数y =f (x )-ln(x -1)有3个零点D .若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132 答案ACD解析f (x )=⎩⎨⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞)的图象如图所示,当x ∈[2,+∞)时,f (x )的最大值为12,最小值为-12,∴任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1恒成立,故A 正确;函数y =f (x )在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f (x )在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f (x )的图象有3个交点,∴函数y =f (x )-ln(x -1)有3个零点,故C 正确;若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1<x 2<x 3,则x 1+x 2=3,x 3=72,∴x 1+x 2+x 3=132,故D 正确. 三、填空题13.(2022·全国Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln2)=8,则a =________. 答案-3解析当x >0时,-x <0,f (-x )=-e -ax .因为函数f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=e -ax ,所以f (ln2)=e -a ln2=⎝⎛⎭⎪⎫12a=8,所以a =-3. 14.已知函数f (x )=|lg x |,若f (a )=f (b )(a ≠b ),则函数g (x )=⎩⎨⎧x 2+22x +5,x ≤0,ax 2+2bx ,x >0的最小值为________. 答案2 2解析因为|lg a |=|lg b |,所以不妨令a <b , 则有-lg a =lg b ,所以ab =1,b =1a(0<a <1),所以g (x )=⎩⎨⎧(x +2)2+3,x ≤0,ax +2ax ,x >0,当x ≤0时,g (x )=(x +2)2+3≥3,取等号时x =-2; 当x >0时,g (x )=ax +2ax ≥2ax ·2ax =22,当且仅当x =2a 时,等号成立, 综上可知,g (x )min =2 2.15.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1),1-|x -3|,x ∈[1,+∞),则函数F (x )=f (x )-1π的所有零点之和为________.答案11-2π解析由题意知,当x <0时, f (x )=⎩⎪⎨⎪⎧-2x 1-x ,x ∈(-1,0),|x +3|-1,x ∈(-∞,-1],作出函数f (x )的图象如图所示,设函数y =f (x )的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F (x )=f (x )-1π的所有零点之和为11-2π. 16.对于函数f (x )与g (x ),若存在λ∈{x ∈R |f (x )=0},μ∈{x ∈R |g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 答案[3,4]解析由题意知,函数f (x )的零点为x =2, 设g (x )的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3.21 / 21 方法一因为函数g (x )的图象开口向上,所以要使g (x )的至少一个零点落在区间[1,3]上,则需满足g (1)g (3)≤0,或⎩⎪⎨⎪⎧ g (1)>0,g (3)>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a <103,得3≤a ≤4. 故实数a 的取值范围为[3,4].方法二因为g (μ)=μ2-aμ-μ+4=0, a =μ2-μ+4μ=μ+4μ-1,因为1≤μ≤3,所以3≤a ≤4.故实数a 的取值范围为[3,4].。

高一数学基本初等函数

高一数学基本初等函数
第二章基本初等函数 复习课
金禧中学高一数学备课组
整数指数幂 有理指数幂 无理指数幂
指数
对数
定义 运算性质
定义 图象与性质
指数函数 对数函数 幂函数
定义 图象与性质
1.整数指数幂的运算性质
(1)am·an=am+n
(m,n∈Z)
(2)am÷an=am-n (a≠0,m,n∈Z)
(3)(am) n =amn
*一般地,当a>0且是一个无理数时,也是一个确定的实数,故以上
运算律对实数指数幂同样适用.
6.指数函数 一般地,函数y= ax(a>0,且a≠1)叫做指数函数,
其中x是自变量,函数的定义域是R 7.指数函数的图象和性质
a>1
4.分数指数幂的意义
m
(1)a n n am a 0,m, n Z *,且n 1
m
(2)a n

1
m
a 0,m ,n Z *,且n 1
an
5.有理数指数幂的运算性质
(1)ar·as=ar+s (a>0,r,s∈Q); (2)ar÷as=ar-s (a>0,r,s∈Q); (3)(ar)s=ars (a>0,r,s∈Q); (4)(ab) r=arbr (a>0,b>0,r∈Q)
n
a
n

a

a a a a

0 0
(5)负数没有偶次方根
(6)零的任何次方根都是零
; 物联卡加盟
;

人觉得微笑很困难,以为是一个如何掌控面容的技术性问题,其实不然。不会笑的人,我总疑心是因为读书不够广博和投入。书是一座快乐的富矿,储存了大量浓缩的欢愉因子,当你静夜抚卷的时候(当然也包括网上阅读),

高三数学复习专题-函数与基本初等函数-第2章第2节-课件

高三数学复习专题-函数与基本初等函数-第2章第2节-课件

第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
课堂典例讲练
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
求函数的单调区间 (文)求出下列函数的单调区间: (1)f(x)=|x2-4x+3|; (2)f(x)=log2(x2-1). [思路分析] 注意(1)函数含有绝对值,故可将其转化为分 段函数并作出图像求解;(2)中的函数为函数y=log2u, u=x2-1的复合函数,要注意其定义域.
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
2.函数的最值
前 提
设函数y=f(x)的定义域为I,如果存在实数M满足
条 对于任意x∈I,都有
对于任意x∈I,都有
件 _f_(_x)_≤_M___;
f_(x_)_≥_M__;
存在x0∈I,使得f_(_x0_)_=__M 存在x0∈I,使得f_(_x_0)_=__M
6.已知函数 f(x)为 R 上的减函数,则满足 f(|1x|)<f(1)的实数 x 的取值范围是________.
[答案] (-1,0)∪(0,1) [解析] 由函数 f(x)为 R 上的减函数且 f(|1x|)<f(1),
得|1x|>1, x≠0,
即x|x≠|<10,. ∴0<x<1 或-1<x<0.
3 课堂典例讲练
2 课前自主导学
4 课时作业
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
高考目标导航
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
考纲要求
1.理解函数 的单调性、最大 值、最小值及其 几何意义.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数复习题
一、选择题
1. 已知cos α=1
2
,α∈(370°,520°),则α等于
( )
A .390°
B .420°
C .450°
D .480° 2. 若sin x ·cos x <0,则角x 的终边位于
( )
A .第一、二象限
B .第二、三象限
C .第二、四象限
D .第三、四象限 3. 函数y =tan x
2

( )
A .周期为2π的奇函数
B .周期为π
2的奇函数
C .周期为π的偶函数
D .周期为2π的偶函数
4. 已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( )
A .1
B .2 C.1
2
D.13
5. 函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于
( )
A .-π
2
B .2k π-π
2(k ∈Z )
C .k π(k ∈Z )
D .k π+π
2
(k ∈Z )
6. 若sin θ+cos θ
sin θ-cos θ
=2,则sin θcos θ的值是
( ) A .-3
10
B.3
10
C .±3
10
D.34
7. 将函数y =sin x 的图象上所有的点向右平行移动π
10
个单位长度,再把所得各点的横坐标伸长
到原来的2倍(纵坐标不变),所得图象的函数解析式是
( )
A .y =sin ⎝
⎛⎭⎪⎫2x -π10 B .y =sin ⎝
⎛⎭⎪⎫2x -π5
C .y =sin ⎝ ⎛⎭⎪⎫12x -π10
D .y =sin ⎝ ⎛⎭
⎪⎫12x -π20 8. 在同一平面直角坐标系中,函数y =cos ⎝ ⎛⎭
⎪⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是
( )
A .0
B .1
C .2
D .4
9. 已知集合M =⎩⎨⎧⎭
⎬⎫x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π
2,k ∈Z },则
( ) A .M =N B .M N C .N M
D .M ∩N =∅
10.设a =sin 5π7,b =cos 2π7,c =tan 2π
7,则
( ) A .a <b <c B .a <c <b C .b <c <a
D .b <a <c
二、填空题
11.已知一扇形的弧所对的圆心角为54°,半径r =20 cm ,则扇形的周长为________ cm. 12.方程sin πx =1
4
x 的解的个数是________.
13.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f (7π
12
)=________.
14.已知函数y =sin πx
3
在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是______.
三、解答题
15.已知f (α)=
sin
2
π-α·cos 2π-α·tan -π+α
sin -π+α·tan -α+3π
.
(1)化简f (α);(2)若f (α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-31π
3,
求f (α)的值.
16.求函数y =3-4sin x -4cos 2
x 的最大值和最小值,并写出函数取最值时对应的x 的值. 17.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π
8
.
(1)求φ;(2)求函数y =f (x )的单调增区间;
(3)在下面坐标系上画出函数y =f (x )在区间[0,π]上的图象.
18.在已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π
2
)的图象与x 轴的交点中,
相邻两个交点之间的距离为
π2,且图象上一个最低点为M ⎝ ⎛⎭
⎪⎫2π3,-2. (1)求f (x )的解析式; (2)当x ∈⎣⎢⎡⎦
⎥⎤π12,π2时,求f (x )的值域.
19.如图所示,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ≤π
2)的图

与y
轴交于点(0,3),且该函数的最小正周期为π. (1)求θ和ω的值;
(2)已知点A (π2,0),点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈[π
2,
π]时,求x 0的值.
答案
1.B 2.C 3.A 4.B 5.D 6.B 7.C 8.C 9.B 10.D 11.6π+40 12.7 13.0 14.8 15.(1)f (α)=sin α·cos α (2)-
32
(3)-
34
16.解 y =3-4sin x -4cos 2
x =4sin 2
x -4sin x -1
=4⎝ ⎛⎭⎪⎫sin x -122-2,令t =sin x , 则-1≤t ≤1,
∴y =4⎝ ⎛⎭
⎪⎫t -122
-2 (-1≤t ≤1).
∴当t =12,即x =π6+2k π或x =5π
6+2k π(k ∈Z )时,y min =-2;
当t =-1,即x =3π
2+2k π (k ∈Z )时,y max =7.
17.解 (1)∵x =π
8
是函数y =f (x )的图象的对称轴,
∴sin ⎝ ⎛⎭
⎪⎫2×π8+φ=±1.

π4+φ=k π+π
2
,k ∈Z . ∵-π<φ<0,∴φ=-3π4.
(2)由(1)知φ=-3π
4,
因此y =sin ⎝
⎛⎭⎪⎫2x -3π4. 由题意得2k π-π2≤2x -3π4≤2k π+π
2
,k ∈Z .
∴函数y =sin ⎝ ⎛⎭⎪⎫2x -3π4的单调增区间为⎣
⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z .
(3)由y =sin ⎝
⎛⎭⎪⎫2x -3π4,知
x 0 π8 3π8 5π8 7π8 π y

22
-1
1
-22
故函数y =f (x
18.(1)f (x )=2sin ⎝
⎛⎭⎪⎫2x +π6 (2)[-1,2]
19.解 (1)将x =0,y =3代入函数y =2cos(ωx +θ)中,
得cos θ=
32,因为0≤θ≤π2
, 所以θ=π
6
.
由已知T =π,且ω>0,得ω=2πT =2π
π=2.
(2)因为点A (π
2
,0),Q (x 0,y 0)是PA 的中点,
y 0=
32,所以点P 的坐标为(2x 0-π
2
,3). 又因为点P 在y =2cos(2x +π6)的图象上,且π
2
≤x 0≤π, 所以cos(4x 0-5π6)=3
2,

7π6≤4x 0-5π6≤19π
6
, 从而得4x 0-5π6=11π6,或4x 0-5π6=13π6

即x 0=2π3,或x 0=3π
4
.
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档