2019年高考天津卷理科数学真题(含答案)

合集下载

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

绝密★ 启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件,互斥,那么•如果事件,相互独立,那么.•圆柱的体积公式. •圆锥的体积公式.其中表示圆柱的底面面积,其中表示圆锥的底面面积,表示圆柱的高. 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)是虚数单位,复数()(2)设变量,满足约束条件则目标函数的最小值为()(A)2 (B)3 (C)4 (D)5(3)阅读右边的程序框图,运行相应的程序,输出的的值为()(A)15 (B)105(C)245 (D)945(4)函数的单调递增区间是()(A)(B)(C)(D)(5)已知双曲线的一条渐近线平行于直线:,双曲线的一个焦点在直线上,则双曲线的方程为()(A)(B)(C)(D)(6)如图,是圆的内接三角形,的平分线交圆于点,交于点,过点的圆的切线与的延长线交于点.在上述条件下,给出下列四个结论:①平分;②;③;④.则所有正确结论的序号是()(A)①②(B)③④(C)①②③(D)①②④(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形的边长为2,,点分别在边上,,.若,,则( )(A ) (B ) (C ) (D ) 第Ⅱ卷 注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

精品解析:2019年天津市高考数学试卷(理科)(解析版)

精品解析:2019年天津市高考数学试卷(理科)(解析版)

【分析】
建立坐标系利用向量的坐标运算分别写出向量而求解。
【详解】建立如图所示的直角坐标系,则 B(2 3, 0) , D(5 3 , 5) 。 22
因为 AD ∥ BC , BAD 30 ,所以 CBE 30 , 因为 AE BE ,所以 BAE 30 ,
所以直线 BE 的斜率为 3 ,其方程为 y 3 (x 2 3) ,
【答案】D
【解析】 【分析】
先求 A B ,再求 ( A C) B 。 【详解】因为 A C {1, 2} , 所以 ( A C) B {1, 2,3, 4}.
故选 D。 【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即 借助数轴、坐标系、韦恩图等进行运算.
棱锥底面的中心,圆柱的底面半径为
1 2
,故圆柱的体积为


1 2
2
1

4

【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。
8
x 2 2 cos ,
12.设
a

R
,直线
ax

y

2

0
和圆

y

1

2
sin

( 为参数)相切,则 a 的值为____.
A. 2
B. 3
C. 2
D. 5
【答案】D
【解析】
4
【分析】
只需把 AB 4 OF 用 a, b, c 表示出来,即可根据双曲线离心率的定义求得离心率。
【详解】抛物线 y2 4x 的准线 l 的方程为 x 1 ,

(高考)2019年天津卷理数高考试题文档版(含答案)

(高考)2019年天津卷理数高考试题文档版(含答案)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为A.2B.3C.5D.6 3.设x R ∈,则“250x x -<”是“|1|1x -<”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出S 的值为 A.5 B.8C.24D.295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为26.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A.2-B.28.已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A.[]0,1B.[]0,2C.[]0,eD.[]1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2019天津高考理科数学试题及答案解析【Word版】

2019天津高考理科数学试题及答案解析【Word版】

2019年普通高等学校招生全国统一考试(天津卷)
数学(理工类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:。

2019年天津卷理科数学高考真题及标准答案解析

2019年天津卷理科数学高考真题及标准答案解析

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为ABC .2D 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .CD .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

(精校版)2019年天津卷理数高考真题文档版(含答案)

(精校版)2019年天津卷理数高考真题文档版(含答案)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B =+ .·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B = A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A B .C .2D 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b<<B .a b c<<C .b c a<<D .c a b<<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .C D .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2019年天津市高考数学试卷(理科)及答案(word版)

2019年天津市高考数学试卷(理科)及答案(word版)

高考数学精品复习资料2019.5普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 的面积为3, 则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ = (A) 1010 (B) 105 (C) 31010 (D) 55(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15,02⎛⎫- ⎪ ⎪⎝⎭ (B) 13,02⎛⎫- ⎪ ⎪⎝⎭(C) 15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭ (D) 52,1⎛⎫-- ⎪ ⎝⎭∞⎪普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 61x x ⎛⎫- ⎪⎝⎭ 的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为26, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为433. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

2019年高考理科数学天津卷真题理数(附参考答案及详解)

2019年高考理科数学天津卷真题理数(附参考答案及详解)

文档说明绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(天津卷)数学(理工农医类)总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

2、选择题的作答:选出每小题答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,1,2,3,5}A=-,{2,3,4}B=,{|13}C x x=∈≤<R,则()A C B=I U()A.{2}B.{2,3}C.{1,2,3}- D.{1,2,3,4}2.设变量x y⋅满足约束条件20,20,1,1,x yx yxy+-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y=-+的最大值为()A.2B.3C.5D.63.设x ∈R ,则“250x x -<”是“|1|1x -<”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读如图的程序框图,运行相应的程序,输出S 的值为( )A.5B.8C.24D.29 5.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )C.26.已知52log a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( ) A.a c b << B.a b c << C.b c a << D.c a b <<7.已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( )A.2-B. D.28.已知a ∈R ,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤⎪=⎨->⎪⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( )A.[0,1]B.[0,2]C.[0,e]D.[1,e]第Ⅱ卷二、填空题:本题共6小题,每小题5分。

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

绝密 ★ 启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷 注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945FED CBA (4)函数212log 4f x x 的单调递增区间是()(A )0, (B ),0(C )2,(D ),2(5)已知双曲线22221x y a b 0,0ab 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x yD ,交(6)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CEBE DE ;④AF BD AB BF .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a bR ,则|“a b ”是“a a b b ”的( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BE BC ,DFDC .若1AE AF ,23CE CF,则( )(A )12 (B )23 (C )56 (D )712第Ⅱ卷 注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2019年高考试题(天津卷)-数学(理)(有解析)(最新整理)

2019年高考试题(天津卷)-数学(理)(有解析)(最新整理)

2019年高考试题(天津卷)-数学(理)(word 有解析)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

数学〔理〕本试卷分第一卷〔选择题〕和第二卷(非选择题)两部分, 共150分. 考试用时120分钟. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第一卷本卷须知1.每题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.本卷共8小题, 每题5分, 共40分.参考公式:如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.如果事件A , B 相互独立, 那么)()(()B P A A P P B =球的体积公式 34.3V R π=其中R 表示球的半径.【一】选择题: 在每题给出的四个选项中,只有一项为哪一项符合题目要求的.(1) 集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 那么A B ⋂=(A) (B) [1,2](C) [-2,2](D) [-2,1](,2]-∞(2) 设变量x , y 满足约束条件那么目标函数z = y -360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩2x 的最小值为(A) -7(B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 假设输入x 的值为1, 那么输出S 的值为(A) 64(B) 73(C) 512(D) 585①假设一个球的半径缩小到原来的,那么其体积缩小到原来的;1218②假设两组数据的平均数相等,那么它们的标准差也相等;③直线x +y +1=0与圆相切.2212x y +=其中真命题的序号是:(A)①②③(B)①②(C)①③(D)②③(5)双曲线的两条渐近线与抛物线的准线分别交于22221(0,0)x y a b a b-=>>22(0)px p y =>A ,B 两点,O 为坐标原点.假设双曲线的离心率为2,△AOB 那么p =(A)1(B)(C)2(D)332(6)在△ABC 中,那么=,3,4AB BC ABC π∠===sin BAC ∠(7)函数的零点个数为0.5()2|log |1x f x x =-(A)1(B)2(C)3(D)4(8)函数.设关于x 的不等式的解集为A ,假设,()(1||)f x x a x =+()()f x a f x +<11,22A ⎡⎤-⊆⎢⎥⎣⎦那么实数a 的取值范围是(A)(B)⎫⎪⎪⎭⎫⎪⎪⎭(C)(D)⎛⋃ ⎝⎫⎪⎪⎭⎛- ⎝∞第二卷本卷须知1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.【二】填空题:本大题共6小题,每题5分,共30分.(9)a ,b ∈R ,i 是虚数单位.假设(a +i )(1+i )=bi ,那么a +bi =.(10)的二项展开式中的常数项为.6x⎛- ⎝(11)圆的极坐标方程为,圆心为C ,点P 的极坐标为,那么|CP |=.4cos ρθ=4,3π⎛⎫ ⎪⎝⎭(12)在平行四边形ABCD 中,AD =1,,E 为CD 的中点.假设,那么AB 的长60BAD ︒∠=·1AD BE =为.(13)如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD //AC .过点A 做圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .假设AB =AC ,AE =6,BD =5,那么线段CF 的长为.(14)设a +b =2,b >0,那么当a =时,取得最小1||2||a a b+值.【三】解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题总分值13分)函数.2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R (Ⅰ)求f (x )的最小正周期;(Ⅱ)求f (x )在区间上的最大值和最小值.0,2π⎡⎤⎢⎥⎣⎦(16)(本小题总分值13分)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.(Ⅱ)再取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列和数学期望.(17)(本小题总分值13分)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB //DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(Ⅰ)证明B 1C 1⊥CE ;(Ⅱ)求二面角B 1-CE -C 1的正弦值.(Ⅲ)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成,求线段AM 的长.(18)(本小题总分值13分)设椭圆的左焦点为F ,,过点22221(0)x y a b a b +=>>F 且与x (Ⅰ)求椭圆的方程;(Ⅱ)设A ,B 分别为椭圆的左右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.假设,求k 的值.··8AC DB AD CB += (19)(本小题总分值14分)首项为的等比数列不是递减数列,其前n 项和为,且S 3+a 3,S 5+a 5,S 4+a 432{}n a (*)n S n ∈N 成等差数列.(Ⅰ)求数列的通项公式;{}n a (Ⅱ)设,求数列的最大项的值与最小项的值.*()1n n nT S n S ∈=-N {}n T (20)(本小题总分值14分)函数.2l ()n f x x x =(Ⅰ)求函数f (x )的单调区间;(Ⅱ)证明:对任意的t >0,存在唯一的s ,使.()t f s =(Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为,证明:当时,有.()s g t =2>e t 2ln ()15ln 2g t t <<。

精品解析:2019年天津市高考数学试卷(理科)(解析版)

精品解析:2019年天津市高考数学试卷(理科)(解析版)

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题。

参考公式:·如果事件A 、B 互斥,那么()()()⋃=+P A B P A P B . ·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈<„ ,则()A C B =I U A. {2} B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】D 【解析】 【分析】先求A C I ,再求()A C B I U . 【详解】因为{1,2}A C =I , 所以(){1,2,3,4}A C B =I U . 故选D .【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为A. 2B. 3C. 5D. 6【答案】C 【解析】 【分析】画出可行域,用截距模型求最值.【详解】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值.由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -, 所以max 4(1)15z =-⨯-+=. 故选C .【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求. 3.设x ∈R ,则“250x x -<”是“|1|1x -<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件 【答案】B 【解析】 【分析】分别求出两不等式的解集,根据两解集的包含关系确定. 【详解】化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B .【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合关系来判断条件. 4.阅读下边的程序框图,运行相应的程序,输出S 的值为 A. 5 B. 8C. 24D. 29【答案】B 【解析】 【分析】根据程序框图,逐步写出运算结果.【详解】1,2S i ==→11,1225,3j S i ==+⋅==,8,4S i ==, 结束循环,故输出8. 故选B .【点睛】解答本题要注意要明确循环体终止的条件是什么,会判断什么时候终止循环体.5.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C. 2【答案】D 【解析】 【分析】只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率. 【详解】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---∴2b AB a =,24ba=,2b a =,∴c e a ===故选D .【点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.6.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.20.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.7.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫=⎪⎝⎭则38f π⎛⎫= ⎪⎝⎭( ) A. 2-B.D. 2【答案】C 【解析】 【分析】只需根据函数性质逐步得出,,A ωϕ值即可.【详解】因为()f x 为奇函数,∴(0)sin 0=,0,f A k k ϕϕπ==∴=,0ϕ=;又12()sin ,2,122g x A x T πωπω=∴==2ω=,2A =,又()4g π=∴()2sin 2f x x =,3()8f π= 故选C .【点睛】本题考查函数的性质和函数的求值问题,解题关键是求出函数()g x .8.已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩„若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为( ) A. []0,1 B. []0,2C. []0,eD. []1,e【答案】C 【解析】 【分析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立. 【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C .【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.第Ⅱ卷二.填空题:本大题共6小题.9.i 是虚数单位,则51ii-+的值为__________.【解析】 【分析】先化简复数,再利用复数模的定义求所给复数的模.【详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【点睛】本题考查了复数模的运算,是基础题.10.83128x x ⎛⎫- ⎪⎝⎭展开式中的常数项为________. 【答案】28 【解析】 【分析】根据二项展开式的通项公式得出通项,根据方程思想得出r 的值,再求出其常数项. 【详解】8848418831(2)()(1)28rrr r r r rr T C x C x x---+=-=-, 由840r -=,得2r =,所以的常数项为228(1)28C -=.【点睛】本题考查二项式定理的应用,牢记常数项是由指数幂为0求得的.11.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】 【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.12.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.【答案】34【解析】 【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得. 【详解】圆22cos ,12sin x y θθ=+⎧⎨=+⎩化为普通方程为22(2)(1)2x y -+-=,圆心坐标为(2,1),圆的半径为2,2=,解得34a =. 【点睛】直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断. 13.设0,0,25x y x y >>+=的最小值为______.【答案】【解析】 【分析】把分子展开化为26xy +,再利用基本不等式求最值.【详解】=Q0,0,25,0,x y x y xy >>+=>∴Q≥=当且仅当3xy =,即3,1x y ==时成立,故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.14. 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=u u u v u u u v__________. 【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解.【详解】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒, 所以直线BE的斜率为3,其方程为3y x =-,直线AE斜率为3y x =-.由3y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x =1y =-,所以1)E -.所以5()1)122BD AE =-=-u u u r u u u r g .【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.三.解答题.解答应写出文字说明,证明过程或演算步骤.15. 在ABC V 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.【答案】(Ⅰ) 14-; (Ⅱ) 716-. 【解析】 【分析】(Ⅰ)由题意结合正弦定理得到,,a b c 的比例关系,然后利用余弦定理可得cos B 的值 (Ⅱ)利用二倍角公式首先求得sin 2,cos 2B B 的值,然后利用两角和的正弦公式可得sin 26B π⎛⎫+ ⎪⎝⎭的值. 【详解】(Ⅰ)在ABC V 中,由正弦定理sin sin b cB C=得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =. 又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222cos 2a c b B ac +-=2224161992423a a aa a +-==-⋅⋅. (Ⅱ)由(Ⅰ)可得sin B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-.故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=-⨯-⨯=- ⎪⎝⎭. 【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查计算求解能力.16.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(Ⅰ)见解析;(Ⅱ)20243【解析】 【分析】(Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;(Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值.【详解】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23, 故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为:随机变量X 的数学期望2()323E X =⨯=. (Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====U .由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立, 从而由(Ⅰ)知:{}{}()()3,12,0P M P X Y X Y =====U ()()3,12,0P X Y P X Y ===+==(3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.【点睛】本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力. 17.如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 【答案】(Ⅰ)见证明;(Ⅱ)49(Ⅲ)87【解析】 【分析】首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF 的方向向量和平面ADE 的法向量的关系即可证明线面平行;(Ⅱ)分别求得直线CE 的方向向量和平面BDE 的法向量,然后求解线面角的正弦值即可;(Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF 长度的方程,解方程可得CF 的长度.【详解】依题意,可以建立以A 为原点,分别以,,AB AD AE u u u r u u u r u u u r的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得()()()()()0,0,0,1,0,0,1,2,0,0,1,0,0,0,2A B C D E . 设()0CF h h =>,则()1,2,F h .(Ⅰ)依题意,()1,0,0AB =u u u r是平面ADE 的法向量, 又()0,2,BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(Ⅱ)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u r u u u r u u u r,设(),,n x y z =r为平面BDE 的法向量, 则00n BD n BE ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即020x y x z -+=⎧⎨-+=⎩,不妨令z =1,可得()2,2,1n =r,因此有4cos ,9||||CE n CE n CE n ⋅〈〉==-u u u r ru u u r r u u ur r . 所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)设(),,m x y z =u r 为平面BDF 的法向量,则00m BD m BF ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即020x y y hz -+=⎧⎨+=⎩.不妨令y =1,可得21,1,m h ⎛⎫=- ⎪⎝⎭u r .由题意,有1cos ,3m n m n m n⋅===⨯u r r u r ru r r ,解得87h =. 经检验,符合题意。 所以,线段CF 的长为87. 【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.18.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4.(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【答案】(Ⅰ)22154x y +=或. 【解析】 【分析】(Ⅰ)由题意得到关于a ,b ,c 的方程,解方程可得椭圆方程;(Ⅱ)联立直线方程与椭圆方程确定点P 的坐标,从而可得OP 的斜率,然后利用斜率公式可得MN 的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率. 【详解】(Ⅰ) 设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =,b =2,c =1.所以,椭圆方程为22154x y +=.(Ⅱ)由题意,设()()(),0,,0P P P M P x y x M x ≠.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222154y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2245200kxkx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k-=+, 进而直线OP 的斜率24510P P y k x k-=-, 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k -. 由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭, 化简得2245k =,从而5k =±. 所以,直线PB或5-. 【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,1,,2,k k n kk n c c b n +⎧<<==⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】 【分析】(Ⅰ)由题意首先求得公比和公差,然后确定数列的通项公式即可;(Ⅱ)结合(Ⅰ)中的结论可得数列(){}221n n a c -的通项公式,结合所得的通项公式对所求的数列通项公式进行等价变形,结合等比数列前n 项和公式可得21ni i i a c =∑的值.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意得()()262426262424124q d d q d d ⎧=+-=+⎪⎨=++=+⎪⎩,解得32d q =⎧⎨=⎩, 故4(1)331n a n n =+-⨯=+,16232n nn b -=⨯=⨯.所以,{}n a 的通项公式为31n a n =+,{}n b 的通项公式为32nn b =⨯.(Ⅱ)(i )()()()()22211321321941n n n nnnn a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221n n a c -的通项公式为()221941n n na c -=⨯-. (ii )()22111n n i iiiii i a c a a c ===+-⎡⎤⎣⎦∑∑()2222111n niiii i a a c===+-∑∑()2212432n n n⎛⎫- ⎪=⨯+⨯ ⎪⎝⎭()1941n i i =+⨯-∑ ()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n N --=⨯+⨯--∈.【点睛】本题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力. 20.设函数()e cos ,()x f x x g x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+- ⎪⎝⎭…; (Ⅲ)设n x 为函数()()1u x f x =-在区间2,242m m πππ⎛⎫++⎪⎝⎭内的零点,其中n N ∈,证明20022sin cos n n n x x e x πππ-+-<-.【答案】(Ⅰ)单调递增区间为32,2(),()44k k k f x ππππ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见证明;(Ⅲ)见证明 【解析】 【分析】(Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数()f x 的单调区间; (Ⅱ)构造函数()()()2h x f x g x x π⎛⎫-= ⎝+⎪⎭,结合(Ⅰ)的结果和导函数的符号求解函数()h x 的最小值即可证得题中的结论;(Ⅲ)令2n n y x n π=-,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果.【详解】(Ⅰ)由已知,有()()'e cos sin xf x x x =-.当()52,244x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时,有sin cos x x >,得()'0f x <,则()f x 单调递减; 当()32,244x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()'0f x >,则()f x 单调递增. 所以,()f x 的单调递增区间为()32,244k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, ()f x 单调递减区间为()52,244k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.(Ⅱ)记()()()2h x f x g x x π⎛⎫-= ⎝+⎪⎭.依题意及(Ⅰ)有:()()cos sin xg x e x x =-,从而'()2sin x g x e x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,()'0g x <,故 '()'()'()()(1)()022h x f x g x x g x g x x ππ'⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭…. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭…. (Ⅲ)依题意,()()10n n u x f x =-=,即e cos 1n xn x =记2n ny x n π=-,则,42n y ππ⎛⎫∈ ⎪⎝⎭. 且()e cos n yn n f y y ==()()22ecos 2e n x n n n x n n N πππ---∈=.由()()20e1n n f y f y π-==„及(Ⅰ)得0n y y …. 由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()'0g x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数, 因此()()004n g y g y g π⎛⎫<=⎪⎝⎭„. 又由(Ⅱ)知()()02n n n f y g y y π⎛⎫+-⎪⎝⎭…,故: ()()()2e 2n n n n n f y y g y g y ππ---=-„()()022200000sin cos sin cos n n n y e e e g y e y y x x πππ---=<--„. 所以200e 22sin cos n n n x x x πππ-+--<.【点睛】本题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.。

2019年天津市高考理科数学试卷及答案解析【word版】

2019年天津市高考理科数学试卷及答案解析【word版】

高考数学精品复习资料2019.5绝密 ★ 启用前普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.E D CBA (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945(4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥(D )(),2-?(5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA =?;③AE CE BE DE ??;④AF BDAB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。

2019年高考理科数学天津卷(附参考答案和详解)

2019年高考理科数学天津卷(附参考答案和详解)






概率


$ +
!假


/乙









不 影 响 #且 任 一 同 学 每 天 到 校 情 况 相 互 独 立 !
$!%用 8 表示甲同 学 上 学 期 间 的 三 天 中 7,+# 之 前 到 校 的
天数#求随机变量 8 的分布列和数学期望-
$$%设 " 为事件&上学 期 间 的 三 天 中#甲 同 学 在 7,+# 之 前
*!槡$
,!槡+
-!$
.!槡"
&!已 知''123"$#('123#!"#!$#)'#!"#!$#则'#(#)的 大 小 关 系

$! ! %
*!'#)#(
,!'#(#)
-!(#)#'
.!)#'#(
7!已 知 函 数 *$#%'+9/:$#0%$+)##)##""#%是 奇 函 数#将 &'*$#%的 图 象 上 所 有 点 的 横 坐 标 伸 长 到 原 来 的 $
'!!!!!
三 解 答 题解答应写出文字说明证明过程或演算步骤
!"!$本小题满分!+分%在'+0. 中#内角 +#0#. 所对的边分 别 为'#(#)!已 知(0)'$'#+)9/:0')'9/:.! $!%求5290 的值-

2019年高考理科数学试题(天津卷)及参考答案

2019年高考理科数学试题(天津卷)及参考答案

2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B =+ .·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A B C .2D 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b c a <<D .c a b<<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭A .2-B .CD .28.已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e 2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

【2019高考真题天津卷】2019年天津卷理数高考试题(有答案)

【2019高考真题天津卷】2019年天津卷理数高考试题(有答案)

绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A CB =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .C D .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,e D .[]1,e第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 ABC .2 D6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .CD .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分. 9.i 是虚数单位,则5ii1-+的值为_____________. 10.83128x x ⎛⎫- ⎪⎝⎭是展开式中的常数项为_____________.11锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 12.设a ∈R ,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为_____________.13.设0,0,25x y x y >>+=的最小值为_____________.14.在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =. (Ⅰ)求cos B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 16.(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 17.(本小题满分13分)如图,AE ⊥平面ABCD,,CF AE AD BC∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值; (Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.18.(本小题满分13分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 19.(本小题满分14分)设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .20.(本小题满分14分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.D2.C3.B4.B5.D6.A7.C8.C二.填空题:本题考查基本知识和基本运算.每小题5分,满分30分.910.2811.π412.3413.14.1-三.解答题15.本小题主要考查同角三角函数的基本关系,两角和正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力,满分13分.(Ⅰ)解:在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(Ⅱ)解:由(Ⅰ)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭.16.本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C ,0,1,2,333k kk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (Ⅱ)解:设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭,且{3,1}{2,0}M X Y X Y =====.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(Ⅰ)知()({3,1}{2,0})(3,1)(2,0)P M P X Y X Y P X Y P X Y ========+==824120(3)(1)(2)(0)279927243P X P Y P X P Y ===+===⨯+⨯=. 17.本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(Ⅰ)证明:依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (Ⅱ)解:依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)n x y z =为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (Ⅲ)解:设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF 的长为87.18.本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分13分.(Ⅰ)解:设椭圆的半焦距为c ,依题意,24,c b a ==又222a b c =+,可得a =,2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)解:由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k -=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =±所以,直线PB的斜率为5或5-. 19.本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.满分14分.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )解:()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )解:()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n nn ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2124143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .20.本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.(Ⅰ)解:由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin xg'x x =-.当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<.11 所以,20022sin c s e o n n n x x x -πππ+-<-.。

相关文档
最新文档