2019届一轮复习人教版 分子动理论 内能 学案
高考物理一轮复习 专题十四 热学 考点1 分子动理论 内能教案-人教版高三全册物理教案
考点1 分子动理论内能考向1考查分子力、分子势能1.[2019某某高考,13A(2),4分]由于水的表面X力,荷叶上的小水滴总是球形的.在小水滴表面层中,水分子之间的相互作用总体上表现为(选填“引力”或“斥力”).分子势能E p和分子间距离r的关系图象如图所示,能总体上反映小水滴表面层中水分子E p的是图中(选填“A”“B”或“C”)的位置.必备知识:分子力、分子势能的基本概念.关键能力:对图象的分析能力.解题指导:根据分子力和分子势能与分子间距离的关系图线明确A、B、C处是引力还是斥力,进而分析小水滴表面层中的分子势能.考向2考查油膜法估算分子大小的实验2.[2019全国Ⅲ,33(1),5分]用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是.实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以.为得到油酸分子的直径,还需测量的物理量是.必备知识:用油膜法估算分子大小的实验原理.关键能力:累积法的应用能力,实验原理的灵活使用能力.考法1 对分子动理论的理解1[2017某某高考,15(1),4分,多选]关于布朗运动,下列说法正确的是B.液体温度越高,液体中悬浮微粒的布朗运动越剧烈C.在液体中的悬浮微粒只要大于某一尺寸,都会发生布朗运动布朗运动是液体中悬浮微粒的无规则运动,A项正确.液体温度越高,分子热运动越剧烈,液体中悬浮微粒的布朗运动越剧烈,B项正确.悬浮微粒越大,惯性越大,液体分子运动对它碰撞时不足以使大微粒运动,所以大微粒不做布朗运动,C 项错误.布朗运动是悬浮在液体中微粒的无规则运动,不是液体分子的无规则运动,D 项错误.布朗运动是由液体分子从各个方向对悬浮微粒撞击作用的不平衡引起的,E 项正确.ABE1.[2015新课标全国Ⅱ,33(1),5分,多选]关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快D.扩散现象在气体、液体和固体中都能发生考法2 应用阿伏加德罗常数求解微观量2[多选]若以μ表示水蒸气的摩尔质量,V 表示标准状态下水蒸气的摩尔体积,ρ表示标准状态下水蒸气的密度,N A 表示阿伏加德罗常数,m 0、V 0分别表示每个水蒸气分子的质量、体积,下列关系中正确的有A.N A =ρρρ0B.ρ=ρρA ρ0C.ρ<ρρA ρ0D.m 0=ρρA由于μ=ρV ,则N A =ρρ0=ρρρ0,得m 0=ρρA ,故A 、D 选项正确.由于水蒸气分子之间有空隙,所以N A V 0<V ,水蒸气的密度为ρ=ρρ<ρρA ρ0,故B 选项错误,C 选项正确.ACD2.[2019某某某某毕业生调研]如图是通过扫描隧道显微镜拍下的照片:48个铁原子在铜的表面排列成圆圈,构成了“量子围栏”.为了估算铁原子直径,查到以下数据:铁的密度ρ=7.8×103 kg/m 3,摩尔质量M =5.6×10-2kg/mol,阿伏加德罗常数N A =6.0×1023 mol -1.若将铁原子简化为球体模型,铁原子直径的表达式D =,铁原子直径约为m(结果保留1位有效数字).考法3 实验:油膜法估测分子的大小3完成以下“用单分子油膜法估测分子大小”的实验.(1)某同学在该实验中的操作步骤如下:①取一定量的无水酒精和油酸,制成一定浓度的油酸酒精溶液;②在量筒中滴入一滴该溶液,测出它的体积;③在浅盘内盛一定量的水,再滴入一滴油酸酒精溶液,待其散开稳定;④在浅盘上覆盖透明玻璃,描出油膜形状,用透明方格纸测量油膜的面积.改正其中的错误:.(2)若油酸酒精溶液体积分数为0.10%,一滴溶液的体积为4.8×10-3mL,其形成的油膜面积为40 cm 2,则估测出油酸分子的直径为m .(1)②由于一滴溶液的体积太小,直接测量时误差太大,应用微小量累积法可减小测量误差,故可在量筒内滴入N 滴该溶液,测出它的体积.③水面上不撒痱子粉或石膏粉时,滴入的油酸酒精溶液在酒精挥发后剩余的油膜不能形成一块完整的油膜,油膜间的缝隙会造成测量误差增大甚至实验失败,故应先在水面上撒痱子粉或石膏粉.(2)油膜的体积等于一滴油酸酒精溶液内纯油酸的体积,则d=ρρ=4.8×10-3×10-6×0.10%40×10-4 m =1.2×10-9 m . (1)见解析(2)1.2×10-9考法4分析分子力与分子势能的关系4现有甲、乙两个分子,将甲分子固定在坐标原点O 处,乙分子位于x 轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示.F>0时为斥力,F<0时为引力.A 、B 、C 、D 为x 轴上四个特定的位置.现把乙分子从A 处由静止释放,下列A 、B 、C 、D 四个图分别表示乙分子的速度、加速度、势能、动能与两分子间距离的关系,其中大致正确的是速度方向始终不变,A 项错误;加速度与力成正比,与力的方向相同,故B 项正确;乙分子从A 处由静止释放,分子力先是引力后是斥力,分子力先做正功后做负功,则分子势能先减小后增大,在C 点,分子势能最小,从C 图中可知,在A 点静止释放乙分子时,分子势能为负,动能为0,则乙分子的总能量为负,在以后的运动过程中乙分子总能量不可能为正,而动能不可能小于0,则乙分子势能不可能大于0,故C 、D 项错误.B3.如图所示, 用F 表示两分子间的作用力,用E p 表示两分子系统所具有的分子势能,在两个分子之间的距离由10r 0变为r 0的过程中()图甲图乙A.F 不断增大,E p 不断减小B.F 先增大后减小,E p 不断减小C.F不断增大,E p先增大后减小D.F、E p都是先增大后减小考点1分子动理论内能1.引力C解析:在小水滴表面层中,分子之间的距离较大,水分子之间的作用力表现为引力.由于平衡位置对应的分子势能最小,在小水滴表面层中,分子之间的距离较大,所以能够总体上反映小水滴表面层中水分子势能E p的是图中C位置.2.使油酸在浅盘的水面上容易形成一块单分子层油膜把油酸酒精溶液一滴一滴地滴入小量筒中,测出1 mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积单分子层油膜的面积解析:由于分子直径非常小,极少量油酸所形成的单分子层油膜面积仍会很大,因此实验前需要将油酸稀释,使油酸在浅盘的水面上容易形成一块单分子层油膜.可以用累积法测量多滴溶液的体积后计算得到一滴溶液的体积.油酸分子直径等于油酸的体积与单分子层油膜的面积之比,即d=ρρ,故除测得的油酸酒精溶液中所含纯油酸的体积外,还需要测量单分子层油膜的面积.1.ACD扩散现象是分子无规则热运动的反映,C正确,E错误;温度越高,分子热运动越剧烈,扩散越快,A正确;气体、液体、固体的分子都在不停地进行着热运动,扩散现象在气体、液体和固体中都能发生,D正确;在扩散现象中,分子本身结构没有发生变化,不属于化学变化,B错误2.√6ρπρρA33×10-10解析:由题意可知,一个铁原子的质量为m=ρρA ,一个铁原子的体积为V=ρρ,又V=43π(ρ2)3,整理得3,代入数据解得D=3×10-10 m.铁原子的直径为D=√6MρρNρ3.B由题图可知分子间距离由10r0减小到r0的过程中,分子力表现为引力,且引力先增大后减小,而分子势能一直减小,因此B选项正确,A、C、D选项错误.。
人教版高考物理一轮总复习教学案设计第60讲分子动理论内能
[研读考纲明方向]考纲要求复习指南主题内容要求 考情分析:本章在高考中属于选考内容,总分值为15分,一般分为两小题。
第一个小题常考查分子动理论、固体、液体、热力学定律等基本内容,总计5分,多以选择或填空的形式呈现;第二个小题重点考查气体实验定律、热力学第一定律等,总计10分,以计算题形式呈现,要求稍高。
命题趋势:继续做为高考中的选考部分,总分值15分,分两小题,第一个小题继续以选择或填空的形式呈现,考查分子动理论、固体、液体、热力学定律等基础知识,题目中可能会以分子动理论 与统计观点分子动理论的基本观点和实验依据Ⅰ 阿伏加德罗常数 Ⅰ 气体分子运动速率的统计分布 Ⅰ 温度、内能 Ⅰ 固体、液体 与气体固体的微观结构、晶体和非晶体 Ⅰ 液晶的微观结构 Ⅰ 液体的表面张力现象Ⅰ 气体实验定律 Ⅱ 理想气体 Ⅰ 饱和蒸气、未饱和蒸气、饱和蒸气压 Ⅰ 相对湿度Ⅰ 热力学定律热力学第一定律Ⅰ[重读教材定方法](对应人教版选修3-3的页码及相关问题)1.P4[问题与练习]T4,从题中数据能求出氧气分子的大小吗?提示:氧气分子间相距很大,所以由题给数据只能得出氧气分子占据的空间体积的平均值,不能求出氧气分子的体积。
2.P6阅读“布朗运动”部分,布朗运动说明固体小颗粒的分子做无规则运动,这种说法对吗?提示:不对,布朗运动只能说明固体小颗粒周围的液体分子做无规则运动。
3.P14图7.5-1,两分子由相距无穷远逐渐靠近直到不可再靠近,它们之间的分子势能怎样变化?提示:开始分子力做正功,然后分子力做负功,所以分子势能先减小再增大。
4.P25图8.3-2,A和B状态的压强哪个大?提示:p A V AT A =p B V BT B,而V A=V B,T A<T B,所以p A<p B,B状态压强大。
5.P28图8.4-3,由图中雨滴类比气体分子,分析气体分子产生的压强与什么有关?提示:雨滴动能越大,撞击力越大,压强越大;雨滴越密集,压强越大,所以气体分子碰撞引起的压强与气体分子的平均动能和分子的密集程度有关。
高考物理一轮复习 第13章 热学 第1讲 分子动理论 内能学案 新人教版-新人教版高三全册物理学案
第13章热学2.要求会正确使用温度计。
第1讲分子动理论内能主干梳理对点激活知识点分子动理论Ⅰ1.物体是由大量分子组成的(1)分子的大小0110-10 m;②分子质量:数量级是10-26 kg;③测量方法:油膜法。
(2)阿伏加德罗常数1 mol任何物质所含有的粒子数,N A026.02×1023mol-1。
阿伏加德罗常数是联系宏观物理量与微观物理量的桥梁。
2.分子做永不停息的无规则运动(1)扩散现象03不同物质能够彼此进入对方的现象。
04无规则运动产生的。
温度越高,扩散现象越明显。
(2)布朗运动05无规则运动。
②成因:液体分子无规则运动,对固体微粒撞击作用不平衡造成的。
06越小,温度07越高,布朗运动越明显。
08液体分子运动的无规则性。
(3)热运动09无规则运动。
②特点:温度越高,分子无规则运动越激烈。
3.分子间的相互作用力(1)引力和斥力同时存在,都随分子间距离的增大而10减小,随分子间距离的减小而11增大,12斥力比引力变化更快。
(2)分子力随分子间距离的变化图象如图所示。
(3)分子力的特点①r=r0时(r0的数量级为10-10 m),F引=F斥,分子力F=0;②r<r0时,F引<F斥,分子力F表现为13斥力;③r>r0时,F引>F斥,分子力F表现为14引力;④r>10r0时,F引、F斥都已十分微弱,可认为分子力F=150。
知识点温度、内能Ⅰ1.温度01热平衡的系统都具有相同的温度。
2.两种温标摄氏温标和热力学温标。
关系:T=02t+273.15 K。
3.分子的动能(1)03分子热运动所具有的动能;(2)平均动能是所有分子热运动的动能的平均值,04温度是分子热运动的平均动能的标志;(3)05总和。
4.分子的势能(1)定义:由于分子间存在着引力和斥力,06相互位置决定的能。
(2)分子势能的决定因素微观上——决定于07分子间距离; 宏观上——决定于物体的08体积。
近年届高考物理一轮复习第十三章热学第一节分子动理论内能课后达标新人教版(2021年整理)
2019届高考物理一轮复习第十三章热学第一节分子动理论内能课后达标新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第十三章热学第一节分子动理论内能课后达标新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第十三章热学第一节分子动理论内能课后达标新人教版的全部内容。
第一节分子动理论内能(建议用时:60分钟)一、选择题1.下列说法正确的是()A.1 g水中所含的分子数目和地球的总人口数差不多B.布朗运动就是物质分子的无规则热运动C.一定质量的理想气体压强增大,其分子的平均动能可能减小D.气体如果失去了容器的约束就会散开,这是气体分子的无规则的热运动造成的E.0 ℃的铁和0 ℃的冰,它们的分子平均动能相等解析:选CDE。
水的摩尔质量是18 g/mol,1 g水中含有的分子数为:n=错误!×6。
0×1023≈3.3×1022个,地球的总人数约为70亿,选项A错误;布朗运动是悬浮在液体(气体)中的固体颗粒受到液体(气体)分子撞击作用的不平衡造成的,不是物体分子的无规则热运动,选项B错误;温度是分子的平均动能的标志,气体的压强增大,温度可能减小,选项C正确;气体分子间距大于10r0,分子间无作用力,打开容器,气体散开是气体分子的无规则运动造成的,选项D正确;铁和冰的温度相同,分子平均动能必然相等,选项E正确.2.(2018·东北三校联考)下列说法正确的是()A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大D.一定质量的理想气体经等温压缩后,其压强一定增大解析:选ACD。
(全国版)2019版高考物理一轮复习第14章选考部分第50课时分子动理论、内能学案
第50课时 分子动理论、内能考点1 微观量的计算1.分子的两种模型(如图所示)(1)球体模型直径d =(常用于固体和液体)(2)立方体模型边长d =(固体、液体、气体都适用)对于气体分子,d =3V 0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离。
2.宏观量和微观量(1)宏观物理量:物体的质量m ,体积V ,密度ρ,摩尔质量M mol ,摩尔体积V mol 。
(2)微观物理量:分子质量m 0,分子体积V 0,分子直径d 。
(3)宏观量、微观量以及它们之间的关系:[例1] 在标准状况下,有体积为V 的水和体积为V 的可认为是理想气体的水蒸气。
已知水的密度为ρ,阿伏加德罗常数为N A ,水的摩尔质量为M A ,在标准状况下水蒸气的摩尔体积为 V A ,求:(1)标准状况下水分子与水蒸气分子的平均动能的大小关系; (2)它们中各有多少个水分子。
解析 (1)温度是分子平均动能的标志。
标准状况下,水和水蒸气的温度相同,因此它们分子的平均动能相等。
(2)对体积为V 的水,质量为m =ρV ① 分子个数为N =m M AN A ② 解①②得N =ρVM AN A对体积为V 的水蒸气,分子个数为N ′=V V AN A 。
答案 (1)相等'(2)ρV M A N A VV AN A阿伏加德罗常数是宏观量与微观量之间联系的桥梁,注意弄清楚各量之间的关系式。
(2017·大连模拟)(多选)某气体的摩尔质量为M mol ,摩尔体积为V mol ,密度为ρ,每个分子的质量和体积分别为m 和V 0,则阿伏加德罗常数N A 不可表示为( )A .N A =M mol mB .N A =ρV molm C .N A =V mol V 0 D .N A =M molρV 0答案 CD解析 阿伏加德罗常数N A =M mol m =ρV mol m =V molV,其中V 为每个气体分子所占有的体积,而V 0是气体分子的体积,故C 错误;D 中ρV 0不是气体分子的质量,因而也是错误的。
2019高考物理一轮复习选修3-3 学案01 分子动理论 内能 [导学案]
选修3-3 热学高考导航学案01 分子动理论内能知识体系知识点一、分子动理论、阿伏加德罗常数Ⅰ1.物体是由大量分子组成的:(1) 分子的大小:①分子直径数量级10-10 m;②分子质量数量级10-26 kg。
(2) 阿伏加德罗常数:1 mol2.一切物质的分子都在永不停息地做无规则热运动,温度越高,分子热运动越剧烈。
(1) 扩散现象:不同物质的分子能够彼此进入对方的现象。
由物质分子无规则热运动产生。
(2) 布朗运动:悬浮在液体(或气体)中的微粒的无规则运动(机械运动)。
反映了液体(或气体)分子的无规则运动。
由液体(或气体)分子无规则运动对微粒碰撞不平衡造成。
微粒越小,温度越高,布朗运动越显著。
3.分子间存在相互作用的引力和斥力。
(1) 引力和斥力同时存在,都随分子间距离的增大而减小,但斥力比引力减小更快。
(2) 分子间作用力及分子势能的特点:物体分子的平衡距离r0:物体处在稳定物态下的分子间距,数量级为10-10 m。
时,F引=F斥,分子力F=0;①当r=r分子势能E p最小,数值大小要看零势面。
②当r<r0时,F引<F斥,分子力F表现为斥力。
③当r>r0时,F引>F斥,分子力F表现为引力。
④当r>10r0时,F引、F斥迅速减为零,分子力F=0。
气体分子间距一般大于10r0,所以气体极易被压缩。
4.统计规律:物体是由数量极多的分子组成的,各个分子的运动都是不规则的、带有偶然性,但从总体来看,大量分子的运动却有一定的规律,这样的规律叫做统计规律。
知识点二、温度是分子平均动能的标志、内能 Ⅰ1.两种温标:摄氏温标和热力学温标。
关系:T =t +273.15 K 。
温度表示物体的冷热程度。
2.分子动能:分子热运动所具有的动能。
分子平均动能是所有分子热运动动能的平均值。
温度是分子热运动平均动能的唯一标志。
3.分子势能:由于分子间存在相互作用力,分子就具有由它们的相对位置决定的能。
决定因素:微观上——决定于分子间距离和分子排列情况;宏观上——决定于体积和状态。
版高中物理一轮复习 第1章 分子动理论 内能精品学案 新人教版选修3-3
热学 第一章 分子动理论 内能选修 3-3【高考目标定位】【考纲知识梳理】一、物质是由大量分子组成1、 分子体积很小,质量小。
分子直径数量级,分子质量数量级~101010102726---m kg2、 油膜法测分子直径:D VS S =:水面上形成单层分子油膜的面积3、 阿伏伽德罗常量:16021023mol N A 的任何物质含有×个分子=.4、 微观物理量的估算问题:m M N m N A 分摩==V N V V N M N m V d V d A A ======⎧⎨⎪⎩⎪分摩摩分分分ρρ固、液:球形气体:立方体1633πN n N n A =·:摩尔数()n m M V V mol mol ==二、 布朗运动与扩散现象1、 扩散现象:相互接触的物体互相进入对方的现象,温度越高,扩散越快。
2、 布朗运动:在显微镜下看到的悬浮在液体中的花粉颗粒的永不停息的无规则运动,颗粒越小,运动越明显;温度越高,运动越激烈,布朗运动是液体分子永不停息地做无规则热动动的反映,是微观分子热运动造成的宏观现象。
①布朗运动成因:液体分子无规则运动,对固体小颗粒碰撞不平衡。
②影响布朗运动剧烈程度因素:微粒小,温度高,布朗运动剧烈三、分子力与分子势能1、 分子间存在着相互作用的分子力。
分子力有如下几个特点:分子间同时存在引力和斥力;分子间的引力和斥力都随分子间的距离增大而减小,随分子距离的减小而增大,但斥力比引力变化更快。
实际表现出来的是引力和斥力的合力。
(1)0r r =时(约几个埃,1埃=1010-米),斥引f f =,分子力F=0。
(2)r <0r 时, 斥引<f f ,分子力F 为斥力。
(3)r >0r 时, 斥引>f f ,分子力F 为斥力。
④r >010r 时, 引f 、f 斥速度减为零,分子力F=0。
2、分子势能(1)分子间由于存在相互作用而具有的,大小由分子间相对位置决定的能叫做分子势能。
高考物理一轮复习学案:分子动理论内能固体液体
分子动理论及内能固体液体学案一、知识点讲解1.两种分子模型(1)球体模型:把分子看成球形,分子的直径:d=()。
适用于固体和液体。
(2)立方体模型:把分子看成小立方体,其边长:d=3V0。
适用于()()()。
2.宏观量与微观量的相互关系微观量分子体积V0、分子直径d、分子质量m0等。
宏观量物体的体积V、密度ρ、质量m、摩尔质量M mol、摩尔体积V mol、物质的量n等。
相互关系①一个分子的质量:m0=M molN A=()②一个分子的体积:V0=()=M molρN A(固体和液体)扩散现象布朗运动热运动活动主体分子()分子区别是分子的运动,发生在固体、()、气体任何两种物质之间是比分子大得多的颗粒的运动,只能在()、气体中发生是分子的运动,()通过光学显微镜直接观察到共同点(1)都是()运动(2)都随温度的升高而更加()联系扩散现象、布朗运动都反映了分子做()的热运动4.布朗运动的产生原因悬浮在液体(或气体)中的微粒受到来自其周围各个方向的液体(或气体)分子的撞击,由于撞击力()而产生的()5.分子力及分子势能的比较分子力F 分子势能E p图像随分子间距离的变化情况r<r0F随r增大而减小,表现为()r增大,F做(),E p减小r>r0r增大,F先增大后(),表现为引力R(),F做负功,E p增大r=r0F引=F斥,F=()E p最(),但不为零r>10r0引力和斥力都很微弱,F=0E p=0能量定义决定量值测量转化内能物体内所有分子的动能和势能的总和由物体内部分子微观运动状态决定恒不为零()在一定条件下可相互转化机械能()与物体宏观运动状态、参考系和零势能面的选取有关()可以测量分类比较晶体非晶体单晶体多晶体外形()不规则不规则熔点确定()不确定物理性质各向异性各向同性()原子排列()多晶体的每个晶粒间排列不规则不规则典型物质石英、云母、食盐、硫酸铜玻璃、蜂蜡、松香8.对液体表面张力的理解形成原因表面层中分子间的距离比液体内部分子间的距离(),分子间的相互作用力表现为( )表面特性 表面层分子间的引力使液面产生了表面( ),使液体表面好像一层绷紧的弹性薄膜表面张力 的方向 和液面相切,垂直于液面上的各条分界线表面张力 的效果 表面张力使液体表面具有收缩趋势,使液体表面积趋于( ),而在体积相同的条件下,球形的表面积最小9.液晶的主要性质(1)液晶具有各向异性,原因是在微观结构上从某个方向看,液晶分子排列比较( ),有特殊的取向。
2019届高三物理第一轮复习选修3-3 第一节《分子动理论 内能》学案教师版
选修3-3第一节 分子动理论 内能 学案(1#)班别 姓名 学号一、学习目标1.掌握分子动理论的基本内容.2.会利用宏观量与微观量的关系进行分析和计算.3.知道内能的概念.4.会分析分子力、分子势能随分子间距离的变化. 二、知识梳理 考点一 微观量的估算1.物体由大量分子组成—⎪⎪⎪→分子的大小—⎪⎪⎪ →直径:10-10m→质量:10-26 kg→阿伏加德罗常数—N A= 6.02×1023mol-12.两种分子模型物质有 固态 、 液态 和 气态 三种情况,不同物态下应将分子看成不同的模型.(1)固体、液体分子一个一个紧密排列,可将分子看成球形或立方体形,如图所示,分子间距等于小球的直径或立方体的棱长,所以d = 36V π(球体模型)或d = 3V (立方体模型).(2)气体分子不是一个一个紧密排列的,它们之间的距离很大,所以气体分子的大小不等于分子所占有的平均空间.如图所示,此时每个分子占有的空间视为棱长为d 的立方体,所以d = 3V .3.宏观量与微观量的相互关系(1)微观量:分子体积V 0、分子直径d 、分子质量m 0.(2)宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. (3)相互关系①一个分子的质量:m 0= M N A = ρV mN A .②一个分子的体积:V 0= V m N A = MρN A.(注:对气体V 0为分子所占空间体积)③物体所含的分子数n =V V m ·N A =m ρV m ·N A 或n =m M ·N A =ρV M ·N A. ④单位质量中所含的分子数:n ′=NAM.【典例1】很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,氙气灯灯光的亮度是普通灯灯光亮度的3倍,但耗电量仅是普通灯的一半,而且氙气灯使用寿命是普通灯的5倍,很多车主会选择含有氙气灯的汽车.若氙气充入灯头后的容积V=1.6 L,氙气密度ρ=6.0 kg/m 3.已知氙气摩尔质量M=0.131 kg/mol,阿伏加德罗常数N A =6×1023 mol -1.试估算:(结果保留一位有效数字) (1)灯头中氙气分子的总个数N; (2)灯头中氙气分子间的平均距离.【即时训练1】 (多选)已知铜的摩尔质量为M kg/mol,铜的密度为ρ kg/m 3,阿伏加德罗常数为N A mol -1.下列判断正确的是( ) A.1 kg 铜所含的原子数为AN MB.1 m 3铜所含的原子数为AMN ρC.1个铜原子的质量为AMN kg D.1个铜原子的体积为AMN ρ m 3 E.1个铜原子的体积为M ρ【反思总结】 估算微观量的两个要点(1)固体和液体分子都可看成是紧密堆积在一起的.分子的体积V 0=molAV N ,仅适用于固体和液体,对气体不适用.(2)宏观量与微观量的转换桥梁是阿伏加德罗常数.【即时训练2】 (2015·海南卷,15)已知地球大气层的厚度h 远小于地球半径R,空气平均摩尔质量为M,阿伏加德罗常数为N A ,地面大气压强为p 0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为 ,空气分子之间的平均距离为 .考点二布朗运动与分子热运动1.布朗运动(1)永不停息、运动.(2)微粒,运动越明显.(3)温度,运动越剧烈.(4)观察到的是的无规则运动,其反映了的无规则运动.2.热运动:物质内部的分子运动,这种运动跟温度有关,温度越高,分子无规则运动.3.布朗运动与分子热运动的比较【典例2】(多选)根据分子动理论,下列说法正确的是()A.水和酒精混合后的体积小于原来体积之和,说明分子间存在引力B.在一定条件下,可以利用分子扩散向半导体材料掺入其他元素C.扩散现象也说明分子在做永不停息的热运动D.布朗运动是固体小颗粒分子的运动E.墨水中小炭粒在不停地做无规则运动,反映液体分子在做无规则运动【即时训练3】(2015·课标卷Ⅱ,33(1))关于扩散现象,下列说法正确的是________.A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的【解析】根据分子动理论,温度越高,扩散进行得越快,故A正确;扩散现象是由物质分子无规则运动产生的,不是化学反应,故C正确、B错误;扩散现象在气体、液体和固体中都能发生,故D正确;液体中的扩散现象不是由于液体的对流形成的,是液体分子无规则运动产生的,故E错误.【答案】ACD【即时训练4】运用分子动理论的相关知识,判断下列说法正确的是()A.气体分子单位时间内与单位面积器壁碰撞的次数仅与单位体积内的分子数有关B.某气体的摩尔体积为V,每个分子的体积为V0,则阿伏加德罗常数可表示为N A=VV0 C.阳光从缝隙射入教室,从阳光中看到的尘埃运动不是布朗运动D.生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成E.降低气体的温度,气体分子热运动的剧烈程度就可减弱【解析】气体分子单位时间内与单位面积器壁碰撞的次数,与单位体积内的分子数有关,还与分子平均速率有关,选项A错误;由于分子的无规则运动,气体的体积可以占据很大的空间,故不能用摩尔体积除以分子体积得到阿伏加德罗常数,选项B错误;布朗运动的微粒非常小,肉眼是看不到的,阳光从缝隙射入教室,从阳光中看到的尘埃运动是机械运动,不是布朗运动,选项C正确;扩散可以在固体中进行,生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成,选项D正确;根据温度是分子平均动能的标志可知,降低气体的温度,气体分子热运动的剧烈程度就可减弱,选项E正确.【答案】CDE考点三分子力、分子势能与分子间距离的关系名称项目分子间的相互作用力F 分子势能E p与分子间距离的关系图象随分子间距的变化情况r<r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引<F斥,F表现为斥力r增大,分子力做正功,分子势能减少r减小,分子力做负功,分子势能增加r>r0F引和F斥都随距离的增大而减小,随距离的减小而增大,F引>F斥,F表现为引力r增大,分子力做负功,分子势能增加r减小,分子力做正功,分子势能减少r=r0F引=F斥,F=0分子势能最小,但不一定为零r>10r0(10-9 m)F引和F斥都已十分微弱,可以认为分子间没有相互作用力分子势能为零【典例3】(多选)物体体积变化时,分子间距离会随之变化,分子势能也会发生变化.如图为分子势能E p与分子间距离r的关系曲线,以下判断正确的是()A.当r=r1时,分子势能最小B.当r=r2时,分子引力与斥力大小相等C.当r>r2时,分子间作用力的合力表现为引力D.在r由r2变到r1的过程中,分子间作用力的合力做正功E.在r 由r 2逐渐增大的过程中,分子间作用力的合力做负功【即时训练5】 (2018·安徽淮北月考)(多选)分子间同时存在相互作用的引力和斥力,分子力则是它们的合力(即表现出来的力).关于分子间的引力、斥力说法正确的是( ) A.分子间的引力总是随分子间距的增大而减小 B.分子间的斥力总是随分子间距的增大而减小 C.分子力(合力)总是随分子间距的增大而减小D.分子间同时存在相互作用的引力和斥力,所以分子力不可能为零E.分子力表现为引力时,其大小有限;分子力表现为斥力时,可以很大【即时训练6】 (多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是( ) A.分子力先增大,后一直减小 B.分子力先做正功,后做负功 C.分子动能先增大,后减小 D.分子势能先增大,后减小 E.分子势能和动能之和不变考点四 物体的内能改变内能的两种方式(1)做功:在没有热交换的情况下,外界对物体做功,物体的内能增加;物体对外界做功,物体的内能减少,即有ΔU=W.(2)热传递:在没有能量转化或转移的情况下,物体吸收热量,内能增加,物体放出热量,内能减少,即有ΔU=Q.【典例4】(2016·课标卷Ⅲ,33(1))关于气体的内能,下列说法正确的是 ________.A .质量和温度都相同的气体,内能一定相同B .气体温度不变,整体运动速度越大,其内能越大C .气体被压缩时,内能可能不变D .一定量的某种理想气体的内能只与温度有关E .一定量的某种理想气体在等压膨胀过程中,内能一定增加【解析】 质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子内能不一定相同,A 错误;宏观运动和微观运动没有关系,所以宏观运动动能大,内能不一定大,B 错误;根据pVT=C 可知,如果等温压缩,则内能不变,等压膨胀,温度增大,内能一定增大,C、E正确;理想气体的分子势能为零,所以理想气体的内能等于分子动能,而分子动能和温度有关,D正确.【答案】CDE【即时训练7】(2018·洛阳四校联考)(多选)对于分子动理论和物体内能的理解,下列说法正确的是()A.温度高的物体内能不一定大,但分子平均动能一定大B.外界对物体做功,物体内能一定增加C.温度相同的氢气和氧气的分子平均速率一定不同D.0 ℃的冰熔化成0 ℃的水,内能不变E.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大【即时训练8】(多选)关于物体的内能,以下说法正确的是()A.不同物体,温度相等,内能不一定相等B.所有分子的势能增大,物体内能也增大C.温度升高,分子平均动能增大,但内能不一定增大D.只要两物体的质量、温度、体积相等,两物体的内能一定相等E.做功和热传递虽然改变内能的方式不同,但在改变内能上是等效的考点五用油膜法估测分子的大小【典例6】在“油膜法估测油酸分子的大小”实验中,有下列实验步骤:①往边长约为40 cm的浅盘里倒入约2 cm深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上.②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定.③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小.④用注射器将事先配好的油酸酒精溶液一滴一滴地滴入量筒中,记下量筒内每增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积.⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上.完成下列填空:(1)上述步骤中,正确的顺序是.(填写步骤前面的数字)(2)将1 cm3的油酸溶于酒精,制成300 cm3的油酸酒精溶液;测得1 cm3的油酸酒精溶液有50滴.现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13 m2.由此估算出油酸分子的直径为m.(结果保留1位有效数字)【即时训练9】(2017·江苏扬州模拟)在“用油膜法估测分子大小”的实验中,已知实验室中使用的酒精油酸溶液的浓度为A,N滴溶液的总体积为V,在浅盘中的水面上均匀撒上痱子粉,将一滴溶液滴在水面上,待油膜稳定后,在带有边长为a的正方形小格的玻璃板上描出油膜的轮廓,如图所示,测得油膜占有的正方形小格数为X.(1)用以上字母表示一滴酒精油酸溶液中的纯油酸的体积为.(2)油酸分子直径约为.。
高三物理一轮复习优质学案1:11.1分子动理论内能
第1课时分子动理论内能『考纲解读』1.掌握分子动理论的基本内容.2.知道内能的概念.3.会分析分子力、分子势能随分子间距离的变化.『知识要点』一.微观量的估算1.微观量:分子体积V0、分子直径d、分子质量m0.2.宏观量:物体的体积V、摩尔体积V mol、物体的质量m、摩尔质量M、物体的密度ρ. 3.关系(1)分子的质量:m0==.(2)分子的体积:V0==.(3)物体所含的分子数:N=·N A=或N==.4.两种模型(1)球体模型直径为d=36Vπ.(适用于:固体、液体)(2)立方体模型边长为d=3V0.(适用于:气体)特别提醒 1.固体和液体分子都可看成是紧密堆积在一起的.分子的体积V0=V molN A,仅适用于固体和液体,对气体不适用.2.对于气体分子,d=3V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.二.布朗运动与分子热运动布朗运动和热运动的比较1.分子间的相互作用力分子力是引力与斥力的合力.分子间的引力和斥力都随分子间距离的增大而,随分子间距离的减小而,但总是斥力变化得,如图所示.(1)当r=r0时,F引=F斥,F=;(2)当r<r0时,F引和F斥都随距离的减小而增大,但F引<F斥,F表现为;(3)当r>r0时,F引和F斥都随距离的增大而减小,但F引>F斥,F表现为;(4)当r>10r0(10-9m)时,F引和F斥都已经十分微弱,可以认为分子间没有相互作用力(F=0).2.分子势能分子势能是由分子间相对位置而决定的势能,它随着物体体积的变化而变化,与分子间距离的关系为:(1)当r>r0时,分子力表现为引力,随着r的增大,分子引力做,分子势能;(2)r<r0时,分子力表现为斥力,随着r的减小,分子斥力做,分子势能;(3)当r=r0时,分子势能,但不一定为零,可为负值,因为可选两分子相距无穷远时分子势能为零;(4)分子势能曲线如图所示.『典型例题』一、单项选择题1.(2015·广东省高三第一次六校联考)关于热现象,下列说法正确的是()A.分子在做永不停息的无规则热运动B.随着温度升高,每个气体分子的速率都增大C.当气体分子热运动变剧烈时,气体的压强一定变大D.布朗运动就是液体分子的无规则运动2.(2013·上海嘉定期未)如图1所示,用细线将一块玻璃板水平地悬挂在弹簧秤下端,并使玻璃板贴在水面上,然后缓慢提起弹簧秤,在玻璃板脱离水面的一瞬间,弹簧秤读数会突然增大,主要原因是()图1A.水分子做无规则热运动B.玻璃板受到大气压力作用C.水与玻璃间存在万有引力作用D.水与玻璃间存在分子引力作用3.(2014·丹东联考)以下说法正确的是()A.布朗运动反映了悬浮小颗粒内部分子在不停地做无规则的热运动B.从平衡位置开始增大分子间距离,分子间的引力将增大、斥力将减小C.对大量事实的分析表明:热力学零度不可能达到D.热量只能由高温物体传递给低温物体4.某种气体在不同温度下的气体分子速率分布曲线如图2所示,图中f(v)表示v处单位速率区间内的分子数百分率,所对应的温度分别为TⅠ、TⅡ、TⅢ,则()图2A.TⅠ>TⅡ>TⅢB.TⅢ>TⅡ>TⅠC.TⅡ>TⅠ,TⅡ>TⅢD.TⅠ=TⅡ=TⅢ5.(2014·西安联考)关于内能的概念,下列说法中正确的是()A.若把氢气和氧气看作理想气体,则具有相同体积、相同质量和相同温度的氢气和氧气具有相等的内能B.一定质量0 ℃水的分子势能比0 ℃冰的分子势能大C.物体吸收热量后,内能一定增加D.一定质量的100 ℃的水吸收热量后变成100 ℃的水蒸气,则吸收的热量等于增加的内能『答案』1.选A2.选D 在玻璃板脱离水面的一瞬间,弹簧秤读数会突然增大的主要原因是:水与玻璃间存在分子引力作用,选项D正确。
高考物理一轮复习分子动理论内能教学案新人教版
第1节 分子动理论 内能知识点一| 分子动理论的基本内容1.物体是由大量分子组成的(1)分子的大小①分子直径:数量级是10-10 m ; ②分子质量:数量级是10-26kg ; ③测量方法:油膜法。
(2)阿伏加德罗常数:1 mol 任何物质所含有的粒子数,N A =6.02×1023 mol -1。
2.分子热运动(1)一切物质的分子都在永不停息地做无规则运动。
(2)扩散现象:相互接触的不同物质彼此进入对方的现象。
温度越高,扩散越快,可在固体、液体、气体中进行。
(3)布朗运动:悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著。
3.分子力 分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快。
[判断正误](1)布朗运动是液体分子的无规则运动。
(×)(2)温度越高,布朗运动越剧烈。
(√) (3)分子间的引力和斥力都随分子间距的增大而增大。
(×)考法1 微观量的估算1.铜摩尔质量为M ,密度为ρ,阿伏加德罗常数为N A 。
1个铜原子所占的体积是( )A .M ρN AB .ρM N A C.ρN A M D.M ρA [铜的摩尔体积V mol =M ρ,则一个铜原子所占的体积为V 0=V mol N A =M ρN A,A 正确。
] 2.(多选)(2016·上海高考)某气体的摩尔质量为M ,分子质量为m 。
若1摩尔该气体的体积为V m ,密度为ρ,则该气体单位体积分子数为(阿伏加德罗常数为N A )( )A .N AV m B .M mV m C.ρN A M D.ρN A mABC [1摩尔该气体的体积为V m ,则单位体积分子数为n =N A V m ;气体的摩尔质量为M ,分子质量为m ,则1 mol 气体的分子数为N A =M m ,可得n =M mV m;气体的密度为ρ,则1摩尔该气体的体积V m =M ρ,则有n =ρN A M,故D 错误,A 、B 、C 正确。
高考物理大一轮复习第13章选考部分第1讲分子动理论和内能学案新人教版(2021年整理)
2019年高考物理大一轮复习第13章选考部分第1讲分子动理论和内能学案新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理大一轮复习第13章选考部分第1讲分子动理论和内能学案新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理大一轮复习第13章选考部分第1讲分子动理论和内能学案新人教版的全部内容。
第一讲分子动理论和内能考点考试内容要求命题规律分子动理论与统计观点分子动理论的基本观点和实验依据Ⅰ从近几年高考题来看,对于热学内容的考查,形式比较固定,一般第(1)问为选择题,5个选项,并且是对热学单一知识点从不同角度设计问题;第(2)问计算题始终围绕气体性质进行命题,且为液体封闭或活塞封闭的两类模型的交替命题.阿伏加德罗常数Ⅰ气体分子运动速率的统计分布Ⅰ温度是分子平均动能的标志、内能Ⅰ固体、液体与气体固体的微观结构、晶体和非晶体Ⅰ液晶的微观结构Ⅰ液体的表面张力现象Ⅰ气体实验定律Ⅱ理想气体Ⅰ饱和蒸汽、未饱和蒸汽、饱和蒸气压Ⅰ相对湿度Ⅰ热力学定律与能量守恒热力学第一定律Ⅰ能量守恒定律Ⅰ热力学第二定律Ⅰ单位制要知道中学物理中涉及的国际单位制的基本单位和其他物理量的单位.包括摄氏度(℃)、标准大气压Ⅰ一分子动理论1.2.布朗运动是分子的运动吗?布朗运动产生的原因是什么?提示:不是.布朗运动是悬浮在液体或固体中的小颗粒的运动,产生的原因是分子撞击的不平衡造成的.3.分子间的作用力的特点是什么?有人说当分子间的距离增大时,引力增大、斥力减小,这种说法是否正确?提示:引力和斥力同时存在.当分子间的距离增大时,引力和斥力都减小,但斥力减小的快。
高考物理一轮复习 第十三章 热学 第1节 分子动理论 内能学案 新人教版
学习资料第十三章热学素养导读备考定向第1节分子动理论内能必备知识预案自诊知识梳理一、分子动理论的基本观点和实验依据、阿伏加德罗常数①①注:阿伏加德罗常数N A=6。
02×1023mol-1是联系微观量和宏观量的桥梁。
二、分子运动速率分布规律1.气体分子运动的特点:气体分子间距较,分子力可以忽略,因此可以认为气体分子间除碰撞外不受其他力的作用,故气体能充满。
2。
气体的压强(1)产生原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的作用力。
(2)决定因素:决定于分子的和。
三、内能1。
分子的动能(1)分子动能是所具有的动能.(2)分子热运动的平均动能是所有分子热运动的动能的平均值,是分子热运动的平均动能的标志.(3)分子热运动的总动能是物体内所有分子热运动动能的。
2.分子的势能(1)由于分子间存在着引力和斥力,所以分子具有由它们的决定的能,即分子势能。
(2)分子势能的影响因素微观上:分子势能的大小是由分子间的相对位置决定的;宏观上:分子势能与物体的有关。
3.物体的内能(1)物体的内能等于物体中所有分子的热运动的与分子的总和。
(2)对于给定的物体,其内能大小与和有关。
(3)物体的内能与物体的位置高低、运动速度大小.考点自诊1.判断下列说法的正误。
(1)布朗运动是液体分子的无规则运动。
()(2)温度越高,布朗运动越剧烈.()(3)分子间的引力和斥力都随分子间距的增大而增大。
()(4)温度升高,所有分子运动的速率都变大。
()(5)当分子力表现为引力时,分子势能随分子间距离的增大而增大。
()2。
两个分子由距离很远(r〉10—9m)逐渐靠拢到很难再靠近的过程中,分子间作用力的大小将()A.先减小后增大B。
先增大后减小C.先增大后减小再增大D.先减小后增大再减小3.关于物体的内能和分子势能,下列说法中正确的是()A.物体的速度增大,则分子的动能增加,内能也一定增加B.物体温度不变,内能可能变大C.物体的内能与温度有关,与物体的体积无关D。
2019年高考物理一轮复习 第十三章 热学 第1讲 分子动理论 内能学案
第1讲分子动理论内能 [高考命题解读]一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子的直径(视为球模型):数量级为10-10m;②分子的质量:数量级为10-26kg.(2)阿伏加德罗常数①1mol的任何物质都含有相同的粒子数.通常可取N A=6.02×1023mol-1;②阿伏加德罗常数是联系宏观物理量和微观物理量的桥梁.2.分子永不停息地做无规则运动(1)扩散现象①定义:不同物质能够彼此进入对方的现象;②实质:扩散现象并不是外界作用引起的,也不是化学反应的结果,而是由分子的无规则运动产生的物质迁移现象,温度越高,扩散现象越明显.(2)布朗运动①定义:悬浮在液体中的小颗粒的永不停息地无规则运动;②实质:布朗运动反映了液体分子的无规则运动;③特点:颗粒越小,运动越明显;温度越高,运动越剧烈.(3)热运动①分子永不停息地做无规则运动叫做热运动;②特点:分子的无规则运动和温度有关,温度越高,分子运动越激烈.3.分子间同时存在引力和斥力(1)物质分子间存在空隙,分子间的引力和斥力是同时存在的,实际表现出的分子力是引力和斥力的合力;(2)分子力随分子间距离变化的关系:分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快;图1(3)分子力与分子间距离的关系图线由分子间的作用力与分子间距离关系图线(如图1所示)可知:①当r=r0时,F引=F斥,分子力为零;②当r>r0时,F引>F斥,分子力表现为引力;③当r<r0时,F引<F斥,分子力表现为斥力;④当分子间距离大于10r0(约为10-9m)时,分子力很弱,可以忽略不计.[深度思考] 当两个分子之间的距离大于r0时,分子间只有引力,当小于r0时,分子间只有斥力,这种说法是否正确?答案不正确.分子间引力和斥力是同时存在的.二、温度和内能1.温度一切达到热平衡的系统都具有相同的温度.2.两种温标摄氏温标和热力学温标.关系:T=t+273.15K.3.分子的动能(1)分子动能是分子热运动所具有的动能;(2)分子热运动的平均动能是所有分子热运动动能的平均值,温度是分子热运动的平均动能的标志;(3)分子热运动的总动能是物体内所有分子热运动动能的总和.4.分子的势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能.(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态.5.物体的内能(1)概念理解:物体中所有分子热运动的动能和分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)影响因素:物体的内能与物体的位置高低、运动速度大小无关;(4)改变物体内能的两种方式:做功和热传递.[深度思考] 当两个分子从无穷远逐渐靠近时,分子力大小如何变化,分子力做功情况如何?分子势能如何变化?答案分子力先增大后减小再增大;分子力先做正功,后做负功;分子势能先减小后增大.1.(人教版选修3-3P7第2题改编)以下关于布朗运动的说法正确的是( )A.布朗运动就是分子的无规则运动B.布朗运动证明,组成固体小颗粒的分子在做无规则运动C.一锅水中撒一点胡椒粉,加热时发现水中的胡椒粉在翻滚.这说明温度越高布朗运动越激烈D.在显微镜下可以观察到煤油中小粒灰尘的布朗运动,这说明煤油分子在做无规则运动答案 D2.关于温度的概念,下列说法中正确的是( )A.温度是分子平均动能的标志,物体温度高,则物体的分子平均动能大B.物体温度高,则物体每一个分子的动能都大C.某物体内能增大时,其温度一定升高D.甲物体温度比乙物体温度高,则甲物体的分子平均速率比乙物体的大答案 A3.对内能的理解,下列说法正确的是( )A.系统的内能是由系统的状态决定的B.做功可以改变系统的内能,但是单纯地对系统传热不能改变系统的内能C.不计分子之间的分子势能,质量和温度相同的氢气和氧气具有相同的内能D.1g100℃水的内能小于1g100℃水蒸气的内能答案AD解析系统的内能是一个只依赖于系统自身状态的物理量,所以是由系统的状态决定的,A 正确;做功和热传递都可以改变系统的内能,B错误;质量和温度相同的氢气和氧气的平均动能相同,但它们的物质的量不同,内能不同,C错误;在1g100℃的水变成100℃水蒸气的过程中,分子间距离变大,要克服分子间的引力做功,分子势能增大,所以1g100℃水的内能小于1g100℃水蒸气的内能,D正确.4.根据分子动理论,下列说法正确的是( )A.一个气体分子的体积等于气体的摩尔体积与阿伏加德罗常数之比B.显微镜下观察到的墨水中的小炭粒所做的不停地无规则运动,就是分子的运动C.分子间的相互作用的引力和斥力一定随分子间的距离增大而增大D.分子势能随着分子间距离的增大,可能先减小后增大答案 D解析由于气体分子的间距大于分子直径,故气体分子的体积小于气体的摩尔体积与阿伏加德罗常数之比,故A错误;显微镜下观察到的墨水中的小炭粒不停地做无规则运动,是布朗运动,它是分子无规则运动的体现,但不是分子的运动,故B错误;分子间的相互作用力随分子间距离增大而减小,但斥力减小得更快,故C错误;若分子间距是从小于平衡距离开始变化,则分子力先做正功再做负功,故分子势能先减小后增大,故D正确.5.(人教版选修3-3P9第4题)如图2所示,把一块洗净的玻璃板吊在橡皮筋的下端,使玻璃板水平地接触水面.如果你想使玻璃板离开水面,向上拉橡皮筋的力必须大于玻璃板的重量.请解释为什么.图2答案因为玻璃板和水的分子间存在分子引力.命题点一分子动理论和内能的基本概念例1下列说法正确的是( )A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先减小后增大;分子势能不断增大D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大E.物体内热运动速率大的分子数占总分子数比例与温度有关答案ADE解析悬浮微粒越大,在某一瞬间撞击它的液体分子数越多,受力越趋于平衡,布朗运动越不明显,B错误.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先增大后减小再增大,分子势能先减小后增大,C错.1.下列说法正确的是( )A.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动B.扩散现象表明,分子在永不停息地运动C.当分子间距离增大时,分子间引力增大,分子间斥力减小D.当分子间距等于r0时,分子间的引力和斥力都为零答案 B2.关于分子力,下列说法中正确的是( )A.碎玻璃不能拼合在一起,说明分子间斥力起作用B.将两块铅压紧以后能连在一块,说明分子间存在引力C.水和酒精混合后的体积小于原来体积之和,说明分子间存在引力D.固体很难被拉伸,也很难被压缩,说明分子间既有引力又有斥力E.分子间的引力和斥力同时存在,都随分子间距离的增大而减小答案BDE命题点二微观量估算的两种建模方法1.求解分子直径时的两种模型(对于固体和液体)(1)把分子看成球形,d=36Vπ.(2)把分子看成小立方体,d=3V0.提醒:对于气体,利用d =3V 0算出的不是分子直径,而是气体分子间的平均距离. 2.宏观量与微观量的相互关系(1)微观量:分子体积V 0、分子直径d 、分子质量m 0.(2)宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ. (3)相互关系①一个分子的质量:m 0=M N A =ρV molN A.②一个分子的体积:V 0=V mol N A =M ρN A(注:对气体,V 0为分子所占空间体积); ③物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρV M·N A . 例2 已知常温常压下CO 2气体的密度为ρ,CO 2的摩尔质量为M ,阿伏加德罗常数为N A ,则在该状态下容器内体积为V 的CO 2气体含有的分子数为________.在3km 的深海中,CO 2浓缩成近似固体的硬胶体,此时若将CO 2分子看做直径为d 的球,则该容器内CO 2气体全部变成硬胶体后体积约为________.①在该状态下容器体积为V ;②CO 2浓缩成近似固体的硬胶体.答案 ρVN A M πd 3ρVN A6M解析 体积为V 的CO 2气体质量m =ρV ,则分子数N =m MN A =ρVN AM.CO 2浓缩成近似固体的硬胶体,分子个数不变,则该容器内CO 2气体全部变成硬胶体后体积约为:V ′=N ·16πd 3=πd 3ρVN A 6M3.(2015·海南单科·15(1))已知地球大气层的厚度h 远小于地球半径R ,空气平均摩尔质量为M ,阿伏加德罗常数为N A ,地面大气压强为p 0,重力加速度大小为g .由此可估算得,地球大气层空气分子总数为________,空气分子之间的平均距离为________.答案4πp 0N A R2Mg3Mghp 0N A解析 可认为地球大气层对地球表面的压力是由其重力引起的,即mg =p 0S =p 0×4πR 2,故大气层的空气总质量m =4πp 0R 2g ,空气分子总数N =m M N A =4πp 0N A R2Mg.由于h ≪R ,则大气层的总体积V =4πR 2h ,每个分子所占空间设为一个棱长为a 的正方体,则有Na 3=V ,可得分子间的平均距离a =3Mghp 0N A.4.空调在制冷过程中,室内水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥.某空调工作一段时间后,排出液化水的体积V =1.0×103cm 3.已知水的密度ρ=1.0×103kg/m 3、摩尔质量M =1.8×10-2kg/mol ,阿伏加德罗常数N A =6.0×1023mol -1.试求:(结果均保留一位有效数字) (1)该液化水中含有水分子的总数N ; (2)一个水分子的直径d . 答案 (1)3×1025个 (2)4×10-10m解析 (1)水的摩尔体积为V 0=Mρ=1.8×10-21.0×103 m 3/mol =1.8×10-5m 3/mol ,水分子数:N =VN A V 0=1.0×103×10-6×6.0×10231.8×10-5个≈3×1025个. (2)建立水分子的球体模型有V 0N A =16πd 3,可得水分子直径:d =36V 0πN A =36×1.8×10-53.14×6.0×1023m ≈4×10-10 m.命题点三 布朗运动与分子热运动 1.布朗运动(1)研究对象:悬浮在液体或气体中的小颗粒; (2)运动特点:无规则、永不停息; (3)相关因素:颗粒大小,温度;(4)物理意义:说明液体或气体分子做永不停息地无规则的热运动. 2.扩散现象:相互接触的物体分子彼此进入对方的现象. 产生原因:分子永不停息地做无规则运动. 3.扩散现象、布朗运动与热运动的比较例3关于布朗运动,下列说法中正确的是( )A.布朗运动就是热运动B.布朗运动的激烈程度与悬浮颗粒的大小有关,说明分子的运动与悬浮颗粒的大小有关C.布朗运动虽不是分子运动,但它能反映分子的运动特征D.布朗运动的激烈程度与温度有关,这说明分子运动的激烈程度与温度有关答案CD解析布朗运动间接反映了液体分子永不停息地做无规则运动,它不是微粒的热运动,也不是液体分子的热运动,因此A错误,C正确;悬浮颗粒越小,布朗运动越显著,这是由于悬浮颗粒周围的液体分子对悬浮颗粒撞击的不均衡性引起的,不能说明分子的运动与悬浮颗粒的大小有关,B错误;温度越高,布朗运动越激烈,说明温度越高,分子运动越激烈,D正确.5.(2015·课标Ⅱ·33(1))关于扩散现象,下列说法正确的是( )A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的答案ACD解析根据分子动理论,温度越高,扩散进行得越快,故A正确;扩散现象是由物质分子无规则运动产生的,不是化学反应,故B错误,C正确;扩散现象在气体、液体和固体中都能发生,故D正确;液体中的扩散现象不是由于液体的对流形成的,是液体分子无规则运动产生的,故E错误.6.下列哪些现象属于热运动( )A.把一块平滑的铅板叠放在平滑的铝板上,经相当长的一段时间再把它们分开,会看到与它们相接触的面都变得灰蒙蒙的B.把胡椒粉末放入菜汤中,最后胡椒粉末会沉在汤碗底,但我们喝汤时尝到了胡椒的味道C.含有泥沙的水经一定时间会变澄清D.用砂轮打磨而使零件温度升高答案ABD解析热运动在微观上是指分子的运动,如扩散现象,在宏观上表现为温度的变化,如“摩擦生热”、物体的热传递等,而水变澄清的过程是泥沙在重力作用下的沉淀,不是热运动,C 错误.命题点四分子动能、分子势能和内能1.分子力、分子势能与分子间距离的关系:分子力F、分子势能E p与分子间距离r的关系图线如图3所示(取无穷远处分子势能E p=0).图3(1)当r>r0时,分子力表现为引力,当r增大时,分子力做负功,分子势能增加.(2)当r<r0时,分子力表现为斥力,当r减小时,分子力做负功,分子势能增加.(3)当r=r0时,分子势能最小.2.内能和机械能的区别例4关于分子间相互作用力与分子间势能,下列说法正确的是( )A.在10r0距离范围内,分子间总存在着相互作用的引力B.分子间作用力为零时,分子间的势能一定是零C.当分子间作用力表现为引力时,分子间的距离越大,分子势能越小D.分子间距离越大,分子间的斥力越小E.两个分子间的距离变大的过程中,分子间引力变化总是比斥力变化慢答案ADE解析在10r0距离范围内,分子间总存在着相互作用的引力和斥力,选项A正确;分子间作用力为零时,分子间的势能最小,但不是零,选项B错误;当分子间作用力表现为引力时,随分子间的距离增大,克服分子力做功,故分子势能增大,选项C错误;分子间距离越大,分子间的引力和斥力都是越小的,选项D正确;两个分子间的距离变大的过程中,分子间引力变化总是比斥力变化慢,选项E正确;故选A、D、E.例5以下说法正确的是( )A.温度低的物体内能一定小B.温度低的物体分子运动的平均速率小C.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大D.外界对物体做功时,物体的内能不一定增加答案CD解析因为内能的大小与物体的温度、质量和体积都有关,温度低的物体内能不一定小,故A错误;温度是分子平均动能的标志,温度低的物体分子运动的平均动能一定小,但温度低的物体内分子运动的平均速率不一定比温度高的物体内分子运动的平均速率小,这是因为温度低的物体分子可能质量较小,其平均速率反而更大,故B错误;温度越高,分子热运动的平均动能越大,分子的平均速率增大,这是统计规律,具体到少数个别分子,其速率的变化不确定,因此仍可能有分子的运动速率是非常小的,故C正确;外界对物体做功时,若同时散热,物体的内能不一定增加,故D正确.判断分子动能变化的两种方法1.利用分子力做功判断仅受分子力作用时,分子力做正功,分子势能减小,分子动能增加;分子力做负功,分子势能增加,分子动能减小.图42.利用分子势能E p与分子间距离r的关系图线判断如图4所示,仅受分子力作用时,分子动能和势能之和不变,根据E p变化可判知E k变化.而E p变化根据图线判断.但要注意此图线和分子力与分子间距离的关系图线形状虽然相似,但意义不同,不要混淆.7.关于分子间的作用力,下列说法正确的是( )A.分子之间的斥力和引力同时存在B.分子之间的斥力和引力大小都随分子间距离的增大而减小C.分子之间的距离减小时,分子力一定做正功D.分子之间的距离增大时,分子势能一定减小E.分子之间的距离增大时,可能存在分子势能相等的两个点答案ABE8.两分子间的斥力和引力的合力F与分子间距离r的关系如图5中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是( )图5A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变答案ACE解析由E p-r图可知:在r>r0阶段,当r减小时F做正功,分子势能减小,分子动能增加,故A正确;在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故B错误;在r=r0时,分子势能最小,但不为零,动能最大,故C正确,D错误;在整个相互接近的过程中,分子动能和势能之和保持不变,故E正确.题组1 分子动理论的理解1.(2015·山东·37(1))墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是( ) A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的答案BC解析根据分子动理论的知识可知,最后混合均匀是扩散现象,水分子做无规则运动,碳粒做布朗运动,由于布朗运动的剧烈程度与颗粒大小和温度有关,所以使用碳粒更小的墨汁,布朗运动会更明显,则混合均匀的过程进行得更迅速,故选B、C.2.(2016·北京理综·20)雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10μm、2.5μm 的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是( )A.PM10表示直径小于或等于1.0×10-6m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5的浓度随高度的增加逐渐增大答案 C解析PM10颗粒物的直径为10×10-6m=1.0×10-5m,A项错;PM10受到空气分子作用力的合力总是在不停地变化,并不一定始终大于重力,B项错;PM10和大悬浮颗粒物受到空气分子不停地碰撞做无规则运动,符合布朗运动的条件,C项正确;根据材料不能判断PM2.5浓度随高度的增加而增大,D项错.3.关于分子动理论的规律,下列说法正确的是( )A.扩散现象说明物质分子在做永不停息的无规则运动B.压缩气体时气体会表现出抗拒压缩的力是由于气体分子间存在斥力的缘故C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量是内能E.已知某种气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为N A,则该气体分子之间的平均距离可以表示为3MρN A答案ACE题组2 分子力、分子势能和内能4.下列关于温度及内能的说法中正确的是( )A.温度是分子平均动能的标志,所以两个动能不同的分子相比,动能大的温度高B.两个不同的物体,只要温度和体积相同,内能就相同C.质量和温度相同的冰和水,内能是相同的D.一定质量的某种物质,即使温度不变,内能也可能发生变化答案 D解析温度是大量分子热运动的宏观体现,单个分子不能比较温度大小,A错误;物质的内能由温度、体积、物质的量共同决定,故B、C均错误,D正确.5.两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是( )A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变答案BCE解析由分子动理论的知识可知,当两个相距较远的分子相互靠近,直至不能再靠近的过程中,分子力先是表现为引力且先增大后减小,之后表现为分子斥力,一直增大,所以A选项错误;分子引力先做正功,然后分子斥力做负功,分子势能先减小后增大,分子动能先增大后减小,所以B、C正确,D错误.因为只有分子力做功,所以分子势能和分子动能的总和保持不变,E选项正确.6.对于分子动理论和物体内能的理解,下列说法正确的是( )A.温度高的物体内能不一定大,但分子平均动能一定大B.外界对物体做功,物体内能一定增加C.温度越高,布朗运动越显著D.当分子间的距离增大时,分子间作用力就一直减小E.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大答案ACE解析温度高的物体分子平均动能一定大,但是内能不一定大,选项A正确;外界对物体做功,若存在散热,物体内能不一定增加,选项B错误;温度越高,布朗运动越显著,选项C 正确;当分子间的距离增大时,分子间作用力可能先增大后减小,选项D错误;当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大,选项E正确.7.以下说法中正确的是( )A.物体运动的速度越大,其内能越大B.分子的热运动是指物体内部分子的无规则运动C.微粒的布朗运动的无规则性,反映了液体内分子运动的无规则性D.若外界对物体做正功,同时物体从外界吸收热量,则物体的内能必增加E.温度低的物体,其内能一定比温度高的物体小答案BCD解析 内能与物体的速度无关,故A 错误;温度低的物体,分子平均动能小,内能不一定小,故E 错误.8.下列四幅图中,能正确反映分子间作用力F 和分子势能E p 随分子间距离r 变化关系的图线是()答案 B解析 分子间作用力F 的特点是:r <r 0时F 表现为斥力,r =r 0时F =0,r >r 0时F 表现为引力;分子势能E p 的特点是r =r 0时E p 最小,因此只有B 项正确.题组3 微观量的估算9.石墨烯是目前发现的最薄、最坚硬、导电导热性能最强的一种新型纳米材料.已知1g石墨烯展开后面积可以达到2600m 2,试计算每1m 2的石墨烯所含碳原子的个数.(阿伏加德罗常数N A =6.0×1023mol -1,碳的摩尔质量M =12g/mol ,计算结果保留两位有效数字)答案 1.9×1019个解析 由题意可知,已知1 g 石墨烯展开后面积可以达到2 600 m 2,1 m 2石墨烯的质量:m =12 600g 则1 m 2石墨烯所含碳原子个数:N =m M N A =12 60012×6×1023≈1.9×1019个. 10.很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,因为氙气灯灯光的亮度是普通灯灯光亮度的3倍,但是耗电量仅是普通灯的一半,氙气灯使用寿命则是普通灯的5倍,很多车主会选择含有氙气灯的汽车.若氙气充入灯头后的容积V =1.6L ,氙气密度ρ=6.0kg/m 3,氙气摩尔质量M =0.131 kg/mol ,阿伏加德罗常数N A =6×1023mol -1.试估算:(结果保留一位有效数字)(1)灯头中氙气分子的总个数N ;(2)灯头中氙气分子间的平均距离.。
精品2019高中物理第七章分子动理论5内能课堂互动学案新人教版选修3_3
5 内能课堂互动三点剖析1.对分子动能概念的理解(1)分子永不停息地做无规则运动所具有的动能,叫做分子动能.研究单个分子动能没有必要,也无可能.(2)物体分子平均动能仅由温度决定,与物质的种类、多少、状态无关,温度是分子平均动能的标志.2.对分子势能的概念的理解(1)分子势能由于分子间存在相互作用,从而具有的由分子间相对位置决定的能叫做分子势能.(2)分子势能与分子间距离的关系.分子间距离小于平衡距离r 0时,分子势能为斥力势能,随分子间距离的减小而增大,分子间距离大于平衡距离r 0时,分子势能为引力势能,随分子间距离的增大而增大.分子间距离为平衡距离时分子势能最小.(3)宏观上分子势能与物体的体积有关.3.疑点是物体内能的概念(1)组成物体的所有分子动能和势能的总和,叫做物体的内能.对于给定的物体,其内能大小与物体的温度和体积都有关系.(2)物体的内能与机械能是不同的概念,其内能由大量分子热运动和分子间的相对位置决定,而机械能是由物体的机械运动状态及形变决定内能和机械能在一定条件下可以相互转化. 各个击破【例1】 当物体的温度升高时,下列说法中正确的是( )A.每个分子的温度都升高B.每个分子的热运动都加剧C.每个分子的动能都增大D.物体分子的平均动能增大解析:温度是分子平均动能的标志,对单个分子无意义.物体温度升高,分子运动剧烈,分子平均动能增大,但不否认某些分子动能减小,故答案选D.答案:D类题演练1 对于20℃的水和20℃的水银,下列说法正确的是( )A.两种物体分子的平均动能相同B.水银的分子平均动能比水的大C.两种物体分子的平均速率相同D.水银分子的平均速率比水分子的平均速率小解析:温度是分子平均动能的标志.而物体分子的平均动能与物质的多少、种类、状态均无关,故A 对,B 错.由于221mv E k ,水银分子的质量大于水分子的质量,可知D 对,C 错. 答案:AD【例2】 设r=r 0时分子间作用力为零,则在一个分子从远处以某一动能向另一个分子靠近的过程中,下列说法中正确的是( )A.r >r 0时,分子力做正功,动能不断增大,势能减小B.r=r 0时,动能最大,势能最小C.r <r 0时,分子力做负功,动能减小,势能增大D.以上均不对解析:本题考查分子势能改变与分子力做功的特点.一个分子从远处向另一个分子靠近,它们间作用力先为引力后为斥力,故先做正功后做负功,那么分子势能先减小后增大,而动能正好相反,先增大后减小;当r=r 0时,势能最小,动能最大.答案:ABC类题演练2 关于分子势能,下列说法中正确的是( )A.分子间表现为斥力时,分子间距离越小,分子势能越大B.分子间表现为引力时,分子间距离越小,分子势能越大C.当r→∞时,分子势能最小D.将物体以一定初速度竖直向上抛出,物体在上升阶段其分子势能越来越大解析:分子间表现为斥力时,分子间距离减小时,需克服分子力做功,分子势能增大,A正确;分子间表现为引力时,分子间距离减小时,分子力做功,分子势能减少,所以B、C均错;分子势能与物体的重力势能没有关系,D错误.答案:A【例3】下列说法中正确的是( )A.温度低的物体内能小B.温度低的物体分子运动的平均速率小C.物体做加速运动时速度越来越大,物体内分子的平均动能也越来越大D.物体体积改变,内能可能不变解析:内能是指物体内部所有分子平均动能和分子势能的总和,温度是分子平均动能的标志,故温度低的物体内能不一定小,A错;温度低的物体分子平均动能小,但由于不同物质分子质量不同,所以温度低的物体分子平均速率不一定小,B错;物体做加速运动时,速度增大,机械能中的动能增大,但分子热运动的平均动能与机械能无关,而与温度有关,故C错;物体体积改变,分子势能改变,但内能不一定变,D对.答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[高考命题解读]第1讲 分子动理论 内能一、分子动理论1.物体是由大量分子组成的 (1)分子的大小①分子的直径(视为球模型):数量级为10-10m ;②分子的质量:数量级为10-26kg.(2)阿伏加德罗常数①1 mol 的任何物质都含有相同的粒子数.通常可取N A =6.02×1023 mol -1;②阿伏加德罗常数是联系宏观物理量和微观物理量的桥梁. 2.分子永不停息地做无规则运动 (1)扩散现象①定义:不同物质能够彼此进入对方的现象;②实质:扩散现象并不是外界作用引起的,也不是化学反应的结果,而是由分子的无规则运动产生的物质迁移现象,温度越高,扩散现象越明显. (2)布朗运动①定义:悬浮在液体中的小颗粒的永不停息的无规则运动; ②实质:布朗运动反映了液体分子的无规则运动; ③特点:颗粒越小,运动越明显;温度越高,运动越剧烈.(3)热运动①分子的永不停息的无规则运动叫做热运动;②特点:分子的无规则运动和温度有关,温度越高,分子运动越激烈.3.分子间同时存在引力和斥力(1)物质分子间存在空隙,分子间的引力和斥力是同时存在的,实际表现出的分子力是引力和斥力的合力;(2)分子力随分子间距离变化的关系:分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快;(3)分子力与分子间距离的关系图线由分子间的作用力与分子间距离的关系图线(如图1所示)可知:图1①当r=r0时,F引=F斥,分子力为零;②当r>r0时,F引>F斥,分子力表现为引力;③当r<r0时,F引<F斥,分子力表现为斥力;④当分子间距离大于10r0(约为10-9 m)时,分子力很弱,可以忽略不计.自测1根据分子动理论,下列说法正确的是()A.一个气体分子的体积等于气体的摩尔体积与阿伏加德罗常数之比B.显微镜下观察到的墨水中的小炭粒所做的不停地无规则运动,就是分子的运动C.分子间的相互作用的引力和斥力一定随分子间的距离增大而增大D.分子势能随着分子间距离的增大,可能先减小后增大答案 D解析由于气体分子的间距大于分子直径,故气体分子的体积小于气体的摩尔体积与阿伏加德罗常数之比,故A错误;显微镜下观察到的墨水中的小炭粒不停地无规则运动,是布朗运动,它是分子无规则运动的体现,但不是分子的运动,故B错误;分子间的相互作用力随分子间距离增大而减小,但斥力减小得更快,故C错误;若分子间距是从小于平衡距离开始变化,则分子力先做正功再做负功,故分子势能先减小后增大,故D正确.二、温度和内能1.温度一切达到热平衡的系统都具有相同的温度.2.两种温标摄氏温标和热力学温标.关系:T=t+273.15 K.3.分子的动能(1)分子动能是分子热运动所具有的动能;(2)分子热运动的平均动能是所有分子热运动动能的平均值,温度是分子热运动的平均动能的标志;(3)分子热运动的总动能是物体内所有分子热运动动能的总和.4.分子的势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能.(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态.5.物体的内能(1)概念理解:物体中所有分子热运动的动能和分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)影响因素:物体的内能与物体的位置高低、运动速度大小无关;(4)改变物体内能的两种方式:做功和热传递.自测2(多选)对内能的理解,下列说法正确的是()A.系统的内能是由系统的状态决定的B.做功可以改变系统的内能,但是单纯地对系统传热不能改变系统的内能C.不计分子之间的分子势能,质量和温度相同的氢气和氧气具有相同的内能D.1 g 100 ℃水的内能小于1 g 100 ℃水蒸气的内能答案AD解析系统的内能是一个只依赖于系统自身状态的物理量,所以是由系统的状态决定的,A 正确;做功和热传递都可以改变系统的内能,B错误;质量和温度相同的氢气和氧气的平均动能相同,但它们的物质的量不同,内能不同,C错误;在1 g 100 ℃的水变成100 ℃水蒸气的过程中,分子间距离变大,要克服分子间的引力做功,分子势能增大,所以1 g 100 ℃水的内能小于1 g 100 ℃水蒸气的内能,D正确.命题点一 微观量估算的“两种建模方法”1.求解分子直径时的两种模型(对于固体和液体) (1)把分子看成球形,d =36V 0π.(2)把分子看成小立方体,d =3V 0.提醒:对于气体,利用d =3V 0算出的不是分子直径,而是气体分子间的平均距离. 2.宏观量与微观量的相互关系(1)微观量:分子体积V 0、分子直径d 、分子质量m 0.(2)宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ. (3)相互关系①一个分子的质量:m 0=M N A =ρV molN A.②一个分子的体积:V 0=V mol N A =MρN A (注:对气体,V 0为分子所占空间体积);③物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρVM ·N A.例1 科学家可以运用无规则运动的规律来研究生物蛋白分子.资料显示,某种蛋白的摩尔质量为66 kg/mol ,其分子可视为半径为3 × 10-9 m 的球,已知阿伏加德罗常数为6.0×1023 mol-1.请估算该蛋白的密度.(计算结果保留一位有效数字)答案 1×103 kg/m 3 解析 摩尔体积V =43πr 3N A由密度ρ=MV ,解得ρ=3M4πr 3N A代入数据得ρ≈1×103 kg/m 3变式1 (2018·福建泉州模拟)2015年2月,美国科学家创造出一种利用细菌将太阳能转化为液体燃料的“人造树叶”系统,使太阳能取代石油成为可能.假设该“人造树叶”工作一段时间后,能将10-6 g 的水分解为氢气和氧气.已知水的密度ρ=1.0×103 kg/m 3,摩尔质量M =1.8×10-2 kg/mol ,阿伏加德罗常数N A =6.0×1023 mol -1.试求:(结果均保留一位有效数字)(1)被分解的水中含有水分子的总数N ; (2)一个水分子的体积V 0. 答案 (1)3×1016个 (2)3×10-29m 3解析 (1)水分子数:N =mN A M =10-6×10-3×6.0×10231.8×10-2个≈3×1016个. (2)水的摩尔体积:V mol =M ρ,一个水分子的体积V 0=V mol N A =MρN A=3×10-29 m 3.变式2 已知常温常压下CO 2气体的密度为ρ,CO 2的摩尔质量为M ,阿伏加德罗常数为N A ,则在该状态下容器内体积为V 的CO 2气体含有的分子数为________.在3 km 的深海中,CO 2浓缩成近似固体的硬胶体,此时若将CO 2分子看做直径为d 的球,则该容器内CO 2气体全部变成硬胶体后体积约为________. 答案 ρVN A M πd 3ρVN A 6M解析 体积为V 的CO 2气体质量m =ρV ,则分子数N =m M N A =ρVN AM.CO 2浓缩成近似固体的硬胶体,分子个数不变,则该容器内CO 2气体全部变成硬胶体后体积约为:V ′=N ·16πd 3=πd 3ρVN A6M命题点二 布朗运动与分子热运动1.布朗运动(1)研究对象:悬浮在液体或气体中的小颗粒; (2)运动特点:无规则、永不停息; (3)相关因素:颗粒大小、温度;(4)物理意义:说明液体或气体分子做永不停息的无规则的热运动. 2.扩散现象:相互接触的物体分子彼此进入对方的现象. 产生原因:分子永不停息地做无规则运动.3.扩散现象、布朗运动与热运动的比较例2 图2甲和乙是某同学从资料中查到的两张记录水中炭粒运动位置连线的图片,记录炭粒位置的时间间隔均为30 s ,两方格纸每格表示的长度相同.比较两张图片可知:若水温相同,________(选填“甲”或“乙”)中炭粒的颗粒较大;若炭粒大小相同,________(选填“甲”或“乙”)中水分子的热运动较剧烈.图2答案 甲 乙解析 对比甲、乙两图特点可知,乙图中的炭粒运动剧烈,若水温相同,颗粒越小运动越剧烈,故甲中炭粒的颗粒较大;若炭粒大小相同,则水温越高,布朗运动越剧烈,故乙中水分子热运动剧烈.例3 (2017·北京理综·13)以下关于热运动的说法正确的是( ) A.水流速度越大,水分子的热运动越剧烈 B.水凝结成冰后,水分子的热运动停止 C.水的温度越高,水分子的热运动越剧烈D.水的温度升高,每一个水分子的运动速率都会增大 答案 C解析 分子热运动的快慢只与温度有关,与物体速度无关,温度越高,分子热运动越剧烈,A 错误,C 正确;水凝结成冰后,水分子的热运动仍存在,故B 错误;热运动是大量分子运动的统计规律,即温度是分子平均动能的标志,所以温度升高,分子的平均速率增大,并不代表每一个分子的速率都增大,故D错误.变式3(多选)(2015·全国卷Ⅱ·33(1))关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的答案ACD解析根据分子动理论,温度越高,扩散进行得越快,故A正确;扩散现象是由物质分子无规则运动产生的,不是化学反应,故B错误,C正确;扩散现象在气体、液体和固体中都能发生,故D正确;液体中的扩散现象不是由于液体的对流形成的,是液体分子无规则运动产生的,故E错误.变式4(多选)关于布朗运动,下列说法中正确的是()A.布朗运动就是热运动B.布朗运动的激烈程度与悬浮颗粒的大小有关,说明分子的运动与悬浮颗粒的大小有关C.布朗运动虽不是分子运动,但它能反映分子的运动特征D.布朗运动的激烈程度与温度有关,这说明分子运动的激烈程度与温度有关答案CD解析布朗运动间接反映了液体分子永不停息地做无规则运动,它不是微粒的热运动,也不是液体分子的热运动,因此A错误,C正确;悬浮颗粒越小,布朗运动越显著,这是由于悬浮颗粒周围的液体分子对悬浮颗粒撞击的不均衡性引起的,不能说明分子的运动与悬浮颗粒的大小有关,B错误;温度越高,布朗运动越激烈,说明温度越高,分子运动越激烈,D正确.变式5(多选)(2017·全国卷Ⅰ·33(1))氧气分子在0 ℃和100 ℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图3中两条曲线所示.下列说法正确的是()图3A.图中两条曲线下的面积相等B.图中虚线对应于氧气分子平均动能较小的情形C.图中实线对应于氧气分子在100 ℃时的情形D.图中曲线给出了任意速率区间的氧气分子数目E.与0 ℃时相比,100 ℃时氧气分子速率出现在0~400 m/s 区间内的分子数占总分子数的百分比较大答案ABC解析根据图线的物理意义可知,曲线下的面积表示总分子数,所以图中两条曲线下的面积相等,选项A正确;温度是分子平均动能的标志,且温度越高,速率大的分子所占比例较大,所以图中实线对应于氧气分子平均动能较大的情形,虚线对应于氧气分子平均动能较小的情形,选项B、C正确;根据曲线不能求出任意区间的氧气分子数目,选项D错误;由图线可知100 ℃时的氧气分子速率出现在0~400 m/s区间内的分子数占总分子数的百分比比0 ℃时的百分比小,选项E错误.命题点三分子动能、分子势能和内能1.分子力、分子势能与分子间距离的关系:分子力F、分子势能E p与分子间距离r的关系图线如图4所示(取无穷远处分子势能E p=0).图4(1)当r>r0时,分子力表现为引力,当r增大时,分子力做负功,分子势能增加.(2)当r<r0时,分子力表现为斥力,当r减小时,分子力做负功,分子势能增加.(3)当r=r0时,分子势能最小.2.内能和机械能的区别例4(多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图5中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是()图5A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变答案ACE解析由E p-r图可知:在r>r0阶段,当r减小时F做正功,分子势能减小,分子动能增加,故A正确;在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故B错误;在r=r0时,分子势能最小,但不为零,动能最大,故C正确,D错误;在整个相互接近的过程中,分子动能和势能之和保持不变,故E正确.变式6(多选)关于物体的内能、温度和分子的平均动能,下列说法正确的是()A.温度低的物体内能一定小B.温度低的物体分子平均动能一定小C.外界对物体做功时,物体的内能不一定增加D.物体自由下落时速度增大,所以物体分子的平均动能也增大答案BC解析物体的内能与温度、体积、物质的量均有关,物体的温度低,其分子平均动能一定小,但其内能不一定小,A错误,B正确;外界对物体做功,物体同时向外界放热,其内能不一定增加,C正确;物体的运动速度大,其运动的动能增大,但物体内部分子的平均动能不一定增大,D错误.变式7如图6所示,甲分子固定于坐标原点O,乙分子从无穷远a处由静止释放,在分子力的作用下靠近甲.乙在b点合外力表现为引力,且为引力最大处,d点是分子靠得最近处.则下列说法正确的是()图6A.乙分子在a点势能最小B.乙分子在b点动能最大C.乙分子在c点动能最大D.乙分子在d点加速度为零答案 C解析乙分子由a运动到c,分子力表现为引力,分子力做正功,动能增大,分子势能减小,所以乙分子在c处分子势能最小,动能最大,故A、B错误,C正确;由分析可知,题图是分子力与分子间距离关系图线,乙在d点时受到的分子力最大,所以乙分子在d处的加速度最大,故D错误.1.(多选)(2015·山东理综·37(1))墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是()A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的答案BC解析根据分子动理论的知识可知,最后混合均匀是扩散现象,水分子做无规则运动,碳粒做布朗运动,由于布朗运动的剧烈程度与颗粒大小和温度有关,所以使用碳粒更小的墨汁,布朗运动会更明显,则混合均匀的过程进行得更迅速,故选B、C.2.(2016·北京理综·20)雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10 μm、2.5 μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是()A.PM10表示直径小于或等于1.0×10-6 m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5的浓度随高度的增加逐渐增大答案 C解析PM10颗粒物的直径小于或等于10×10-6 m=1.0×10-5 m,A项错误;PM10受到的空气分子作用力的合力总是在不停地变化,并不一定始终大于重力,B项错误;PM10和大悬浮颗粒物受到空气分子不停地碰撞做无规则运动,符合布朗运动的条件,C项正确;根据材料不能判断PM2.5浓度随高度的增加而增大,D项错误.3.下列关于温度及内能的说法中正确的是()A.温度是分子平均动能的标志,所以两个动能不同的分子相比,动能大的温度高B.两个不同的物体,只要温度和体积相同,内能就相同C.质量和温度相同的冰和水,内能是相同的D.一定质量的某种物质,即使温度不变,内能也可能发生变化答案 D解析温度是大量分子热运动的宏观体现,单个分子不能比较温度大小,A错误;物质的内能由温度、体积、物质的量共同决定,故B、C均错误,D正确.4.由于两个分子间的距离发生变化而使得分子势能变小,则可以判定在这一过程中()A.分子间的相互作用力一定做了功B.两分子间的相互作用力一定增大C.两分子间的距离一定变大D.两分子间的相互作用力一定是引力答案 A5.某同学利用花粉颗粒观察布朗运动,并提出以下观点,正确的是()A.布朗运动指的是花粉微粒的无规则运动B.布朗运动指的是液体分子的无规则运动C.温度为0 ℃时,液体分子的平均动能为零D.花粉微粒越大,其无规则运动越剧烈答案 A解析布朗运动指悬浮在液体中的颗粒所做的无规则运动,故A正确;布朗运动不是分子的运动,只是反映了液体分子的无规则运动,故B错误;分子的运动是永不停息的,温度为0 ℃时,液体分子的平均动能不为零,故C错误;微粒越小,液体温度越高,布朗运动越剧烈,故D错误.6.(多选)下列说法正确的是()A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先减小后增大,分子势能不断增大D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大E.物体内热运动速率大的分子数占总分子数比例与温度有关答案ADE解析悬浮微粒越大,在某一瞬间撞击它的液体分子数越多,受力越趋于平衡,布朗运动越不明显,B错误.在使两个分子间的距离由很远(r>10-9 m)减小到很难再靠近的过程中,分子间作用力先增大后减小再增大,分子势能先减小后增大,C错误.7.(多选)关于分子动理论的规律,下列说法正确的是()A.扩散现象说明物质分子在做永不停息的无规则运动B.压缩气体时气体会表现出抗拒压缩的力是由于气体分子间存在斥力的缘故C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量是内能E.已知某种气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为N A,则该气体分子之间的平均距离可以表示为3M ρN A答案ACE8.(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变答案BCE解析由分子动理论的知识可知,当两个相距较远的分子相互靠近,直至不能再靠近的过程中,分子力先是表现为引力且先增大后减小,之后表现为分子斥力,一直增大,所以A选项错误;分子引力先做正功,然后分子斥力做负功,分子势能先减小后增大,分子动能先增大后减小,所以B、C正确,D错误;因为只有分子力做功,所以分子势能和分子动能的总和保持不变,E选项正确.9.(多选)以下说法中正确的是()A.物体运动的速度越大,其内能越大B.分子的热运动是指物体内部分子的无规则运动C.微粒的布朗运动的无规则性,反映了液体内分子运动的无规则性D.若外界对物体做正功,同时物体从外界吸收热量,则物体的内能必增加E.温度低的物体,其内能一定比温度高的物体小答案BCD解析内能与物体的速度无关,故A错误;温度低的物体,分子平均动能小,内能不一定小,故E错误.10.下列四幅图中,能正确反映分子间作用力F和分子势能E p随分子间距离r变化关系的图线是()答案 B解析 分子间作用力F 的特点是:r <r 0时F 表现为斥力,r =r 0时F =0,r >r 0时F 表现为引力;分子势能E p 的特点是r =r 0时E p 最小,因此只有B 项正确.11.很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,因为氙气灯灯光的亮度是普通灯灯光亮度的3倍,但是耗电量仅是普通灯的一半,氙气灯使用寿命则是普通灯的5倍,很多车主会选择含有氙气灯的汽车.若氙气充入灯头后的容积V =1.6 L ,氙气密度ρ=6.0 kg/m 3,氙气摩尔质量M =0.131 kg/mol ,阿伏加德罗常数N A =6×1023 mol -1.试估算:(结果均保留一位有效数字)(1)灯头中氙气分子的总个数N ;(2)灯头中氙气分子间的平均距离.答案 (1)4×1022个 (2)3×10-9 m 解析 (1)设氙气的物质的量为n ,则n =ρV M ,氙气分子的总个数N =ρV MN A ≈4×1022个. (2)每个分子所占的空间为V 0=V N设分子间平均距离为a ,则有V 0=a 3,则a =3V N ≈3×10-9 m.。