DC-DC电源变换器的设计与制作
DCDC变换器的设计方案
DC-DC变换器的设计方案一种模块化高效DC-DC变换器的开发与研制设计方案一、设计任务:设计一个将220VDC升高到600VDC 的DC-DC变换器。
在电阻负载下,要求如下:1、输入电压U=220VDC,输出电压u=600VDC。
2、输出额定电流|;:=2.5A,最大输出电流Iomax=3Ao3、当输入山在小范围内变化时,电压调整率SV W2%(在匕=2.5A时)。
4、当|<在小范围你变化时,负载调整率SI W5%(在||=220VDC时)。
5、要求该变换器的在满载时的效率n±90%o6、输出噪声纹波电压峰-峰值U t)pp<1V(在Ui=220VDC,u=600VDC,[(=2・5A条件下)。
7、要求该变换器具有过流保护功能,动作电流设定在3A o8、设计相关均流电路,实现多个模块之间的并联输出。
二、设计方案分析1、DC-DC升压变换器的整体设计方案主电路图1DC-DC变换器整体电路图如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。
控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。
2、DC-DC升压变换器主电路的工作原理DC-DC功率变换器的种类很多。
按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。
非隔离型的DC-DC变换器又可分为DC600V降压式、升压式、极性反转式等几种;隔离型的DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。
下面主要讨论非隔离型升压式DC-DC 变换器的工作原理。
图2(a )DC-DC变换器主电路图2(b )DC-DC 变换器主电路图2(a )是升压式DC-DC 变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b )是用matlab 模拟主电路 DC220V出的升压式DC-DC变换器的主电路图。
DCDC升压稳压变换器设计
DCDC升压稳压变换器设计DC-DC升压稳压变换器是一种常见的电源变换器,用于将低压直流电源(如电池)的电压升高为所需的高压输出。
本文将介绍DC-DC升压稳压变换器的设计原理、组成部分及其工作原理,并进行详细的分析和说明。
DC-DC升压稳压变换器设计的主要目标是将输入直流电压升压到所需的输出电压,同时保持输出电压稳定且具有良好的电流调整性能。
为了实现这一目标,设计者需要考虑以下几个方面:1.输入输出电压和电流:首先确定所需输出电压和电流的数值。
根据要求选择相应的元件和电路拓扑结构。
2. 拓扑结构选择:常见的DC-DC升压稳压变换器拓扑结构有Boost、Flyback和SEPIC等。
选择适合的拓扑结构需要考虑功率转换效率、元件数量和输入输出电流等因素。
3.元件参数选择:选择合适的功率开关管、电感、电容和二极管等元件参数。
元件的选择需考虑其工作频率、电流承受能力和输出纹波等因素。
4.控制电路设计:设计合适的开关控制电路,能够实现稳定的输出电压。
常用的控制电路有单片机控制、模拟控制和PWM控制等。
采用合适的控制方法可以保持输出电压的稳定性和动态响应性。
5.保护电路设计:为了保护DC-DC升压稳压变换器和被供电设备的安全,需要考虑过压、过流和短路保护等电路设计。
这些保护电路可以提高系统的可靠性和安全性。
在进行具体的设计时,首先需要确定输出电压和电流的数值要求,并进一步计算电路参数。
然后选择合适的拓扑结构和元件,并设计出合适的控制电路和保护电路。
接下来进行电路仿真和实验验证,对设计结果进行验证和调整,确保电路性能和稳定性。
最后对整个设计过程进行总结和文档记录。
综上所述,DC-DC升压稳压变换器设计是一个复杂而关键的过程,需要考虑多个因素并进行系统性的设计和调试。
通过合理设计和优化,可以得到稳定性好、效率高且尺寸小巧的DC-DC升压稳压变换器。
这些变换器可以广泛应用于各种电子设备和系统中,如移动电源、电动车充电器和太阳能系统等。
DC-DC变换器设计毕业设计
绪论一.开关电源概述开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。
半个世纪以来,开关电源大致经历了四个阶段。
早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。
在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。
随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。
稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。
等对供电电压都有一定的要求。
至于精密的电子仪器,对供电电压的要求更为严格。
所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。
目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。
单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。
尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。
单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。
二. 开关电源的技术追求1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。
在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。
因此高频化是开关电源的主要发展方向。
2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。
从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电源的寿命。
DC—DC升压开关变换器设计
DC—DC升压开关变换器设计本设计设计了相应的硬件电路,研制了一款小功率开关电源。
整个系统包括主电路、控制电路、驱动电路、保护电路和反馈电路几部分内容。
系统主电路由Boost升压斩波电路和相应的滤波保护电路组成。
控制电路包括主电路开关管控制脉冲的产生和保护电路。
论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计过程,包括元器件的选取以及参数计算。
本设计中采用的芯片主要是PWM控制芯片SG3525、光电耦合芯片PC817和半桥驱动芯片IR2110。
设计过程中充分利用了SG3525的控制性能,具有较宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。
标签:SG3525,开关稳压电源,PWM,升压斩波1绪论近年来,随着电力电子学的高速发展,电力供给系统也得到了很大的发展。
同时,人们对电源的要求也越来越高。
在高效率、大容量、小体积之后,对电源系统的输入功率因数和软开关技术也提出了更高的要求。
电源是给电子设备提供所需要的能量的设备,这就决定了电源在电子设备中的重要性。
电子设备要获得好的工作可靠性必须有高质量的电源,所以电子设备对电源的要求日趋增高。
相对于线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求。
但是,由于开关电源轻、小、薄的关键技术是高频化,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率,近年来国内外的专家学者提出了众多的电路拓扑,使得软开关技术成为电力电子技术研究的热点。
因此对于现代的开关电源功率交换技术的发展趋势,可以概括为:高频化、高效率、无污染和模块化。
2开关电源概况2.1开关电源基本拓扑结构开关变换器是电能变换的核心装置。
按转换电能的种类,可把变换器分为四类:①直流变换器(DC-DC),将一种直流电能转换为另一种或多种直流电能的变换器,是直流开关电源的主要部件;②逆变器(DC-AC),将直流电能变为交流电能的电能变换器,是交流开关电源和不间断电源UPS的主要部件;③整流器(AC-DC),将交流电转为直流电的电能变换器;④交交变频器(AC-AC),将一种频率的交流电转换成另一种频率可变的交流电,或者将一种频率可变的交流电转变为恒定频率的交流电的电能变换器。
DC/DC变换器的设计
DC/DC变换器的设计DC/DC变换器是一种电力电子设备,用于将一个直流电源的电压转换为另一个直流电压。
它在电子设备中广泛应用,例如电气车辆、太阳能发电系统和电视机等。
DC/DC变换器的设计需要考虑以下几个方面:1.输入电压范围:根据应用需要,确定所需的输入电压范围。
这有助于选取合适的输入滤波电容和保护电路。
2.输出电压和电流:确定所需的输出电压和电流,并计算所需的功率。
这有助于确定合适的变压器、开关管和输出滤波电容。
3.开关频率:选择适当的开关频率,以平衡系统效率和元件尺寸。
通常,高开关频率可以减小元件的尺寸,但也会增加开关损耗。
4.控制策略:选择合适的控制策略,例如脉宽调制(PWM)或脉冲频率调制(PFM)。
PWM控制可实现快速响应和精确的输出电压稳定性,而PFM控制则可实现高效和高功率因素。
5.过压保护和过流保护:设计合适的过压保护和过流保护电路,以确保系统在故障情况下可靠工作。
6.效率和温度管理:优化设计,以提高系统的能量转换效率,并采取措施来控制元件的温度,以保证长期可靠性。
7.噪声和EMI控制:设计合适的滤波电路和接地布局,以降低系统的输出噪声和电磁干扰。
8.反馈控制:设计适当的反馈控制回路,以实现输出电压的稳定性和动态响应。
9.元件选型和参数计算:根据应用需求,选择适当的开关管、变压器、电感和电容,并计算它们的参数,以满足设计要求。
一般而言,DC/DC变换器的设计可以分为几个主要步骤:确定电路拓扑,选择工作模式,计算各个元件的参数,进行电路仿真和稳定性分析,制作原型并进行实验验证,最后进行性能优化和可靠性测试。
总的来说,DC/DC变换器的设计需要综合考虑输入输出电压、电流、开关频率、控制策略、保护电路、效率、温度管理、EMI控制和反馈控制等因素。
通过系统性的设计和优化,可以实现高效、稳定和可靠的DC/DC变换器。
DC-DC电源变换器的设计与制作
DC-DC 电源变换器的设计与制作综合实训技术报告姓名:学号:班级:指导老师:提交日期:目录第一章:概要 (3)第二章: 技术要求、技术参数 (4)第三章: 原理图设制 (6)第四章: 元器件的选择 (7)第五章: 封装、PCB板 (17)第六章:应用范围、发展趋势 (21)第七章:致谢 (22)第八章:参考文献 (23)第九章:附录 (25)第一章:概要DC-DC电源变换器将一个固定的直流电压变换为可变的直流电压,这种技术被应用于无轨电车,地铁列车,电动车的无级变速和控制,同时使上述控制获得加速平稳,快速响应的性能,并能同时收到节约电能的效果。
开关电源以其效率高、功率密度高而在电源领域中占主要地位,为了以更低的功耗获得更高的速度和更加的性能,半导体器件正在向1V 工作电压发展,这也对DC/DC变换器提出了更高的要求。
除了需要增添更多的功能外,还需要延长电池的寿命,并缩小系统体积。
目前仍以PWM型DC/DC产品为主流产品。
DC-DC变换器是通信设备中最常用的功能电路之一,其质量和效率直接影响通信设备的正常运行。
本设计采用功能完善的MC34063控制芯片,设计了DC-DC变换电路,完成从40V~3V的电压变换,为载波机提供了较为理想的直流电源。
具有电路简单,调试方便的优点。
本设计对一种新颖的DC/DC变换器的设计和实现进行了论述,设计实现了输出为±12V/0.1A和3.6V/0.5A的集成DC/DC变换器MC34063。
第二章:技术要求,技术参数DC-DC电源变更换器技术要求:12V/2A 开关切换开关电源28V/0.2A5V/0.8A线性电源5V/1A3.3V/0.5A2V·9V DC-DC电源变更换器技术参数:1.纹波2.Vpp3.电压调整率4.负载调整率5.效率设计技术指标要求:在输入电压为3~40V的条件下:本设计输入电压选择3V。
a.输出电压为±12V时,输出电流为100mA ;输出电压为3.6V时,输出电流为500mA。
双向DCDC变换器的控制方法研究与设计
双向DCDC变换器的控制方法研究与设计双向DC-DC变换器(BDC)是一种能够将直流电能在两个方向上进行转换和传输的电力转换装置。
它可以将能量从一个电源送到另一个负载,同时还可以将能量反向传输。
因此,BDC在可再生能源系统、电动汽车和电网储能等领域具有广泛的应用前景。
BDC的控制方法研究与设计是实现高效能量转换和稳定输出的关键。
以下是一个基于脉宽调制(PWM)技术的BDC控制方法的研究与设计过程。
1.建立数学模型:根据BDC的电路结构,可以建立数学模型来描述其电压与电流之间的关系。
通过建立这个模型,可以分析系统的动态特性和稳态性能。
2.控制策略选择:根据应用需求和系统要求,选择适当的控制策略。
常见的控制策略包括PID控制、模糊控制和模型预测控制等。
需要考虑的因素包括系统的响应速度、稳态误差和鲁棒性等。
3.控制器设计:设计适当的控制器来实现所选控制策略。
控制器的作用是根据输出和参考输入之间的差异来调节脉宽调制信号,控制BDC的开关器件的开关状态。
常见的控制器包括比例控制器、积分控制器和微分控制器等,可以根据特定要求设计组合控制器。
4. 控制系统仿真:利用Matlab/Simulink等软件,将前面设计的数学模型和控制器进行仿真。
通过输入不同的电压、电流和负载条件,观察系统的响应和稳态性能。
根据仿真结果,优化控制器参数,满足设计要求。
5.硬件实现:根据仿真结果和优化的控制器参数,进行硬件实现。
选择适当的开关器件、电感和电容等元器件,设计BDC的电路。
由于BDC涉及高频开关和高电压等特殊要求,需要注意电路设计的可靠性和安全性。
6.实验验证:将设计的BDC系统进行实验验证。
输入不同的电压和负载条件,测试系统的响应和稳态性能。
根据实验结果,调整控制器参数和系统参数,进一步优化设计。
综上所述,双向DC-DC变换器的控制方法研究与设计是一个复杂的工程过程。
通过建立数学模型、选择适当的控制策略、设计控制器、进行仿真和实验验证,可以实现高效能量转换和稳定输出的目标。
DC-DC电源变换器的设计与制作
DC-DC 电源变换器的设计与制作综合实训技术报告组别:成员:班级:指导老师:提交日期:目录目录 (2)概要 (3)1、课题内容及求 (4)2、设计方案及原理图 (5)3、电路实物图及PCB覆铜面 (13)4、元器件选择 (16)5、芯片资料 (20)6、参考资料及网站 (27)7、致谢 (27)第一章:概要DC-DC电源变换器将一个固定的直流电压变换为可变的直流电压,这种技术被应用于无轨电车,地铁列车,电动车的无级变速和控制,同时使上述控制获得加速平稳,快速响应的性能,并能同时收到节约电能的效果。
开关电源以其效率高、功率密度高而在电源领域中占主要地位,为了以更低的功耗获得更高的速度和更加的性能,半导体器件正在向1V工作电压发展,这也对DC/DC变换器提出了更高的要求。
除了需要增添更多的功能外,还需要延长电池的寿命,并缩小系统体积。
目前仍以PWM型DC/DC产品为主流产品。
本设计对一种新颖的DC/DC变换器的设计和实现进行了论述,开关电路设计实现了输入为12V,输出为+5V/0.8A和28V/0.5A的集成DC/DC变换器MC34063。
线性部分实现输入12V,输出分别为5V/1A、2~9V/0.3A、3.3V/0.5A。
课题内容及求课题基本内容内容:输入电压12V±10%12V/2A 开关切换开关电源28V/0.2A5V/0.8A线性电源5V/1A3.3V/0.5A2V/9V课题要求:1、用开关切换的方式实现DC/DC开关电源和DC/DC线性电源。
2、DC/DC开关电源输出电压要求:28V/0.5A,纹波≤0.28Vpp(Vpp);5V/0.8A,纹波≤0.05Vpp(1%) 电压调整率≤2%,负载调整率≤2%,效率≤70%。
3、DC/DC线性电源输出电压要求:5V/1A纹波≤25mVpp(0.5%)3.3V/0.5A纹波≤17.5mV(0.5%)2~9V/0.3A纹波≤45mV(0.5%)电压调整率≤5%,负载调整率≤5%,效率≥30% 。
数字控制全桥型DC-DC模块电源的设计
数字控制全桥型DC-DC模块电源的设计数字控制全桥型DC-DC模块电源的设计摘要:DC-DC变换器是电子系统中常用的电源转换设备,其性能的稳定性和效率对系统的可靠性和节能性起着重要作用。
本文围绕数字控制全桥型DC-DC模块电源的设计展开了研究。
首先,对DC-DC变换器的结构和工作原理进行了简要介绍。
然后,详细描述了数字控制技术在全桥型DC-DC模块电源设计中的应用。
最后,通过实验验证了本设计方案的性能和有效性。
一、引言随着电子系统的高速发展,对于电源转换设备的性能和效率要求越来越高。
DC-DC变换器作为电源转换的重要组成部分,在电子系统中起到了关键的作用。
传统的模拟控制方式在一定程度上已经无法满足对DC-DC变换器精确控制的要求。
因此,数字控制技术在DC-DC变换器的设计中得到了广泛的应用。
二、数字控制技术数字控制技术是通过数字信号对电源进行控制和调节的一种技术。
它可以使用微处理器或者数字信号处理器来实现对电源的高精度控制。
数字控制技术具有精度高、稳定性好、可编程性强等优点,因此在DC-DC变换器的设计中被广泛采用。
三、全桥型DC-DC模块电源的设计全桥型DC-DC模块电源是一种高效率的DC-DC变换器拓扑结构,具有输出电压可调、输出电流大等优点。
数字控制技术可以精确控制全桥型DC-DC模块电源的输出电压和输出电流,提高了系统的稳定性和可靠性。
1. 电源参数设计在全桥型DC-DC模块电源的设计中,首先需要确定电源的输入电压和输出电压。
通过计算和分析得到合适的输入电压和输出电压,保证电源的工作正常和效率高。
2. 拓扑结构设计全桥型DC-DC模块电源的拓扑结构是由四个功率开关和四个二极管组成的。
使用数字控制技术可以对功率开关的开关时间进行精确调节,实现对电源输出电压的精确控制。
3. 控制策略设计在全桥型DC-DC模块电源的设计中,需要选择合适的控制策略。
传统的PID控制策略已经无法满足要求,因此可以利用数字控制技术设计更高级的控制策略,如模糊控制或者神经网络控制。
低功耗同步DC-DC降压变换器的研究与设计
低功耗同步DC-DC降压变换器的研究与设计低功耗同步DC-DC降压变换器的研究与设计随着信息技术的快速发展,便携式电子设备的需求日益增长。
为了满足这些设备对高性能、低功耗的需求,同步DC-DC降压变换器成为了广泛应用的电源转换电路。
本文将研究并设计一种低功耗的同步DC-DC降压变换器,以提供高效的电能转换。
首先,我们将对同步DC-DC降压变换器的工作原理进行深入研究。
同步DC-DC降压变换器包括两个主要部分:输入电压的变换电路和输出电压的滤波电路。
其中,变换电路由开关器件和电感组成,起到将输入电压变换为合适的输出电压的作用。
滤波电路采用电容器和滤波电感,用于滤除变换电路产生的交流噪声,确保输出电压的稳定性。
其次,我们将对低功耗的设计方案进行探讨。
为了实现低功耗的要求,我们将采取以下措施:1. 选择高效的开关器件:开关器件是同步DC-DC降压变换器中最重要的组成部分。
我们将选择具有低导通和低开关损耗的器件,以提高转换效率。
2. 合理设计电感和电容:电感和电容是变换和滤波电路的关键组件。
我们将通过合理设计电感和电容的数值和布局,以减小能量损耗,并提高电能转换效率。
3. 优化控制策略:同步DC-DC降压变换器的控制方式对于提高转换效率非常重要。
我们将采用先进的控制算法,如模拟控制或数字控制,以提高功耗效率和稳定性。
最后,我们将进行同步DC-DC降压变换器的实验验证。
在设计阶段,我们将使用电路模拟软件进行仿真,并进行性能评估和优化。
之后,我们将根据设计方案进行原型制作与测试。
通过使用高精度的测试仪器,我们将评估实际电路的转换效率、稳定性和功耗等指标,以验证设计的可行性。
通过研究与设计一种低功耗的同步DC-DC降压变换器,可以为电子设备提供高效、长续航时间的电源解决方案。
这将对满足现代社会对电子设备便携性和使用时间的要求具有积极影响。
未来,我们可以在现有设计的基础上进一步研究和改进,以提高功耗效率和降低成本,满足电子产品日益增长的能耗需求。
BUCK型DCDC变换器电路设计
BUCK型DCDC变换器电路设计DC-DC变换器是一种能将直流电压转换为不同电压水平的电子设备。
BUCK型DC-DC变换器是其中最常用的一种类型。
本文将介绍BUCK型DC-DC变换器的电路设计过程和关键要点。
首先,BUCK型DC-DC变换器的基本原理是利用电感储能和开关管的开关控制来实现电压转换。
其核心的电路组成部分包括电感、二极管、开关管、输入电压、输出电压以及控制电路。
在设计BUCK型DC-DC变换器电路时,需要确定以下参数:1.输入电压范围:确定输入电压的最小值和最大值,以便选择合适的电子元器件。
2.输出电压和电流需求:确定需要将输入电压转换为多少输出电压,并根据输出电流的需求选择合适的电路元件。
3.开关频率:选择合适的开关频率以平衡功率转换效率和元件参数选择的难度。
接下来,我们将详细介绍BUCK型DC-DC变换器电路的设计流程和关键步骤:1.确定电路拓扑结构:根据输入输出电压的关系和功率转换需求,选择BUCK型电路拓扑结构。
2.选择电感元件:根据输入电压范围、输出电压和电流需求,选择合适的电感元件,并计算所需电感值。
3.选择开关管和二极管:根据输入电流和输出电流需求,选择合适的开关器件和二极管,并计算开关器件的导通电阻和二极管的反向电压承受能力。
4.选择滤波电容:根据输出电流需求,计算滤波电容的容值,用于减小输出电压的波动。
5.设计控制电路:设计合适的控制电路以控制开关管的开关频率和占空比,以实现电压转换和稳定输出电压。
6.进行电路参数计算和仿真:根据上述选择的元件参数,进行电路参数计算和仿真,以验证电路设计的可行性和预测其性能。
7.PCB布局和布线:进行PCB布局和布线设计,确保电路元件之间的良好连接和信号的稳定传输。
8.确定输入和输出滤波器:根据实际应用需要,选择适当的输入和输出滤波器,以减小输入输出电压的噪声和干扰。
9.进行实验验证:制作电路原型,进行实验验证,检验电路设计的性能和稳定性。
毕业设计(论文)-DC-DC变换器电路设计及仿真
1.1 研究背景
在人们的生活中,电力已成为与生产生活息息相关的一部分,在各个场合,人们都需要各式各样的电力来为其服务,然而并不是所有的电力都能在一开始就能满足需要,于是就要求有电力变换的过程。在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成安全的直流电源。目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间主线电压变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因为电子设备容量的不断增加,其电源容量也将不断增加。
负载电流平均值I=Ud/R(2-2)
电流断续时,Uo平均值会被抬高,一般不希望出现
斩波电路三种控制方式
a脉冲宽度调制(PWM)或脉冲调宽型——T不变,调节ton,应用最多
b频率调制或调频型——ton不变,改变T
c混合型——ton和T都可调,使占空比改变
图2-1降压斩波电路的原理图及波形
a)电路图b)电流连续时的波形c)电流断续时的波形
1.2 课题意义
(1)DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。
升压式DC/DC变换器的研究与设计
升压式DC/DC变换器的研究与设计李亚雄摘要如今,随着手机、相机以及平板电脑等各种便携式数码电子产品的快速发展和市场的不断扩大,电子产品扮演着人们日常生活中举足轻重的地位。
电源管理芯片,作为整个电子系统中不可或缺的组成部件,其发展和需求量都得到了迅猛增加。
由于具有转换效率高、小体积是等特点,DC/DC变换器被广泛应用于各种便携式电子产品中。
本文通过分析和研究DC/DC 变换器的三种基本的拓扑结构和工作原理,设计了一款升压式DC/DC变换器。
该升压式DC/DC变换器的输入电压范围为2.7 V-5.5 V,可应用于锂离子电池供电的各种便携式电子产品中,稳定输出电压高达18 V,最大负载电流可达200 mA。
电路调制采用电压控制PWM方式,内建振荡器的频率为1.5 MHz。
为提高系统效率采用同步整流技术。
并且研究了升压型变换器的模型建立,设计了欠压锁定、过温关断等保护电路提升了系统的稳定性。
本文完成了带隙基准电压源、LDO稳压器、PWM比较器、误差放大器、钳位电路、振荡器、系统补偿电路等DC/DC变换芯片控制电路的子模块的设计。
电路基于0.35 μm BCD6S 工艺,使用Cadence Spectre仿真工具完成了系统的仿真验证。
仿真结果表明本文设计的升压式DC/DC变换器切实可行,各项性能均能达到设计目标。
关键词:DC/DC变换器;升压式;设计;仿真;1 引言日常使用的便携式电子产品需要多种电压,但是这些产品通常只能由一组电池供电,所以其必须通过DC/DC 变换器供给所需要的各种直流电压。
依据输入电路与输出电路的之间关系,DC/DC变换器可分为升压型(Boost)、降压型(Bulk),升压-降压型(Boost-Bulk)和反相型(CuK)DC/DC变换器[1]。
Boost 型DC/DC变换器技术尤其是数控Boost 型DC/DC变换器技术是一门实践性非常强的工程技术,其应用服务于各行各业。
如今Boost 型DC/DC变换器技术融合了电子、系统集成、电气、材料和控制理论等诸多学科领域。
多相交错并联BUCK型DC-DC变换器分析与设计
than 1.3%. When the load current is greater than 2A, the current imbalance of each
method, including parameter calculation of input and output capacitors and energy
storage inductor.
Compared with the single-phase converter, the control strategy of the multi-phase
automatic current sharing method, external controller method, etc. need to add
additional circuits, which increases circuit complexity. In this thesis, the average current
换器扰动信号进行分析,提出了基于数字 PID 控制多相交错并联拓扑结构多环
控制策略。以三相交错并联 BUCK 型 DC-DC 变换器为例,通过 Matlab/Simulink
对该方案进行了仿真验证,仿真结果表明,采用该控制策略的三相交错并联
BUCK 型 DC-DC 变换器具有输出纹波低,带载能力强,各相电流均衡度、系统
of the drive signal. Affected by the manufacturing process, the actual parameters of the
实验49-DC-DC 单端正激式变换电路设计实验
实验四十九 DC/DC 单端正激式变换电路设计实验(信号与系统—电力电子学—检测技术综合实验)一、 实验原理1. 单端正激变换器单端正激变换电路是隔离式DC/DC 变换电路中的一种,采用一个单管实现DC/DC 变换,例如图49-1所示的电路。
它在开关管Q 导通时电源的能量经隔离变压器T 、整流二极管和滤波电感直接送至负载,故称为正激;由于其变压器磁通只在单方向上变化而被称为单端。
这样的电路被称为单端正激式变换电路。
V O图49-1采用辅助绕组复位的单管正激变换器正激变换器由于具有电路结构简单、成本较低、输出电流大、工作可靠性高等优点而广泛应用于中小功率变换场合,更成为低压大电流功率变换器的首选拓扑结构。
正激变换器中,由于变压器的磁芯是单方向磁化的,每个周期都需要采用相应的措施,使磁芯回到磁化曲线的起点,否则磁芯磁会很快饱和而导致开关器件损坏,因此需要采用专门的复位电路,使变压器的磁芯磁复位。
当输入电压及占空比固定的时候,输出电压与负载电流无关。
因此DC/DC 单端正激变换电路具有低输出阻抗的特点。
在同等功率条件下,单端正激变换电路的集电极峰值电流很小,所以该变换器适合应用在低压,大电流,功率较大的场合。
2. 不同复位方式的正激变换器[2]通常采用的磁复位方法主要有以下几种: (1) 辅助绕组复位正激变换器采用辅助绕组复位的正激变换器见图49-1。
其中隔离变压器有三个绕组:一次绕组N 、二次绕组N 和去磁绕组N 。
在T 时间内,Q 导通,D 导通,D 、D 123ON 213截止,电源向负载传递能量,此时,磁通增量为I 1ON I 1(V /N )T (V /N )DT S ΔΦ=⋅=⋅,输出电压为V O =V N /N 。
I 21时间内,Q 阻断,D 截止,D 导通续流,D 在T OFF 213导通向电源回馈能量。
如果在整个T I S V (1D)T /N 3′ΔΦ=−时间内,D ,输出电压为V OFF 3都导通,磁通减少量最大为O =0,此时开关管Q 两端的反压为V (1+N I 1/N )。
基于LTCC工艺的DC-DC变换器设计与制作
基于LTCC工艺的DC-DC变换器设计与制作叶剑;李元勋;陈鑫华;苏桦;张怀武【摘要】基于LTCC技术的DC-DC变换器具有体积小、重量轻、可靠性高、成本低等特点,该文在LTCC工艺基础上,将DC-DC变换器电路中的电感内埋在LTCC 基板中,设计了一款输入电压范围3~6 V,输出电压1.8 V,最大负载电流2 A的DC-DC变换器电路.实践表明,LTCC技术能够将无源器件内埋,可以降低生产成本,提高系统的集成度,是一个最具潜力的混合集成方式.【期刊名称】《实验科学与技术》【年(卷),期】2017(015)005【总页数】4页(P42-45)【关键词】开关电源;DC-DC变换器;NiZn铁氧体;LTCC技术【作者】叶剑;李元勋;陈鑫华;苏桦;张怀武【作者单位】电子科技大学微电子与固体电子学院,四川成都 610054;电子科技大学微电子与固体电子学院,四川成都 610054;东莞电子科技大学电子信息工程研究院,广东东莞 523808;电子科技大学微电子与固体电子学院,四川成都 610054;电子科技大学微电子与固体电子学院,四川成都 610054;电子科技大学微电子与固体电子学院,四川成都 610054【正文语种】中文【中图分类】TM28;TN61电源是每个电子设备中不可缺少的部分,它为电子系统的各个部分提供正常工作所需要的电压和电流。
如在现代的智能手机中,不管是手机屏幕、照相机、扬声器、听筒、射频收发模块,还是手机内部的CPU都需要电能来维持系统的正常工作。
在移动式的便携电子设备中,我们常常采用单电池为整个系统供电。
但是电池提供的电能往往是不稳定的,这通常表现为随着电池电量的不同,电池的输出电压往往也会不同。
手机的各个模块需要稳定的不同的电压电流来维持整个系统的正常工作。
DC-DC开关电源变换器电路的功能就是将一定范围内波动的不稳定的直流电压转换为稳定的直流电压[1]。
因此,DC-DC开关电源变换器电路在现在的便携式设备中广泛使用。
DC-DC升压变换器的设计与制作
昆明理工大学毕业设计(论文)
开题报告
题目: DC-DC升压变换器的设计与制作
学院:应用技术学院
专业:电子信息工程
学生姓名:
指导教师:
日期: 2011-2-25
设计(论文)的技术路线及预期目标:
1、技术路线
设计路线主要分为两个部分:
1、主回路(升高电压)
主要由功率开关管、储能电感、滤波电容、开关管和续流二极管组成。
利用无源元件电感和电容的能量储存特性,从输入电压获得能量,暂时把能量以磁场的形式存储在电感中,或者以电场的形式存储在电容之中,然后将其变换到负载,这样就完成升压功能。
2、控制电路(稳定电压)
由于主电路设计输出的电压在输入电压或负载变化时,往往是不稳定的,这时就需要设计一个控制电路来稳定输出电压。
根据主电路电压输出公式,采用脉冲频率调制(PFM)控制方式和脉宽调制(PWM)控制方式都能稳定输出电压,而本设计是采用脉宽调制(PWM)控制方式,保持脉冲的周期不变,通过改变开关管的导通时间,即脉冲的占空比,以实现输出电压的稳定。
也就是采用电压控制型调制方式来稳定输出电压。
这样控制电路主要由误差放大器、PWM比较器、振荡器、驱动电路组成。
其整体设计思路如下图:
通过这样技术路线把设计简单化、模块化,能使电路的制作和调试更加简单,成功的概率大大提高。
2、预期目标。
DCDC开关变换器的建模分析与研究
DCDC开关变换器的建模分析与研究DC-DC开关变换器是一种将直流电能转换为可变电压或可变电流的电力转换设备。
它通过开关管的开关操作,将输入直流电源通过开关操作从电源中提取电能,经过滤波和调节后,输出所需的电压或电流。
DC-DC开关变换器的建模分析与研究主要包括以下几个方面:1.基本电路模型:DC-DC开关变换器一般由开关管、电感、电容和二极管等基本元件组成。
建立这些元件之间的电路连接关系,可以得到DC-DC开关变换器的基本电路模型。
2.状态空间分析:通过建立DC-DC开关变换器的状态空间方程,可以对系统的状态进行描述和分析。
状态空间分析可以帮助研究者深入了解系统的动态特性,比如系统的阻尼、振荡频率等。
状态空间分析还可以进行系统控制设计和参数优化等工作。
3.均衡分析:DC-DC开关变换器在不同工作状态下,系统的电压和电流会有不同的变化特性。
通过对系统的均衡分析,可以确定系统在不同工作状态下的电压、电流等数据。
这对于系统的稳定性分析、能量传输效率的研究以及开发可靠的控制方法等方面都有重要意义。
4.动态响应分析:DC-DC开关变换器在不同负载和输入条件下,系统的动态响应特性会有所不同。
通过对系统的动态响应进行分析,可以了解系统对负载变化和输入电压波动等的适应能力,为系统的控制方法设计提供依据。
5.控制策略研究:DC-DC开关变换器的控制策略研究是建模分析的重要内容。
不同的控制策略可以对系统的性能产生不同的影响。
常用的控制策略包括比例积分控制(PI控制)、模糊控制、模型预测控制(MPC)等。
通过对不同控制策略的比较和分析,可以选择适合特定应用场景的最佳控制策略。
总之,DC-DC开关变换器的建模分析与研究对于深入理解系统的电气特性、设计高效可靠的控制方法以及提高系统的性能都具有重要意义。
在建模分析与研究的过程中,需要考虑系统的基本电路结构、状态空间方程、均衡分析、动态响应特性和控制策略等多个方面的内容,通过综合分析和比较,可以得到对系统性能和工作特性有较好理解的研究成果。
DCDC变换器的设计与制作
第2讲 DC/DC变换电路
一、基本概念
直流变换—将直流电能(DC)转换成另一固 定电压或电压可调的直流电能。 基本的直流变换电路:降压斩波电路、升压 斩波电路、升降压斩波电路、库克变换电路 重点:电路结构、工作原理及主要数量关系
(2)开关管T断开时, R两端电压 uo=0
基本的直流变换电路
iS
T
io
uo R
US
开关管T断开等效电路
开关管IGBT断开控制: UG=0
1.直流变换的基本原理及PWM概念
iS
T
io
uo R
US
基本的直流变换电路
开关管IGBT控制电压
R两端平均电压:
ton Uo U S Ts
控制一周期中导通时间比 例可控制输出平均电压
③混合脉冲宽度调制
u
TS
ton1 t
脉冲周期TS与宽度ton 均改变。
u
ton2 t TS2
广义的脉冲宽度 调制技术包含上 述三种控制方式
三、DC-DC变换技术的设计与应用
1.直流变换的基本原理及PWM概念
iS
T
io
uo R
US
开关管仅两种工作状态: 导通与断开
(1)开关管T导通时, R两端电压 uo=US 开关管IGBT导通条件: UG>0
基本的直流变换电路
iS
T
io
uo R
US
开关管T导通等效电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DC-DC 电源变换器的设计与制作综合实训技术报告姓名:卜宗阳朱峰学号:1004023106 1004023101班级:电子1011班指导老师:何强李从宏提交日期:2011年12月28日目录第一章:概要 (3)第二章: 技术要求、技术参数 (4)第三章: 原理图设制 (6)第四章: 元器件的选择 (7)第五章: 封装、PCB板 (17)第六章:应用范围、发展趋势 (21)第七章:致谢 (22)第八章:参考文献 (23)第九章:附录 (25)第一章:概要DC-DC电源变换器将一个固定的直流电压变换为可变的直流电压,这种技术被应用于无轨电车,地铁列车,电动车的无级变速和控制,同时使上述控制获得加速平稳,快速响应的性能,并能同时收到节约电能的效果。
开关电源以其效率高、功率密度高而在电源领域中占主要地位,为了以更低的功耗获得更高的速度和更加的性能,半导体器件正在向1V 工作电压发展,这也对DC/DC变换器提出了更高的要求。
除了需要增添更多的功能外,还需要延长电池的寿命,并缩小系统体积。
目前仍以PWM型DC/DC产品为主流产品。
DC-DC变换器是通信设备中最常用的功能电路之一,其质量和效率直接影响通信设备的正常运行。
本设计采用功能完善的MC34063控制芯片,设计了DC-DC变换电路,完成从40V~3V的电压变换,为载波机提供了较为理想的直流电源。
具有电路简单,调试方便的优点。
本设计对一种新颖的DC/DC变换器的设计和实现进行了论述,设计实现了输出为±12V/0.1A和3.6V/0.5A的集成DC/DC变换器MC34063。
第二章:技术要求,技术参数DC-DC电源变更换器技术要求:12V/2A 开关切换开关电源28V/0.2A5V/0.8A线性电源5V/1A3.3V/0.5A2V/9VDC-DC电源变更换器技术参数:1.纹波2.Vpp3.电压调整率4.负载调整率5.效率设计技术指标要求:在输入电压为3~40V的条件下:本设计输入电压选择3V。
a.输出电压为±12V时,输出电流为100mA ;输出电压为3.6V时,输出电流为500mA。
b.振荡频率10HZ~100KHZ,本设计振荡频率选择20 KHZ。
c.电压调整率≤1%(输入电压范围为3~40V)。
d.负载调整率≤1%(输入电压3V下,空载到满载)。
e.纹波电压(峰峰值)≤100mV,本设计选择40mV.设计电路要求:此设计在输出电流、高效率、小型化,输出电压的要求:1.需求的输出电流较小,可选择FET内置型;输出电流需要较大时,选择外接FET类型。
2.关于效率有如下考虑:如果需优先考虑重负荷时的纹波电压及消除噪声音,可选择PWM 控制型;如果同时亦需重视低负荷时的效率,即可选择PFM/PWM切换控制型。
3.如果要求小型化,则可选择能使用小型线圈的高频产品。
通过使用高效率的产品,相对可使用较低电感值的线圈。
即使用小型线圈,即使用的是小型线圈也可得到相同的效率及输出电流。
但是因为当DC/DC变换器高频化后由于开关次数随之增加的原因。
开关损失也会增大,从而导致效率会有所降低。
因此效率是由线圈性能提升与开关损失增加两方面折中决定的。
线圈:如果追求高效率,最好选择直流电阻和电感值较小的线圈。
但是如果电感值较小的线圈由于频率较低的DC/DC,就会超过线圈的额定电流,线圈会产生磁饱和现象,引起效率恶化或损坏线圈。
而且如果电感值太小,也会引起纹波电压变大。
所以在选择线圈时,则流向线圈的电流不要超过线圈的额定电流。
4.在输出电压方面,如果输出电压需要达到固定电压以上,或需要不固定的输出电压时,则可选择输出可变的VDD/Vout分离型产品。
5.有力的技术支持工具。
技术支持的方式为2部分:一部分为硬件,包括提供评估线路、外接组件支持;另一部分为提供一些摸板软件以便在实际测试前可以做出评估,节省设计时间。
采用该DC/DC变换器作为主变换电路的直流开关电源具有以下特点:1. 变换电路结构简单,具有明确的工作模式,易于实现模拟或数字控制。
2. 具有升降压和反转功能,正负极性输出,源效应好,能适应大范围的输入电压变化。
3. 仅有一个储能电感,具有可靠性好、效率高、体积小及重量轻等特点。
4. 适用于飞轮储能、电动机制动再生能量回馈、风力发电等直流母线电压变化范围大且需进行直流变换处理的中小功率应用场合。
第三章:原理图设制第四章:元器件选择DC-DC电源变换器的元器件的选择一、三个元件:(1)、开关:无论哪一种DC/DC变换器主回路使用的元件只是电子开关、电感、电容。
电子开关只有快速地开通、快速地关断这两种状态。
只有快速状态转换引起的损耗才小,目前使用的电子开关多是双极型晶体管、功率场效应管,逐步普及的有IGBT管,还有各种特性较好的新式的大功率开关元件。
(2)、电感:电感是开关电源中常用的元件,由于它的电流,电压相位不同,因此理论损耗为零。
电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。
其特点是流过它上的电流有“很大的惯性”。
换句话说,由于“磁通连续性”,电感上的电流必须是连续的,否则将会产生很大的电压尖峰波。
电感为磁性元件,自然有磁饱和的问题,多数情况下,电感工作在线性区,此时电感值为一常数,不随端电压与流过的电流而变化。
但是,在开关电源中有一个不可忽视的问题,就是电感的绕线所引起的两个分布参数(或称寄生参数)的现象。
其一是绕线电阻,这是不可避免的;其二是分布式杂散电容,随绕线工艺、材料而定。
杂散电容在低频时影响不大,随频率提高而渐显出来,到一频率以上时,电感也许变成电容的特性了。
如果将杂散电容集成为一个,则从电感的等效电路可看出在一角频率后的电容性。
(3)、电容:电容是开关电源中常用的元件,它与电感一样也是储存电能和传递电能的元件。
但对频率的特性却刚好相反。
应用上,主要是“吸收”纹波,具平滑电压波形的作用。
实际上的电容并不是理想的元件。
电容器由于有介质、接点与引线,形成一个等效串联内电阻ESR。
这种等效串联内电阻在开关电源中小信号控制上,以及输出纹波抑制的设计上,起着不可忽视的作用。
另外电容等效电路上有一个串联的电感,它在分析电路器滤波效果时非常重要。
有时加大电容值并不能使电压波形平直,就是因为这个串联寄生电感起着副作用。
电容的串联电阻与接点和引出线有关,也与电解液有关。
常见铝电解电容的成分为AL2O3,导电率比空气的大七倍,为了能提高电容量,把铝箔表面做成有规律的凸凹不平状,使氧化膜表面积加大,加入的电解液可在凸凹面上流动。
普通的铝电解电容在高频脉动电流大幅度增加下,高频阻抗温度上升较大,成了开关电源长寿命的瓶颈。
所谓好电容耐反波电流,耐温升,ESR值小。
电容电解液受温度影响,温度升高,电阻减小,即电容串联电阻减小,则是理想的。
温度升高,等效串联电阻加大,导致电容寿命减短,这是普通铝电解电容的缺点。
为改善这一缺点,将电解液覆盖在氧化膜表面后将其干燥形成固体式电解质电容,即“钽电容”。
二、器件选择要点:只如果外接开关管,最好选择开关三极管或功率MOS 管,注意耐压和功耗。
如果开关频率很高,电感可选用多线并绕的,以降低趋肤效应的影响。
续流二极管一般选恢复时间短、正向导通电压小的肖特基二极管,但要注意耐压。
如果输出电压很小(零点几伏),就必须使用MOS管续流。
输出滤波电容一般使用高频电容,可减小输出纹波同时降低电容的温升。
在取样电路的上臂电阻并一个0.1~1μf电容,可以改善瞬态响应。
电源设计的器件选择需要注意以下几点:(1)选择设计灵活性較大的DC/DC变换器,扩大电路设计的范围。
(2)低消耗电流、高效率可延长电池的使用寿命。
(3)可使用小型的外接元器件,实现产品小型化。
(4)有力的技术支持工具。
三、元器件的选用:因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。
元器失效主要集中在以下四个方面。
质量问题造成的失效与工作应力无关。
质量不符合的可以通过严格的检查加以剔除,在工程应用时应选用定点生产厂家的成熟产品。
(1)元器件可靠问题:元器件可靠性问题,即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。
在一定的应力水平下,元器件的失效率会大大下降。
电源设备主要元器件的筛选试验一般要求:a.电阻在湿温下按技术条件进行100%的测试,剔除不合格品。
b.普通电容器. 按技术条件进行100%的测试,剔除不合格品。
c.接插件按技术条件抽样检测各种参数。
d.半导体器件按以下程序进行筛选:目检、初测、高温储存、高低温冲击、电功率老化、高温测试、低温测试、常温测试。
筛选结束后应计算剔除率:Q=n/N*100%式中:N——受试样品总数; n——被剔除的样品数。
如果Q超过标准规定的上限值,则本批元器件全部不准上机,并按规定处理。
(2) 设计问题:首先是恰当地选用合适的元器件:a.尽量选用硅半导体器件,少用或不用锗半导体器件。
b.开关管选用MOSFET能简化驱动电路,减少损耗。
c.输出整流管尽量采用具有软恢复特性的二极管。
d.应选择金属封装、陶瓷封装、玻璃封装的器件。
禁止选用塑料封装的器件e.集成电路必须是一类品或符合MIL-M-38510、MIL-S-19500标准封装B-1 以上质量等级的军品。
f.设计时尽量少用继电器,确有必要时选用接触良好的密封继电器。
g.则上不选用继电器,必须保留的应进行固封处理。
h.吸收电容器与开关整流管的距离应当接近,因流过高频电流,鼓易升温,所以要求这些电容器具有高频低损耗和耐高温的特性。
i.多采用集成电路,减少分离器件的数目。
(1)如何选择电感:DC-DC变换器的本质是将电能以磁通量的形式储存在电感中,然后再将该能量转移到负载上。
正因为储存的是磁通量,而不是充电电荷,所以只要选择恰当的开关策略,就能使输出电压比输入电压高、低或者极性相反。
为实现高效的能量转移,配合MC34063使用的电感应该满足三个要求:首先,电感的感应系数应当很小,以保证在最差情况下(输入电压最低、功率开关打开的时间最短)电感中能存储到足够的能量,但感应系数也不是越小越好,因为还要保证在另一极端情况下(输入电压最高、开关打开时间最长)MC34063及电感的最大(开关)电流指标不至于被突破;其次,电感必须能够存得下需求的磁通量,也就是电感不能进入饱和状态。
在基于MC34063的常规设计中,可以使用铁氧体工艺制造的可表面贴装的小型电感,只要它们满足饱和电流为300mA~1A,同时直流电阻小于0.4Ω的条件;最后,电感的直流电阻越小越好,以保证电感线圈不会消耗过多的能量,因为这会使电感产生过多热量。
在选用电感时还应考虑到电磁干扰的问题,一般圆弧形状的电感对减少电磁干扰有比较好的作用。