圆片级封装介绍(wafer level packaging)

合集下载

晶圆级封装产业

晶圆级封装产业

晶圆级封装产业(WLP)晶圆级封装产业(WLP),晶圆级封装产业(WLP)是什么意思一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。

而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。

WLP一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。

而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。

WLP封装具有较小封装尺寸(CSP)与较佳电性表现的优势,目前多用于低脚数消费性IC的封装应用(轻薄短小)。

晶圆级封装(WLP)简介常见的WLP封装绕线方式如下:1. Redistribution (Thin film), 2. Encapsulated Glass substrate, 3. Goldstud/Copper post, 4. Flex Tape等。

此外,传统的WLP封装多采用Fan-in 型态,但是伴随IC信号输出pin 数目增加,对ball pitch的要求趋于严格,加上部分组件对于封装后尺寸以及信号输出脚位位置的调整需求,因此变化衍生出Fan-out 与Fan-in + Fan-out 等各式新型WLP封装型态,其制程概念甚至跳脱传统WLP封装,目前德商英飞凌与台商育霈均已经发展相关技术。

二、WLP的主要应用领域整体而言,WLP的主要应用范围为Analog IC(累比IC)、PA/RF(手机放大器与前端模块)与CIS(CMOS Ima ge Sensor)等各式半导体产品,其需求主要来自于可携式产品(iPod, iPhone)对轻薄短小的特性需求,而部分NOR Flash/SRAM也采用WLP封装。

封装技术发展历程

封装技术发展历程

封装技术发展历程电子封装概念(集成电路)电子封装是半导体器件制造的最后一步,其是指将制作好的半导体器件放入具有支持、保护的塑料,陶瓷或金属外壳中,并于外界驱动电路以及其他电子元器件相连这一过程。

经过封装后,半导体器件将可在更高的温度环境中工作,抵御物理损害与化学腐蚀,不仅能保护内置器件而且能起到电气连接、外场屏蔽、尺寸过渡、散热防潮、规格化和标准化等多种功能。

电子封装技术发展传统电子封装从最初的三极管直插时期后开始产生,其过程如下:将圆晶切割为晶粒(Die)后,使晶粒贴合到相应的基架板触垫(Leadframe Pad)上,再利用导线将晶片的结合焊盘与基板的引脚(Wire Bond)相连,实现电气连接,最后用外壳小心加以保护。

典型的封装方式有:DIP,SOP,BGA等。

DIP(Dual ln-line Package)双列直插形式封装技术,是最早模集成电路(IC)采用的封装技术,具有成本低廉的优势,其引脚数一般不超过100个,适合小型且不需接太多线的芯片。

DIP技术代表着80年代的通孔插入安装技术,但由于DIP大多采用塑料,散热效果较差,无法满足现行高速芯片的要求,目前这种封装市场逐渐萎缩。

Small Outline Package(SOP)小外形封装技术和 Quad Flat Package(QFP)扁平封装技术代表了表面安装器件时代。

这种技术提高了管脚数和组装密度,是封装技术的一次革命。

正是这类封装技术支撑着日本半导体工业的繁荣,当时封装技术由日本主宰,确定了80%的收缩原则,同时也是金属引线塑料封装的黄金时代。

90年代进入了Ball Grid Array(BGA)焊球阵列封装及 Chip Scale Package(CSP)芯片尺寸封装技术时代。

其中,BGA封装主要是将I/O端与基板通过球柱形焊点阵列进行封装,通常做表面固定使用。

90年代后,美国超过日本占据了封装技术的主导地位。

美国加宽了引线节距并采用了底部安装引线的BGA封装,引线节距的扩大极大地促进了安装技术的进步和生产效率的提高。

晶圆级封装: 热机械失效模式和挑战及整改建议

晶圆级封装: 热机械失效模式和挑战及整改建议

晶圆级封装: 热机械失效模式和挑战及整改建议2022/4/23WLCSP(Wafer Level Chip Scale Packaging,晶圆级封装)的设计意图是降低芯片制造成本,实现引脚数量少且性能出色的芯片。

晶圆级封装方案是直接将裸片直接焊接在主板上。

本文旨在于介绍这种新封装技术的特异性,探讨最常见的热机械失效问题,并提出相应的控制方案和改进方法。

晶圆级封装技术虽然有优势,但是存在特殊的热机械失效问题。

很多实验研究发现,钝化层或底层破裂、湿气渗透和/或裸片边缘离层是晶圆级封装常见的热机械失效模式。

此外,裸片边缘是一个特别敏感的区域,我们必须给予更多的关注。

事实上,扇入型封装裸片是暴露于空气中的(裸片周围没有模压复合物覆盖),容易被化学物质污染或发生破裂现象。

所涉及的原因很多,例如晶圆切割工序未经优化,密封环结构缺陷(密封环是指裸片四周的金属花纹,起到机械和化学防护作用)。

此外,由于焊球非常靠近钝化层,焊球工序与线路后端栈可能会相互影响。

本文采用FEM(Finite Element Method,有限元法)方法分析应力,重点放在扇入型封装上。

我们给出了典型的应力区域。

为降低机械失效的风险,我们还简要介绍了晶圆级封装的特异性。

在描述完机械失效后,我们还对裸片和钝化边缘进行了全面的分析。

分析结果显示,钝化边缘产生最大应力,这对沉积策略(直接或锥体沉积方法)和边缘位置提出了要求。

此外,研究结果还显示,必须降低残余应力,并提高BEoL(线路后端)的钝化层厚度。

1. 前言和背景晶圆级封装的设计意图是降低芯片制造成本,实现引脚数量少且性能出色的芯片。

晶圆级封装方案是直接将裸片直接焊接在主板上。

双层电介质、RDL(ReDistribution Layer, 重新布线层)、UBM (可焊接薄层,用于焊球底部金属化)和焊球都位于标准BEoL栈之上。

因此,这些层级扩展了传统晶片制程(多层沉积薄膜配合光刻工艺)范围。

晶圆级扇出型封装工艺详解

晶圆级扇出型封装工艺详解

扇出型晶圆级封装技术采取在芯片尺寸以外的区域做I/O接点的布线设计,提高I/O接点数量。

采用RDL工艺让芯片可以使用的布线区域增加,充分利用到芯片的有效面积,达到降低成本的目的。

扇出型封装技术完成芯片锡球连接后,不需要使用封装载板便可直接焊接在印刷线路板上,这样可以缩短信号传输距离,提高电学性能。

扇出型晶圆级封装技术的优势在于能够利用高密度布线制造工艺,形成功率损耗更低、功能性更强的芯片封装结构,让系统级封装(System in a Package, SiP)和3D芯片封装更愿意采用扇出型晶圆级封装工艺。

第一代FOWLP技术是由德国英飞凌(Infineon)开发的嵌入式晶圆级球栅阵列(Embedded Wafer Level Ball Grid Array, eWLB)技术(见图1),随后出现了台积电(TSMC)的整合式扇出型晶圆级封装(Integrated Fan-Out Package, InFO)技术和飞思卡尔(Freescale)的重分布芯片封装(Redistributed Chip Package, RCP)技术等。

由于其成本相对较低,功能性强大,所以逐步被市场接受,例如苹果公司(Apple)已经在A12处理器采用扇出型封装进行量产。

同时其不仅在无线领域发展迅速,现在也正渗透进汽车和医疗应用,相信未来我们生活中的大部分设备都会采用扇出型晶圆级封装工艺。

图1 英飞凌eWLB工艺技术示例图传统的封装技术如倒装封装、引线键合等,其信号互连线的形式包括引线、通孔、锡球等复杂的互连结构。

这些复杂的互连结构会影响芯片信号传输的性能。

在扇出型封装中(见图2),根据重布线的工序顺序,主要分为先芯片(Chip first)和后芯片(Chip last)两种工艺,根据芯片的放置方式,主要分为面朝上(Face up)和面朝下(Face down)两种工艺,综合上述四种工艺,封装厂根据操作的便利性,综合出以下三种组合工艺,分别是面朝上的先芯片处理(Chip first-face up)、面朝下的先芯片处理(Chip first-face down)和面朝下的后芯片处理(Chip last-face down)。

晶圆级封装Bump制造工艺关键点解析

晶圆级封装Bump制造工艺关键点解析

1.引言射频前端(RFFE,Radio Frequency Front-End)模组国内外手机终端中广泛应用。

它将功率放大器(PA,Power Amplifier)、开关(Switch)、低噪声放大器LNA(Low Noise Amplifier)、滤波器(Filter)、无源器件等集成为一个模组,从而提高性能,并减小封装体积。

然而,受限于国外专利以及设计水平等因素,国产滤波器的份额相当低。

在模块集成化的趋势下,国内射频巨头在布局和生产滤波器。

声学滤波器可分为声表面滤波器和体声波滤波器,其中声表面滤波器可根据适用的频率细分为SAW、TC-SAW和IHP-SAW。

体声波滤波器适用于较高的频段,可细分为BAW、FBAR、XBAR等。

无论是SAW(Surface Acoustic Wave filter)还是BAW(Bulk Acoustic Wave Filter),均是在晶圆级封测后以倒装芯片的工艺贴装在模组上。

在晶圆级封装工艺中,Bump制造是相当重要的一道工序,因此本文将浅谈滤波器晶圆级封装(Wafer Level package)中Bump制造的关键点。

2.SAW现状当前业内常见的几种SAW filter Wafer Bumping工艺如下:1)、通过打线工艺在晶圆的UBM(Under Bump Metal)上植金球。

2)、通过钢网印刷工艺在UBM上印刷锡膏,再经过回流焊成球。

3)、先在晶圆的UBM上印刷助焊剂,将锡球放到UBM上,再经过回流焊完成植球。

3.植球工艺本文重点介绍第二种工艺。

通过对印刷锡膏方案的剖析发现,在Bumping工艺中Bump的高度和共面度(同一颗芯片上Bump高度最大值最小值之差,差值越低越好)是最重要的关键指标(如图1.1、图1.2)。

下面从钢网的工艺和设计、锡膏的特性等方面进行分析。

4.钢网印刷钢网印刷的目的是使锡膏材料通过特定的图案孔沉积到正确的位置上。

首先,将锡膏放到钢网上,再用刮刀使其通过钢网开孔沉积到焊盘上。

晶圆级封装(Fan

晶圆级封装(Fan

晶圆级封装(Fan便携式及手持电子设备的小型化,激发了传统BGA和CSP封装往更小尺寸的发展趋势。

芯片级封装(Chip Scale Package,CSP),是芯片面积与封装面积之比接近1:1的一种封装形式,而晶圆级封装(Wafer Level Package,WLP),可以认为是一种经过改进和提高的CSP,广泛应用于智能手机、可穿戴设备等领域的集成电路,如功率放大器、电源模块、射频滤波器、存储器及逻辑电路等。

晶圆级封装,以晶圆片为加工对象,在晶圆片上同时对多个芯片进行全部的封装及测试,最后再切割成单个器件,使用时直接贴装到基板或印刷电路板上。

由于晶圆级封装的封装尺寸与基板或印制电路板上安装面积相同,所以WLP通常被认为是集成电路封装的最终形式,10mm2的芯片,如采用典型的QFP扁平封装占据约900mm2的安装面积,载带自动焊封装(Tape Automated Bonding,TAB是将芯片组装在金属化柔性高分子聚合物载带上的封装技术)、板上芯片封装(Chip On Board,COB是将晶圆直接安装到印制电路板,然后用键合丝实现互联,再用有机材料涂覆到晶圆上完成后期封装)分别占据550mm2、300mm2,而WLP只需约100mm2的安装面积,这就表明WLP可以使整机模块尺寸更小、重量更轻、集成度更高,同时成本也更低。

WLP主要用于具有以下功能的集成电路:o低引脚数(≤200)o焊球间距范围为0.50mm、0.40mm、0.35mm和0.30mmo小尺寸芯片(≤5mm*5mm)o低成本、低端o大批量使用晶圆级封装后的体积与集成电路的裸芯片基本一致,并且整合了芯片的前端和后端工艺,封装成本也随着晶圆尺寸(圆片级封装的成本与每个圆片上的芯片数量密切相关,晶圆尺寸的增加,每个晶圆就可以生产更多的IC,芯片数越多,晶圆级封装的成本也就越低)的增加或IC封装尺寸的降低而减少晶圆级封装以晶圆形式的批量生产工艺进行制造,加工效率高,与其它封装类型相比,尺寸也较小,很好的满足便携式电子设备尺寸不断减小的需求;在传输性能上,有效增加了数据传输的频宽并减少了信号损耗,提升了数据传输的速度和稳定性;在散热性能上,由于WLP没有像传统封装的塑封料或陶瓷包封,所以散热能力效果更优;另外,晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将大大提高设计效率,从芯片制造、封装再到产品发往用户的整个过程中,周期也会大幅缩减晶圆级封装(Fan-in WLP)工艺技术从封装技术特点上看,晶圆级封装主要分为Fan-in和Fan-out两种形式。

封装技术介绍

封装技术介绍

塑料封装技术摘要塑料封装是指对半导体器件或电路芯片采用树脂等材料的一类封装,塑料封装一般被认为是非气密性封装。

它的主要特点是工艺简单、成本低廉、便于自动化大生产。

塑料产品约占IC封装市场的95%,并且可靠性不断提高,在3GHz以下的工程中大量使用。

标准塑料材料主要有约70%的填充料、18%环氧树脂、外加固化剂、耦合剂、脱模剂等。

各种配料成分主要取决于应用中的膨胀系数、介电常数、密封性、吸湿性、强韧性等参数的要求和提高强度、降低价格等因素。

Plastic packaging is a means of semiconductor devices or circuit chips such as resin used for a class of packaging materials, plastic packaging generally found to be non-hermetic package. Its main feature is a simple process, low-cost and easy to automate large-scale production. IC packaging plastic products account for about 95% of the market, and continuously improve the reliability, and 3GHz in the following widely used in the project. Standard plastic materials, about 70% of the principal filler, epoxy resin and 18%, plus curing agent, coupling agent, such as release agent. The main components of a variety of ingredients depending on the application of expansion coefficient, dielectric constant, tightness, moisture absorption, strength and toughness, and other parameters of the requirements and increase the intensity, lower prices and other factors.关键字塑料封装技术发展引言电子封装技术是微电子工艺中的重要一环,通过封装技术不仅可以在运输与取置过程中保护器件还可以与电容、电阻等无缘器件组合成一个系统发挥特定的功能。

实现先进晶圆级封装技术的五大要素

实现先进晶圆级封装技术的五大要素

实现先进晶圆级封装技术的五大要素追溯芯片封装历史,将单个单元从整个晶圆中切割下来再进行后续封装测试的方式一直以来都是半导体芯片制造的“规定范式”。

然而,随着芯片制造成本的飞速提升以及消费市场对于芯片性能的不断追求,人们开始意识到革新先进封装技术的必要性。

对传统封装方式的改革创新,促成了晶圆级封装技术(Wafer Level Package,WLP)的“应运而生”。

晶圆级封装技术可定义为:直接在晶圆上进行大部分或全部的封装、测试程序,然后再进行安装焊球并切割,产出一颗颗的IC 成品单元(如下图所示)。

(图片来源:长电科技)晶圆级封装技术与打线型(Wire-Bond)和倒装型(Flip-Chip)封装技术相比,能省去打金属线、外延引脚(如QFP)、基板或引线框等工序,所以具备封装尺寸小、电气性能好的优势。

封装行业的领跑者们大多基于晶圆模式来批量生产先进晶圆级封装产品,不但可利用现有的晶圆级制造设备来完成主体封装制程的操作,而且让封装结构、芯片布局的设计并行成为现实,进而显著缩短了设计和生产周期,降低了整体项目成本。

先进晶圆级封装的主要优势包括:1.缩短设计和生产周期,降低整体项目成本;2.在晶圆级实现高密度I/O 互联,缩小线距;3.优化电、热特性,尤其适用于射频/微波、高速信号传输、超低功耗等应用;4.封装尺寸更小、用料更少,与轻薄、短小、价优的智能手机、可穿戴类产品达到完美契合;5.实现多功能整合,如系统级封装(System in Package,SiP)、集成无源件(Integrated Passive Devices,IPD)等。

需要强调的一点是,与打线型封装技术不同,用晶圆级封装技术来实现腔内信号布线(Internal Signal Routing)有多个选项:晶圆级凸块(Wafer Bumping)技术、再分布层(Re-Distribution Layer)技术、硅介层(Silicon Interposer)技术、硅穿孔(Through Silicon Via)技术等。

晶圆级封装技术

晶圆级封装技术

封装加工效率很高,它以圆片形式的批量生产工艺进行制造; 具有倒装芯片的优点,即轻、薄、短、小; 圆片级封装生产设备费用低,可利用圆片的制造设备,无须投资另建
新的封装生产线; 圆片级封装的芯片设计和封装设计可以统一考虑、并同时进行,这将
提高设计效率,减少设计费用; 圆片级封装从芯片制造、封装到产品发往用户的整个过程中,大大减
不同的WLP 结构
第三种WLP 结构如图(c)所示,是在图(b)结构的基础 上,添加了UBM 层。由于添加了这种UBM 层,相应 增加了制造成本。这种UBM 能稍微提高热力学性能。
图(d)所示的第四种WLP 结构,采用了铜柱结构, 首先电镀铜柱,接着用环氧树脂密封。
扩散式WLP(fan-out WLP)
所示为典型的晶圆凸点制作 的工艺流程。 首先在晶圆上完成UBM 层 的制作。然后沉积厚胶并曝 光,为电镀焊料形成模板。 电镀之后,将光刻胶去除并 刻蚀掉暴露出来的UBM 层。 最后一部工艺是再流,形成 焊料球。
电镀技术可以实现很窄的凸点节 距并维持高产率。并且该项技术 应用范围也很广,可以制作不同 尺寸、节距和几何形状的凸点, 电镀技术已经越来越广泛地在晶 圆凸点制作中被采用,成为最具 实用价值的方案。
晶圆级封装(WLP)
晶圆级封装简介 晶圆级封装基本工艺 晶圆级封装的研究进展和发展趋势
晶圆级封装(Wafer Level Package,WLP)是以BGA技术为基 础,是一种经过改进和提高的CSP技术。有人又将WLP称为圆片 级—芯片尺寸封装(WLP-CSP)。圆片级封装技术以圆片为加 工对象,在圆片上同时对众多芯片进行封装、老化、测试,最后 切割成单个器件,可以直接贴装到基板或印刷电路板上。它可以 使封装尺寸减小至IC 芯片的尺寸,生产成本大幅度下降。

晶圆级封装(WLP)方案(二)

晶圆级封装(WLP)方案(二)

晶圆级封装(WLP)方案一、实施背景随着微电子行业的快速发展,传统的封装技术已经无法满足市场对高性能、高集成、低成本及更快上市时间的需求。

在此背景下,晶圆级封装(Wafer Level Packaging,WLP)技术应运而生,成为微电子行业未来的重要发展方向。

WLP技术在提高封装密度、降低成本、缩短上市时间等方面具有显著优势,对于推动产业结构改革具有重大意义。

二、工作原理晶圆级封装(WLP)是一种将集成电路裸芯片直接封装在晶圆上的一种技术。

它利用先进的薄膜制造和晶圆加工技术,将芯片与晶圆相结合,形成一个完整的封装体。

WLP技术具有以下特点:1.高集成度:WLP技术可将多个裸芯片集成在一个封装体内,实现更高的集成度。

2.低成本:WLP技术简化了封装流程,减少了封装材料和加工成本,实现了更低的成本。

3.快速上市:WLP技术缩短了封装周期,提高了生产效率,从而加快了产品上市时间。

三、实施计划步骤1.需求分析:对市场需求进行调研,明确WLP技术的应用领域和市场需求。

2.技术研发:开展WLP技术研发,掌握核心技术,提升自主创新能力。

3.设备采购:根据技术研发需求,采购必要的设备和材料。

4.样品制作:制作WLP样品,对样品进行检测和验证。

5.批量生产:根据市场需求,进行批量生产。

6.市场推广:开展市场推广活动,扩大WLP技术的市场份额。

四、适用范围WLP技术适用于以下领域:1.通信:WLP技术可用于制造高频、高速的通信芯片,如5G通信、光通信等。

2.汽车:WLP技术可用于制造高可靠性的汽车电子器件,如发动机控制芯片、安全气囊控制芯片等。

3.医疗:WLP技术可用于制造高精度的医疗电子设备,如监护仪、超声等。

4.消费电子:WLP技术可用于制造小型、高性能的消费电子产品,如手机、平板电脑等。

五、创新要点1.技术创新:WLP技术是一种先进的封装技术,需要掌握核心技术,不断提升自主创新能力。

2.模式创新:WLP技术改变了传统的封装模式,实现了更高效、更低成本的生产模式。

晶圆级封装(WLP)可靠性标准及试验方法综述

晶圆级封装(WLP)可靠性标准及试验方法综述

引言随着集成电路技术的不断发展,芯片工艺制程的典型线宽不断缩小,芯片集成度越来越高,功能越来越复杂,这使得芯片表面的引出端数目和密度急剧地增加,传统的封装形式无法满足这种高密度芯片的封装需求,晶圆级封装(WLP :Wafer Level Package )技术因此产生。

具体来说,WLP 是通过类似于晶圆流片的方式,以圆片的形式进行芯片封装,具体的工艺手段包括磁控溅射、光刻和湿法等。

WLP 通过再布线实现单芯片的引出端重新分布或者多芯片的高密度互联,再通过细节距的凸点制备技术实现高密度外连引出端。

WLP 的典型再布线尺寸为2~30μm ,能够很好地衔接目前多引出端芯片封装需求。

WLP 具有互连密度高、传输距离短等优势,不仅可以极大地减小器件的尺寸和重量,还能提高产品性能。

WLP 样片如图1所示。

目前WLP 已广泛地应用于各类电子产品中,产品的可靠性也是关注的重点,因此统一的可靠性考核标准和试验方法就非常重要,目前对于WLP 的可靠性,业内的权威标准体系还没有针对性规范,但是,由于技术的广泛应用,主流厂商各自制定了内控标准,而参考的文件均为业内针对微电子器件的通用标准和规范[1]。

本文针对WLP 可靠性标准问题,分别论述目前WLP 常见的失效问题,介绍当前图1WLP 样片晶圆级封装(WLP )可靠性标准及试验方法综述吉勇,李杨,朱家昌,朱召贤(中国电子科技集团公司第五十八研究所,江苏无锡214035)摘要:随着晶圆级封装的广泛应用,其可靠性也受到越来越多的重视。

首先,介绍了典型晶圆级封装结构,并针对该结构介绍了常见的晶圆级封装失效问题,包括芯片碎裂、再布线分层和凸点剪切力试验异常等;然后,介绍了目前国内外晶圆级封装标准的现状,指出目前仅有部分标准涉及晶圆级封装,缺少针对性标准;最后,通过对国内外军民领域考核标准的分析,给出了典型的晶圆级封装考核方法,对今后晶圆级封装的可靠性考核方法的制定及可靠性提升具有一定的指导作用。

半导体封装的基本定义和内涵 电子封装的工程的六个阶段

半导体封装的基本定义和内涵 电子封装的工程的六个阶段

(Finish Goods)入库所组成。

半导体器件制作工艺分为前道和后道工序,晶圆制造和测试被称为前道(Front End)工序,而芯片的封装、测试及成品入库则被称为后道(Back End)工序,前道和后道一般在不同的工厂分开处理。

前道工序是从整块硅圆片入手经多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体元件及电极等,开发材料的电子功能,以实现所要求的元器件特性。

后道工序是从由硅圆片分切好的一个一个的芯片入手,进行装片、固定、键合联接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性,并便于与外电路联接。

1.半导体制造工艺和流程1.1晶圆制造晶圆制造主要是在晶圆上制作电路与镶嵌电子元件(如电晶体、电容、逻辑闸等),是所需技术最复杂且资金投入最多的过程。

以微处理器为例,其所需处理步骤可达数百道,而且所需加工机器先进且昂贵。

虽然详细的处理程序是随着产品种类和使用技术的变化而不断变化,但其基本处理步骤通常是晶圆先经过适当的清洗之后,接着进行氧化及沉积处理,最后进行微影、蚀刻及离子植入等反复步骤,最终完成晶圆上电路的加工与制作。

1.2 晶圆测试晶圆经过划片工艺后,表面上会形成一道一道小格,每个小格就是一个晶片或晶粒(Die),即一个独立的集成电路。

在一般情况下,一个晶圆上制作的晶片具有相同的规格,但是也有可能在同一个晶圆上制作规格等级不同的晶片。

晶圆测试要完成两个工作:一是对每一个晶片进行验收测试,通过针测仪器(Probe)检测每个晶片是否合格,不合格的晶片会被标上记号,以便在切割晶圆的时候将不合格晶片筛选出来;二是对每个晶片进行电气特性(如功率等)检测和分组,并作相应的区分标记。

1.3 芯片封装首先,将切割好的晶片用胶水贴装到框架衬垫(Substrate)上;其次,利用超细的金属导线或者导电性树脂将晶片的接合焊盘连接到框架衬垫的引脚,使晶片与外部电路相连,构成特定规格的集成电路芯片(Bin);最后对独立的芯片用塑料外壳加以封装保护,以保护芯片元件免受外力损坏。

CSP技术简介

CSP技术简介

CSP技术简介摘要在电子应用技术智能化,多媒体化,网络化的发展趋势下,CSP技术应运而生。

随着各学科领域的协调发展,CSP在90年代得到迅速发展和普及,并成为电子装联技术的主流。

它不仅变革了传统电子电路组装的概念,其密度化,高速化,标准化等特点在电路组装技术领域占了绝对的优势。

对于推动当代信息产业的发展起了重要的作用,并成为制造现代电子产品必不可少的技术之一。

目前,它已经浸透到各个行业,各个领域,应用十分广泛。

目录一、 CSP技术介绍1.CSP技术的概念二、CSP技术的特点及分类1.CSP技术的特点2.CSP的基本结构及分类3.CSP封装技术展望三、CSP技术的应用1.CSP技术的障碍2. 电路板装配评估与试验载体设计3.CSP封装概况四、结论一、CSP技术介绍1.CSP技术的概念对于CSP,有多种定义:日本电子工业协会把CSP定义为芯片面积与封装体面积之比大于80%的封装;美国国防部元器件供应中心的J-STK-012标准把CSP定义为LSI封装产品的面积小于或等于LSI芯片面积的120%的封装;松下电子工业公司将之定义为LSI封装产品的边长与封装芯片的边长的差小于Imm的产品等。

这些定义虽然有些差别,但都指出了CSP产品的主要特点:封装体尺寸小。

如今人们常见的一种关键技术是CSP(芯片尺寸封装)。

CSP技术的魅力在于它具有诸多优点,如减小封装尺寸、增加针数、功能∕性能增强以及封装的可返工性等。

CSP的高效优点体现在:用于板级组装时,能够跨出细间距(细至0.075mm)周边封装的界限,进入较大间距(1,0.8,0.75,0.5,0.4mm)区域阵列结构。

已有许多CSP器件在消费类电信领域应用多年了,人们普遍认为它们是SRAM与DRAM、中等针数ASIC、快闪存储器和微处理器领域的低成本解决方案。

CSP可以有四种基本特征形式:即刚性基、柔性基、引线框架基和晶片级规模。

CSP技术可以取代SOIC和QFP器件而成为主流组件技术。

晶圆级封装全解

晶圆级封装全解

WLP 在3D 叠层封装中的应用
TSV一般采用Cu 填充。由 于Cu 和Si 的热膨胀系数不 同,TSV 在热循环过程中 存在着热机械可靠性问题。 高密度的TSV,要进行通 孔的完全填充;中等密度 的TSV,为提高可靠性、 节省工艺时间和降低成本, 不采用铜的完全填充,而 是用电化学沉积电镀薄层 铜衬里以保证电学连接, 剩余的部分则采用聚合物 填充。

封装加工效率高,它以圆片形式的批量生产工艺进行制造; 具有倒装芯片封装的优点,即轻、薄、短、小; 圆片级封装生产设施费用低,可充分利用圆片的制造设备,无须投资 另建封装生产线; 圆片级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提 高设计效率,减少设计费用; 圆片级封装从芯片制造、封装到产品发往用户的整个过程中,中间环 节大大减少,周期缩短很多,这必将导致成本的降低; 圆片级封装的成本与每个圆片上的芯片数量密切相关,圆片上的芯片 数越多,圆片级封装的成本也越低。圆片级封装是尺寸最小的低成本 封装。
所示为典型的晶圆凸点制作 的工艺流程。 首先在晶圆上完成UBM 层 的制作。然后沉积厚胶并曝 光,为电镀焊料形成模板。 电镀之后,将光刻胶去除并 刻蚀掉暴露出来的UBM 层。 最后一部工艺是再流,形成 焊料球。
电镀技术可以实现很窄的凸点节 距并维持高产率。并且该项技术 应用范围也很广,可以制作不同 尺寸、节距和几何形状的凸点, 电镀技术已经越来越广泛地在晶 圆凸点制作中被采用,成为最具 实用价值的方案。
凸点制作技术
凸点制作是圆片级封装工艺过 程的关键工序,它是在晶圆片的 压焊区铝电极上形成凸点。圆片 级封装凸点制作工艺常用的方法 有多种, 每种方法都各有其优缺 点, 适用于不同的工艺要求。要 使圆片级封装技术得到更广泛的 应用, 选择合适的凸点制作工艺 极为重要。在晶圆凸点制作中, 金属沉积占到全部成本的50%以 上。晶圆凸点制作中最为常见的 金属沉积步骤是凸点下金属化层 ( UBM)的沉积和凸点本身的 沉积,一般通过电镀工艺实现。

晶圆级扇出型封装技术

晶圆级扇出型封装技术

晶圆级扇出型封装技术晶圆级扇出型封装技术(Wafer-level Fan-out Packaging,简称WLO)是一种先进的封装技术,通过在晶圆级别上进行封装,将芯片和封装材料直接连接,提高了封装效率和可靠性。

本文将详细介绍晶圆级扇出型封装技术的原理、特点以及应用领域。

晶圆级扇出型封装技术是一种在晶圆级别上进行的封装技术,与传统的芯片级封装技术相比,具有更高的集成度和更小的封装尺寸。

它通过将芯片和封装材料直接连接在一起,形成一个整体的封装结构,避免了传统封装中的芯片和封装基板之间的焊接过程,简化了封装流程,提高了封装效率。

晶圆级扇出型封装技术的核心是扇出层,它由一层或多层纳米线组成,用于连接芯片和封装材料。

通过微影技术,可以在晶圆上形成高密度的扇出层,实现多芯片的封装。

扇出层的设计和制备是晶圆级扇出型封装技术的关键,它需要考虑到电气连接、热性能、尺寸一致性等多个方面的要求。

晶圆级扇出型封装技术具有许多独特的特点。

首先,它可以实现高密度封装,将多个芯片封装在一个封装结构中,大大提高了封装效率和集成度。

其次,晶圆级扇出型封装技术可以实现超薄封装,降低了封装的高度,节省了空间。

此外,晶圆级扇出型封装技术还具有良好的热性能和电性能,可以满足高性能芯片的要求。

晶圆级扇出型封装技术在多个领域具有广泛的应用。

首先,它可以应用于移动设备领域,如智能手机、平板电脑等。

由于移动设备对封装尺寸和性能要求较高,晶圆级扇出型封装技术可以满足这些需求。

其次,晶圆级扇出型封装技术还可以应用于高性能计算领域,如人工智能、云计算等。

在这些领域中,晶圆级扇出型封装技术可以提供高密度、高性能的封装解决方案。

此外,晶圆级扇出型封装技术还可以应用于汽车电子、医疗设备等领域,为这些领域的发展提供支持。

晶圆级扇出型封装技术是一种先进的封装技术,通过在晶圆级别上进行封装,提高了封装效率和可靠性。

它具有高密度封装、超薄封装、良好的热性能和电性能等特点,广泛应用于移动设备、高性能计算、汽车电子、医疗设备等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Table of ContentsINFORMATION (1)1 CONTACT2 INTRODUCTION (3)2.1Overview (3)2.2History (3)3 CHOOSING A BUMPING PROCESS (5)3.1Standard Flip Chip – Bump on I/O (5)3.1.1Standard Flip Chip-Bump on I/O Process Summary (6)3.1.2I/O requirements for the SFC-Bump on I/O process (7)3.2Standard Flip Chip--Repassivation (8)3.2.1SFC-Repassivation Process Summary (9)3.3Standard Flip Chip--Redistribution (10)3.3.1SFC-Redistribution Process Summary (10)3.4Spheron TM WLCSP (12)3.4.1Spheron WLP™ Redistribution Process Flow (12)3.5Ultra CSP® (14)3.5.1Ultra CSP Process Summary (14)3.6Elite UBM™, Elite FC™, and Elite CSP™ – Electroless Ni/Au (17)3.6.1Elite UBM™ – Process Flow (17)3.6.2Elite FC™ – Process Flow (18)3.6.3Elite CSP™ – Process Flow (19)3.7Available Solder Alloys (21)3.7.1Basic Physical Properties of Solder Paste Alloys (21)3.7.2Basic Physical Properties of Pre-Formed Solder Ball Alloys (21)3.8Other Services (22)3.8.1Laser Mark (22)3.8.2“In Process” Backgrind (22)3.8.3“Post Process” Backgrind (22)3.8.4Electronic Wafer Yield Maps (23)3.8.5Post Bump Electrical Testing (23)3.8.6Dicing and Packaging (23)4 DESIGN RULES AND GUIDELINES (24)4.1Overview (24)4.2Incoming Wafer Requirements (24)4.2.1Types of Wafers (24)4.2.2SEMI Material Requirements (24)4.2.3Wafer Scribe Requirements (24)4.2.4Wafer Backside Requirements (24)4.2.5Acceptable Wafer Size (24)4.2.6Wafer Edge Exclusion Requirements (25)4.2.7Incoming Wafer Thickness (25)4.3Device Requirements (25)4.3.1Die Size (25)4.3.2Number of Sites Bumped Per Die (25)4.3.3Die Layout (25)4.3.4Unique Die on Wafer (25)4.3.5Types of Passivation (26)4.3.6Types of Final Metal (26)4.3.7Probing (26)4.3.8Ink Dots (26)4.3.9Fuse Links (27)4.3.10Nitride Passivation Openings Not Bumped (27)4.3.11Street Width (27)4.3.12Special Elite UBM, Elite FC, and Elite CSP Device Requirements (27)4.3.13Passivation Opening Sidewalls (28)4.4Alignment Feature Requirements (28)4.5What Information Does FlipChip Need For New Mask Designs? (29)CONSIDERATIONS (30)5 DESIGN5.1Pitch, UBM Size, and Bump Height Relationships (30)5.2Packaging Relationships (31)5.2.1SFC, Repassivation, and Redistribution Package Stand-Off Height (31)5.2.2UltraCSP, Spheron WLP, and EliteCSP Package Dimensions (31)5.2.3WLP Package Stand-Off Heights (32)5.3Printed-Circuit Board Layout (33)5.3.1WL-CSP Stencil and Board Design Parameters (34)5.4Reliability Testing (34)PROPERTIES (35)6 MATERIAL6.1Benzocyclobutene (BCB) (35)6.2Spheron WLP Polymer (36)6.3Solder Alloy Material Properties (37)6.4UBM Metal Properties (37)6.5SFC-Redistribution Trace Electrical Properties (38)6.6Ultra CSP Redistribution Trace Electrical Properties (38)7 GLOSSARY (39)1Contact InformationTo start your relationship with FlipChip, contact the appropriate Sales Representative. Each is an expert at learning the particular needs of your device. In addition, your FlipChip Sales Representative can discuss all aspects of pricing, logistics, cycle time, and answer any other question you may have.Worldwide Sales RepresentativesFred Hickman IIIVice President -- Sales and MarketingFlipChip International, LLCPhoenix, AZ, USA 85034Phone: 602-431-4749E-mail: fred.hickman@AsiaJay HayesSr. Director of Strategic AccountsFlipChip International, LLCMonument, CO, USAPhone: 719-481-6444E-mail: jay.hayes@California and Northwest U.S.A.Jim GrahamRegional Account ManagerFlipChip International, LLCSanta Clara, CA, USAPhone: 408-395-4765Cell: 408-761-0808E-mail: jim.graham@Southwestern U.S.A., Eastern U.S.A., Canada andGeneral Technical InquiresBret TrimmerSr. Account ManagerFlipChip International, LLCPhoenix, AZ, USAPhone: 602-431-4760Cell: 480-643-9034E-mail: bret.trimmer@Central U.S.A.Bruce BowersVice President -- Business Development FlipChip International, LLCPhoenix, AZ, USAPhone: 602-431-6634E-mail: bruce.bowers@EuropeDave McCombDirector of European Business and Sales FlipChip International, LLCHawick, Scotland, UKPhone: +44 1450 373 919E-mail: david.mccomb@EuropeDavid ClarkEuropean Sales EngineerFlipChip International, LLCIpswich, Suffolk, UKPhone: +44 7875 307 633 E-mail: david.ckark@2 Introduction2.1 OverviewThank you for your interest in FlipChip International, LLC for your wafer bumping needs. This guide will take you through the process of deciding which bumping flow is right for you. In addition, the guide will give you the basics of each process flow, incoming wafer requirements, device requirements, material properties, and a glossary, so you may have a better understanding of the bumping process.2.2 HistoryFlipChip International, LLC started out in 1996 as Flip Chip Technologies (FCT), a joint venture between Delco Electronics Systems and Kulicke & Soffa Industries (K&S). Delco brought the patented Flex-On-Cap (or FoC) flip chip process and over 30 years of experience from the automotive industry. K&S added its knowledge and leadership position as the world's largest supplier of semiconductor assembly equipment. By any measure, the company was a huge success. The company’s Flex-on-Cap (FoC) standard flip chip bumping technology quickly became the industry standard for flip chip bumping.In 1998, FCT developed and patented the Ultra CSP® Wafer Level Chip Scale Package (WL-CSP), which quickly became the industry standard for WL-CSP. FlipChip began an aggressive licensing program to bring its unique bumping technology to a broader worldwide market. Today, the semiconductor industry’s packaging heavyweights, including Amkor Technology, Advanced Semiconductor Engineering (ASE), Siliconware (SPIL), and STATS ChipPAK license and use FlipChip’s bumping technology.In 2001, K&S acquired Delco’s remaininginterest in FCT and we became the Flip ChipDivision of Kulicke & Soffa. In 2004,RoseStreet Labs, LLC, a private research anddevelopment company based in Phoenix,completed the acquisition of the assets of theFlip Chip Division from Kulicke & Soffa, throughits newly formed subsidiary -- FlipChipInternational, LLC. In early 2005, FCI acquiredIC Services, which became the Die SalesDivision of FCI (or FCI-DSD). The Die SalesDivision continues its long tradition of providingwafer thinning, dicing, Automated OpticalInspection (AOI), Waffle Pack, and Tape & Reelservices.In 2005 FlipChip acquired a license to produce Electroless Ni/Au from the Fraunhofer/IZM Institute of Berlin. The initial target applications of E-less Ni/Au are high temperature power devices and low cost RFID applications. The new process was in commercial production in 2006.In 2006, FlipChip announced that it had entered into a joint venture with Millennium Microtech to form FlipChip Millennium Shanghai (FCMS). FCMS opened in March of 2007 and provides “Turn-Key” wafer bumping and die packaging services, focusing on the Asian market.In 2007, FlipChip entered into strategic partnerships with several domestic testing houses to provide Electrical Testing as part of Turn-Key wafer processing.In addition to bumping services, FlipChip has an aggressive program to develop and generate intellectual property for future implementation at FlipChip and for our licensee’s. Our commitment to leadership and quality in wafer bumping solutions continues, ensuring that FlipChip remains the leader in developing, and bringing to market, the latest bumping technology.The main bumping facility for FlipChip is located in the World Headquarters building in Phoenix, Arizona, USA. We have a state of the art, 16,000-ft2 (4700 m2) class 1000 clean room. FlipChip is ISO9001:2000 and ISO14001 certified.FCI World Headquarters –- Phoenix, AZ Die Sales Division -– Tempe, AZFCMS Bumping Facility -- Shanghai, China RoseStreet Labs Facility -- Phoenix, AZ3 Choosing a Bumping ProcessHere we look at the different bumping services offered by FlipChip. To make it easy, we have broken our services into the different processes. Each one is perfect for a different bumping situation, from the simplest to the most complex. Look these over and decide which process will meet your needs. If you still can’t decide, give us a call! We’ll be glad let you know which process will work best for you. We are experts at matching up a standard process flow to your device. Keep in mind that we are a development driven engineering organization. For unusual devices, we can often design a custom process flow that will completely meet your needs.3.1 Standard Flip Chip – Bump on I/OOur Standard Flip Chip (SFC) process, formerly known as the Flex-on-Cap (or FoC) process, was created in the mid-1960’s by Delco for use in the automotive industry. Today, the process has 40 years and over a million bumped wafers behind it. This is the process to use when you need to place small bumps (less than 135µm in height) directly on the die I/O. Pitch capabilities in this process are 150µm or greater for a full array I/O design and 120µm or greater for a peripheral I/O design. Typically, the number of bumps per die ranges from 4 to 6000. The SFC process uses premixed solder paste for the solder bumps. This provides for outstanding control of the alloy composition across the entire wafer. Since the process is not limited to the bi-metal restraints of an electroplating process, tri-metal alloys (such as Sn/Ag/Cu) require nothing more than the selection of the proper tube of pre-mixed solder paste. As with all die processed with small bumps, these die will require the use of underfill during packaging.To take advantage of this process flow, the device must meet some minimum I/O pad requirements (described below in section 3.1.2). If the device does not meet these minimum I/O pad requirements, take a look at section 3.2, which describes the SFC Repassivation flow. If you are looking for bump heights greater than 135µm, take a look at section 3.4, which covers the UltraCSP flow – the industry standard Wafer Level Package (WLP) process flow.3.1.1 Standard Flip Chip-Bump on I/O Process SummaryThe SFC-Bump on I/O process requires the fewest process steps of any flow that FlipChip offers. Below is an outline of the flow:UBM3.1.2 I/O requirements for the SFC-Bump on I/O processSince the SFC-Bump on I/O process forms a bump directly on the device I/O, certain criteria must be followed to ensure a proper bump structure. The basic rule is what we call “The Golden Rule of Flip Chip”, which is:•The UBM must overlap the I/O passivation opening by at least 7µm and the I/O final metal pad must extend at least 5µm past the end of the UBM.Figure 1 shows the “Golden Rule” requirements for the UBM in relation to the passivation opening and the I/O metal bond pad. This rule requirement accomplishes several reliability requirements. The overlap of the UBM to the passivation opening provides a seal to the underlying I/O aluminum bond pad. The overlap of the UBM inside the I/O metal bond pad eliminates stresses that can cause silicon cratering.Figure 1. The Golden Rule of Flip ChipThe allowable size of the UBM is directly related to I/O Pitch. The bump height is strongly influenced by UBM size. Please see the section 5.1 “Pitch, UBM Size, and Bump Height Relationships” as a guide as to what size your UBM will be.If your device does not meet the requirements of the Golden Rule, your device may be a candidate for the SFC-Repassivation process, which is described in the next section.3.2 Standard Flip Chip--RepassivationThe SFC-Repassivation process is similar to the SFC-Bump on I/O process, but it is designed for die that do not meet all of the I/O final metal pad and passivation opening requirements of SFC-Bump on I/O. In this process, a layer of Benzocyclobutene (or BCB) repassivation is deposited on the die before bumping. The BCB passivation corrects for the issue of the I/O passivation opening being too large for a standard flip chip bump. It also corrects for the issue of the I/O final metal pad being too small for a standard flip chip bump. The BCB layer planarizes the device surface and gives the bump structure additional strength and robustness.As with SFC-Bump on I/O, SFC-Repassivation is designed for small bumps (less than 135µm) placed directly on the die I/O. Pitch capabilities in this process are 150µm or greater for a full array I/O design and 140µm or greater for a peripheral I/O design. The number of bumps per die typically ranges from 4 to 600. The SFC-Repassivation process uses premixed solder paste for the solder bumps. This provides for outstanding control of the alloy composition across the entire wafer. Since the process is not limited to the bi-metal restraints of an electroplating bath, tri-metal alloys (such as Sn/Ag/Cu) require nothing more than the selection of the proper tube of pre-mixed solder paste. As with all die processed with small bumps, die bumped with the SFC-Repassivation process will require the use of underfill during packaging.If your device contains bumps that will not be placed directly on the I/O, take a look at the next section (3.3), which describes the SFC-Redistribution flow. If you are looking for bump heights greater than 140µm, take a look at section 3.4, which covers the UltraCSP flow – the industry standard Wafer Level Chip Scale Package (WL-CSP) process flow.3.2.1 SFC-Repassivation Process SummaryThe SFC-Repassivation process requires relatively few process steps to complete the flow. Below is an outline of the process flow (none of the drawings are to scale):Deposit and pattern a layer of BCB passivation.Deposit three layer (Al/NiV/Cu) Under Bump Metalization (or UBM) stack.Pattern UBM pads.Deposit pre-mixed solder paste.Reflow solder.- PIQ3.3 Standard Flip Chip--RedistributionOn some die, the I/O are not located where you need to have the bumps. This is especially true when you take an existing die that is wire bonded and would like to convert it to flip chip. The SFC-Redistribution Line (or RDL) process adds “redistribution metallization” (often called “runners’ or “traces”) that let you re-route the signal path from the die peripheral I/O to the new desired bump locations. This process is usually seen as a transitional solution between a die that is designed for wire bonding and a die that is designed for flip chip. Redistribution is designed to produce bumps of less than 135µm in height, although the typical bump height is 100µm. Pitch capabilities in this process are 70µm or greater. Standard Redistribution line widths are 38µm with 38µm space between lines. For fine pitch designs, FlipChip will go down to 25µm lines and 12µm space between lines. Since the process is not limited to the bi-metal restraints of an electroplating bath, tri-metal alloys (such as Sn/Ag/Cu) require nothing more than the selection of the proper tube of pre-mixed solder paste. As with all die processed with small bumps, these die will require the use of underfill during packaging.3.3.1 SFC-Redistribution Process SummaryThe SFC-Redistribution process requires more process steps than the SFC-Bump on I/O or the SFC-Repassivation flows. Below is an outline of the SFC-Redistribution process flow (none of the drawings are to scale):Deposit and pattern first layer of BCB passivation (BCB1).Deposit four layer (Al/NiV/Cu/Ti) UBM stack.I/O Final Metal Bond padEtch UBM stack to form redistribution runners and bump pads.Deposit, pattern, and cross-link second layer of BCB passivation (BCB2).Deposit solder paste (Proprietary Process).Reflow solder.Cu UBM3.4 Spheron TM WLCSPFlipChip offers a new type of Wafer Level Chip Scale Packaging (WLCSP) that utilizes a unique dielectric material, which offers improved capacitance decoupling and reliability. In addition to the advanced polymer, Spheron WLP TM incorporates a new metal structure, which offers improved strength and electrical performance. Benefits of Spheron WLP include: improved electrical performance, reduced capacitive coupling between UBM/Solder and the underlying IC circuitry, improved solder joint reliability, significant improvement in TC performance due to die planarization/polymer film characteristics, and elimination of incoming wafer topology issues. In addition, the planarized polymer film ensures proper UBM step coverage, even over non-planarized devices. Spheron is compatible with nitrides and oxides.As with Ultra CSP, pre-formed solder balls of 250µm to 500µm are placed on the wafer and reflowed for final bump heights of 200µm to 400µm. In this process, the bumps can be placed directly on the device I/O’s or the signal may be redistributed to a more desirable die location. Typically, the number of bumps per die is 4 – 100. Die bumped with Spheron WLP typically do not require underfill. Spheron WLCSP, as well as all FlipChip packages, is classified as JEDEC Level 1 compliant.3.4.1 Spheron WLP™ Redistribution Process FlowThe Spheron WLP process may be used to bump directly on I/O or may be used to redistribute bumps to a more desirable die location. An example of the redistributed process is shown (none of the drawings are to scale).I/O Final Metal Bond Wafer Silicon Device PassivationCoat first dielectric layer (Spheron1), expose, develop, and cure.Sputter metal redistribution layer. Pattern and etch to form redistribution runners.Coat second dielectric layer (Spheron2), expose, develop, and cross-link.Deposit and pattern three layer UBM (Al/NiV/Cu).Attach pre-formed solder ball.Reflow Solder3.5 Ultra CSP®Ultra CSP® is our patented Wafer Level Chip Scale Package (or WLCSP) process. Since its introduction in 1998, Ultra CSP has become the industry standard for WLCSP. Bump heights for the process range from 200µm to 450µm. In this process, pre-formed solder balls of 250µm to 500µm are placed on the wafer and reflowed. The bumps can be placed directly on the device I/O’s or the signal may be redistributed to a more desirable die location. Typically, the number of bumps per die is 4 – 100. Die bumped with Ultra CSP do not require underfill until the bump array reaches the 6x6 to 7x7 size. Then underfill may be needed. The lack of underfill makes it easy to migrate TSOP or QFP to Ultra CSP. Ultra CSP, as well as all FlipChip packages, is classified as JEDEC Level 1 compliant.3.5.1 Ultra CSP Process SummaryThe UltraCSP process may be used to bump directly on I/O or may be used to redistribute bumps to a more desirable die location. Both processes are summarized below (none of the drawings are to scale).3.5.1.1 Ultra CSP Bump on I/O -- Process FlowDeposit and pattern a layer of BCB passivation.Deposit three layer (Al/NiV/Cu) Under Bump Metalization (or UBM) stack.Pattern UBM pads.Attach pre-formed solder ballReflow solder.3.5.1.2 UltraCSP Redistributed -- Process FlowDeposit and pattern first layer of BCB passivation (BCB1).Deposit three layer (Al/NiV/Cu) UBM stack.I/O Final Metal Bond padPattern UBM Pads and Runners.Deposit, pattern, and cross-link second layer of BCB passivation (BCB2).Attach Pre-formed Solder Ball.Reflow solder.3.6 Elite UBM™, Elite FC™, and Elite CSP™ – Electroless Ni/AuIn 2005 FlipChip acquired a license to produce Electroless Ni/Au (E-less Ni/Au) from the Fraunhofer/IZM Institute of Berlin. E-less Ni/Au is available in three configurations: EliteUBM, EliteFC, and EliteCSP. EliteUBM is simply a Ni/Au pad ranging in height from 5µm to 30µm. Typical applications for EliteUBM are low cost RFID tags. Elite packages, as well as all FlipChip packages, are classified as JEDEC Level 1 compliant.EliteFC is a Flip Chip size bump that uses the low cost E-less Ni/Au UBM. Typical bump heights are 70µm - 160µm. EliteFC can often be used as a lower cost alternative to traditional Standard Flip Chip.EliteCSP is a Wafer Level-Chip Scale Package (WL-CSP) that uses the E-less UMB structure. As with Ultra CSP, pre-formed solder balls of 250µm to 500µm are placed on the wafer and reflowed for final bump heights of 200µm to 400µm. Typical applications for EliteCSP are high power / high temperature devices.Devices that are to be bumped using any of the Elite processes need to have some special requirements met. These requirements are described in Section 4.3.12.3.6.1 Elite UBM™ – Process FlowClean Aluminum/Cu Final Metal Pad.ZincApply a thin layer of Zinc to the AlCu PadSubstitute NiP for the ZincCoat UBM with a thin layer of Gold (oxidation protection).3.6.2 Elite FC™ – Process FlowDevice PassivationClean Aluminum/Cu Final Metal Pad.ZincApply a thin layer of Zinc to the AlCu PadSubstitute NiP for the ZincCoat UBM with a thin layer of Gold (oxidation protection).Deposit pre-mixed solder paste.Reflow Solder3.6.3 Elite CSP ™ – Process FlowClean Aluminum/Cu Final Metal Pad.Apply a thin layer of Zinc to the AlCu PadSubstitute NiP for the ZincDevice Passivation ZincCoat UBM with a thin layer of Gold (oxidation protection).Attach pre-formed solder ball.Reflow Solder3.7 Available Solder AlloysFlipChip offers several different solder alloys to mach your needs. By using pre-mixed solder paste and pre-formed solder balls, alloy composition is very tightly controlled. This means that your solder balls have predictable and reliable reflow characteristics.3.7.1 Basic Physical Properties of Solder Paste AlloysThe SFC-Ball on I/O, SFC-Repassivation, and SFC-Redistribution processes use pre-mixed solder paste to form the final solder bumps. The table below gives the basic properties of the paste alloys (for complete physical properties of solder alloys, see section 6.3).Table 1. Physical Proprieties of Paste AlloysAlloy / Property Sn/Ag/Cu Lead Free (SAC 351) 63Sn37Pb Standard EutecticAlloy Composition Sn 95.5%Ag 3.5%Cu 1.0%Sn 63%Pb 37%Melting 217°C Eutectic 183°C EutecticReflow Temperature 235°C to 255°C 215°C to 225°CAlpha Emissions(counts/cm2/hr)<0.002 N/A3.7.2 Basic Physical Properties of Pre-Formed Solder Ball AlloysThe Ultra CSP, Spheron, and Polymer Collar WLP processes use pre-formed solder balls. Thestandard solder ball sizes are 0.25mm (250µm), 0.3mm (300µm), 0.35mm (350µm), 0.4mm(400µm), and 0.5mm (500µm). The basic physical properties of the pre-formed solder balls arelisted on the table below (for complete physical properties of solder alloys, see section 6.3).Table 2. Physical Proprieties of Pre-Formed Solder Ball AlloysAlloy / Property Sn/Ag/Cu LeadFree (SAC 266) Enhanced Lead FreeSn/Ag/Cu (SAC 105)Eutectic63Sn37PbHigh Lead95Pb5SnAlloy Composition Sn 96.8%Ag 2.6%Cu 0.6%Sn 98.5%Ag 1.0%Cu 0.5%DopantSn 63%Pb 37%Sn 5%Pb 95%Melting Point 218°C – 220°C 218°C – 220°C 183°CEutectic 308°C - 314°CReflow Temperature 235°C to 255°C 235°C to 255°C 215°C to225°C 325°C to 335°CAlpha Emissions (counts/cm2/hr) <0.002 <0.002 N/AN/A3.8 Other Services3.8.1 Laser MarkFor die identification and traceability, FlipChip gives you theoption of using a Laser to mark the backside of each die.FlipChip can mark any alphanumeric character down to aminimum character size of 0.20 mm square with a characterdepth of approximately 4 - 6µm. Simple graphics includingcircles, squares, triangles, etc. can be used for the optionalpin 1 indicator. We can even mark simplified graphicsconsisting of basic shapes including circles, squares,triangles, etc. for company logos. FlipChip has thecapability to mark accurately any die to a minimum diedimension of 0.8 mm. If you need custom designs, giveFlipChip a call. We can custom match a laser program foryour needs.3.8.2 “In Process” BackgrindMany times, wafers need to be thinned to meet final packaging requirements. For Ultra CSP, Spheron WLP, EliteCSP, and Polymer Collar WLP, FlipChip has the ability to backgrind wafers, during processing, just before the solder balls are applied. Wafers are course ground with a wheel of 320 – 360 grit and polished ground with a wheel of 2000 grit. Below are our backgrinding/processing capabilities. (For thickness requirements on incoming wafers, please see section 4.2.7 “Incoming Wafer Thickness.”) Please contact FlipChip if you have thinner backgrinding requirements.Table 3. Wafer Thickness After “In Process WL-CSP” BackgrindingWafer Size 6 inch (150mm) 8 inch (200mm)Minimum Wafer Thickness After Backgrind 14 mil(356µm)14 mil (456µm)3.8.3 “Post Process” BackgrindFor Standard Flip Chip (SFC), Repassivated Standard Flip Chip (RP-SFC) and Redistributed Standard Flip Chip (RP-SFC), FlipChip has the ability to backgrind wafers, after the bumping process is completed Wafers are course ground with a wheel of 320 – 360 grit and polished ground with a wheel of 2000 grit. Below are our backgrinding/processing capabilities. Please contact FlipChip if you have thinner backgrinding requirements.Table 4. Wafer Thickness After “Post Process SFC” BackgrindingWafer Size 6 inch (150mm) 8 inch (200mm)Minimum Wafer Thickness After Backgrind 12 mil(305µm)12 mil (305µm)3.8.4 Electronic Wafer Yield MapsWafer yield mapping data is either presented on paper (shipped with the wafers) or by electronic wafer maps (transmitted over secure FTP sites). FlipChip uses Simplified INF (SINF), the industry standard file format, for all electronic wafer maps. FTP sites can be easily and quickly set up for secure data transfer. Contact FlipChip for details.3.8.5 Post Bump Electrical TestingAfter bumping, FlipChip can have the dice electrically tested on a variety of test platforms including:•Advantest•Agilent / HP•Credence•Eagle•Credence•Nextest•LTX•TeradyneContact FlipChip for a complete description of electrical testing capabilities.3.8.6 Dicing and PackagingIf desired, FlipChip will have your finished wafers diced, to your specifications. After dicing, visual inspection, either by sampling or 100% will be performed. The die will then be packaged in tape-and-reel or waffle pack configurations. For complete dicing and packaging descriptions and capabilities, contact FlipChip.4 Design Rules and Guidelines4.1 OverviewFlipChip has developed a set of design rules and guidelines to ensure that your wafers will be processed successfully. These rules allow for FlipChip to use standardized process flows using industry standard process equipment. FlipChip has extensive data that shows the reliability of devices processed under these design rules. The rules presented below represent a generalization of the actual FlipChip Design Specifications, which are subject to revisions and may not apply to all devices. If you have wafers that do not meet these guidelines or if you have any questions, give FlipChip a call. Since we are a development driven engineering organization, we can often create a custom solution to for even the most unusual bumping situation. We will always work with you to ensure your total satisfaction.4.2 Incoming Wafer Requirements4.2.1 Types of WafersFlipChip can process Silicon (all types) and Silicon/Germanium wafers. Contact FlipChip if you have other types of wafers (Quartz, Sapphire, etc.), we will discuss our capabilities on non-standard wafer types. FlipChip cannot currently process GaAs wafers.4.2.2 SEMI Material RequirementsAll wafers must meet current SEMI material requirements. These specifications cover major areas such as: wafer diameter (dimension and tolerance), polish, edge profile, notches, and major and minor flat sizes, locations, and orientations. It is highly recommend that 8-inch (200 mm) wafers have a notch rather than a flat.4.2.3 Wafer Scribe RequirementsIt is highly recommended that each wafer have a unique scribe number. Typically, the device lot number and the wafer number (within the lot) are scribed on each wafer.4.2.4 Wafer Backside RequirementsFor proper processing, the backside must be smooth, without ridges, bumps, or protrusions. The backsides of incoming wafers ideally should be exposed Silicon or Silicon/Germanium. Some types of backside coatings are acceptable. Call FlipChip if your wafers are backside coated.4.2.5 Acceptable Wafer SizeFlipChip accepts wafers of the following sizes: 6 inch (150mm), and 8 inch (200mm). If you have other wafer sizes, contact FlipChip and we will discuss our capabilities on non-standard wafer sizes.。

相关文档
最新文档