不等式组经典题型解析

不等式组经典题型解析
不等式组经典题型解析

不等式组经典题型解析

热身题:

解不等式组??

?>+≤--x x x x 34271(3)

类型一:不等式(组)的特殊解

例1、解不等式组??

?+<+--≥+)

1(21)1(323x x x x ,并写出不等式组的整数解.

变式1 若不等式组?????-><+)3(211

32x x x 的整数解是关于x 的方程2x-4=ax 的解,求a 的值.

类型二:不等式组中待定系数的值或取值范围

例2、若不等式k x k x -≥-)321(的解集为2

1-≥x ,求k 的值.

例3、若不等式组??

?<->-m

x x x )1(312的解集为x <2,那么m 的取值范围是( ) A 、m =2 B 、m >2 C 、m <2 D 、m ≥2

例4、若关于x 的不等式组??

?≤-<-1

270x m x 的整数解共有4个,则m 的取值范围是 .

变式2 如果不等式(m -8)x >8-m 的解集是x <-1,那么有( )

A 、m >8

B 、m <8

C 、m =8

D 、m ≠8 变式3 若不等式组???>+<-00a x b x 的解集为2

变式4 若关于x 的不等式组?

??->->-2210x x a x 无解,则a 的取值范围( ) A 、a ≥1 B 、a >1 C 、a ≤-1 D 、a <-1

变式5 若关于x 的方程2x -m =3的解大于0,则m 的取值范围是

变式6 若关于x 的不等式组??

?<->-1

02a x x 有解,则a 的取值范围是

变式7 若关于x 的不等式3x-a≤0只有两个正整数解,则a 的取值范围为 .

类型三:不等式组遇上方程组

例5、关于x 、y 的二元一次方程组??

?=+=-a

y x y x 623的解满足x +y <3,求a 的取值范围.

变式8 若关于x 、y 的二元一次方程组??

?=++=+3313y x a y x 的解满足x +y <2,则a 的取值范围是 .

变式9 若关于x 、y 的方程组??

?-=-+=+131k y x k y x 的解中x 、y 同号,求k 的取值范围.

类型四:不等式组与方程组的综合应用

例6、某旅游商品经销店欲购进A、B两种纪念品,可用380元购进A种纪念品7件,B种纪念品8件;也可用380元购进A种纪念品10件,B种纪念品6件.

(1)求A、B两种纪念品的进价分别为多少?

(2)若销售一件A种纪念品可获利5元,销售一件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品共40件,且这两种纪念品全部售出后总获利不低于216元,应该怎样进货使获利最大?最大获利为多少?

变式10 学校240名师生集体外出活动,准备租用45座大车或30座小车。若租用2辆大车1辆小车需租车费1100元;租用1辆大车2辆小车需租车费1000元,

(1)求大、小车每辆的租车费各是多少;

(2)若共租用6辆车,且租车费用不超过2300元,求最省钱的租车方案.

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

《一元一次不等式组的应用》典型例题

《一元一次不等式组的应用》典型例题 例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节B A,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排B A,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少? 例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果? 例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔? 例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间? 例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友? 例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg. (1)设生产x件A种产品,写出x应满足的不等式组; (2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

一元一次不等式组练习题及答案(经典)资料

一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、?? ?>>2 3 x x B 、???<>23x x C 、?? ?><2 3 x x D 、?? ?<<2 3 x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a < 12 B 、a <0 C 、a >0 D 、a <-12 3、(2007年湘潭市)不等式组10235 x x +?? +?? ,②4x >,③2x <,④21x ->-,从这四个不 等式中取两个,构成正整数解是2的不等式组是( ) A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组x a x b >?? B. 109m > C. 1910m > D. 10 19 m > 二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、(2007年遵义市)不等式组30 10x x -+<121 m x m x 无解,则m 的取值范围是 . 13、不等式组15x x x >-?? ????>? 的解集为x >2,则a 的取值范围是 _____________. A B C D

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

不等式与不等式组经典习题3(含答案)

一元一次不等式和一元一次不等式组(三) 一.选择题 1.下列各式,是一元一次不等式的为() A.x+2y+2020>0 B.-x>2009 C.2009/y-5<0 D.(x-2008)(x+2009)>0 2.下列说法中错误的是() A.10不是x≥11的解 B.0是x<1的解 C.x>1是不等式x+2008>2008 D.x=-2009是x+2008<0 3.下列几种说法中正确的是() A.如果a>b,则ac2>bc2(c≠0) B.如果ax>-a,则x C.如果a0 4.下列数值:-20,-15,-10,0,15,20中,能使不等式x+30>20成立的数有() A.2个 B.3个 C.4个 D.5个 5.不等式4(2x+m)>1的解集是x>3,则m的值为() A.-2 B.-1/2 C.2 D.1/2 6.a为有理数且a≠0,那么下列各式一定成立的是() A.a2+1>1 B.1-a2<0 C.1+1/a>1 D.1-1/a>1 7.已知关于x的不等式组 x<2 ,无解,则m的 x>m 取值范围是() A.m<2 B.m≤2 C.m>2 D.m≥2 8.若a2009b-2009a的解集为() A.x>-1 B.x>1 C.x<-1 D.x<1 9.若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m得取值范围是() A.m>-1.25 B.m<-1.25 C.m>1.25 D.m<1.25 10.若a≠0,则下列不等式成立的是() A.-2a<2a B.-2a<2(-a) C.-2-a<2-a D.-2/a<2/a 11.下列不等式中,对任何有理数都成立的是() A.x-3>0 B.|x+1|>0 C.(x+5)2>0 D.-(x-5)2≤0 12.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。下列两个不等式是同解不 等式的是() A.-3x<36与x>-12 B.1/3·x≤1与x≥3 C.2x-2009<6x与-2009≤4x D.-1/2 x+3<0与1/3·x>-2 13.不等式1/4(2x+m)>1=m(3-x)-5x的解是负数,则m得取值范围是() A.-2 B.-1/2 C.2 D.1/2 14.不等式组-x≤1 的解集是() x-2<3 A.x≥-1 B.x<5 C.-1≤x<5 D.x≤-1或x>5 15.若a<0,则关于x的不等式|a|x1 C.x<-1 D.x>-1 16.关于x的方程5x-2m=-4-x的解在2与10之间,则m得取值范围是() A.m>8 B.m<32 C.832

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

列不等式经典练习题

祖π数学新人教七年级下册之高分速成 1 【题型1】列不等式用不等式表示: (1)x的2 3 与5的差小于1: ;(2)y的9倍与b的 1 3 的和是负数: . (3)x的1 7 与9的倒数的和大于y的15%:____________________________. (4)a的30%与a的和大于a的2倍与10的差:_____________________________. 【变式训练】 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 3.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 4.用不等式表示 (1)x的2倍与5的差不大于1 ; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5 ; (4)a的20%与a的和大于a的3倍 . 5.用不等式表示 (1)a比6小__________; (2)x与1的和大于2___________; (3)a的2倍小于b__________; (4)m的相反数是正数___________; (5)x的4倍与7的差大于3___________; (6)a、b两数的平方和大于4__________; (7) m不大于-5 ; (8) x的4倍大于3 . 6.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x、?y分别表示“●”、“▲”的重量,写出符合题意的不等式是_________.

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

不等式组经典题型解析

不等式组经典题型解析 热身题: 解不等式组?? ?>+≤--x x x x 34271(3) 类型一:不等式(组)的特殊解 例1、解不等式组?? ?+<+--≥+) 1(21)1(323x x x x ,并写出不等式组的整数解. 变式1 若不等式组?????-><+)3(211 32x x x 的整数解是关于x 的方程2x-4=ax 的解,求a 的值. 类型二:不等式组中待定系数的值或取值范围 例2、若不等式k x k x -≥-)321(的解集为2 1-≥x ,求k 的值.

例3、若不等式组?? ?<->-m x x x )1(312的解集为x <2,那么m 的取值范围是( ) A 、m =2 B 、m >2 C 、m <2 D 、m ≥2 例4、若关于x 的不等式组?? ?≤-<-1 270x m x 的整数解共有4个,则m 的取值范围是 . 变式2 如果不等式(m -8)x >8-m 的解集是x <-1,那么有( ) A 、m >8 B 、m <8 C 、m =8 D 、m ≠8 变式3 若不等式组???>+<-00a x b x 的解集为2->-2210x x a x 无解,则a 的取值范围( ) A 、a ≥1 B 、a >1 C 、a ≤-1 D 、a <-1 变式5 若关于x 的方程2x -m =3的解大于0,则m 的取值范围是 变式6 若关于x 的不等式组?? ?<->-1 02a x x 有解,则a 的取值范围是 变式7 若关于x 的不等式3x-a≤0只有两个正整数解,则a 的取值范围为 .

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

高中数学不等式经典题型(精)

概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>, 则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或 > 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ (答:12,2? ?-- ?? ?) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较2 1 log log 21+t t a a 和的大小

《不等式与不等式组》经典例题分析

不等式与不等式组经典例题分析 【例1】满足的x的值中,绝对值不超过11的那些整数之和等于。 【分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,所以我们应该先解不等式. 解:原不等式去分母,得 3(2+x)≥2(2x-1),解得:x≤8. 满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11. 这些整数的和为(-9)+(-10)+(-11)=-30. 【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么(). 【分析】分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就能够求出问题的答案. 解:关于x的方程3(x+4)=2a+5的解为 关于x的方程的解为 由题意得,解得.所以选D. 【例3】如果,2+c>2,那么(). A. a-c>a+c B. c-a>c+a C. ac>-ac D. 3a>2a 【分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便能够找到准确的答案. 解:由 所以a<0. 由2+c>2,得c>0,答案:B 【例4】四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 . 【分析】因为四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就能够求出. 解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2. 由<19, 解得7

因为m 为整数,所以m =8,则四个连续整数为7,8,9,10,所以最大数与最小数的平方的差为102-72=51. 因为绝对值的定义,含有绝对值号的代数式无法实行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式实行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在实行分类讨论时,要注意所划分的类别之间应该不重、不漏. 【例5】解不等式 |x-5|-|2x+3|<1. 【分析】 关键是去掉绝对值符号前后的变号.分三个区间讨论: 解:(1)当x ≤时,原不等式化为-(x-5)-[-(2x+3)]<1, 解得x<-7,结合x ≤ ,故x<-7是原不等式的解; (2)当 <x ≤5时,原不等式化为-(x-5)-(2x+3)<1, 解得是原不等式的解; (3)当x >5时,原不等式化为:x-5-(2x+3)<1, 解得x >-9,结合x >5,故x >5是原不等式的解. 综合(1),(2),(3)可知,是原不等式的解. 【例6】关于x 的不等式组?????≤+≥+b x a a b x 23 223的解集为,求a 、b 的值。 【分析】解此类不等式,是用构造方程法:先解出不等式组的解集,再根据已知条件列成方程组,解出结果。 解:解原不等式组的解为2a-3b ≤x ≤2b-2/3a 由已知条件得方程组2a-3b=-5 2b-2/3a=2 解得:a=-2,b=1/3 【例7】若不等式? ??>+<1-2m x 1m x 无解,则m 的取值范围是 . 【分析】解无解类不等式组,常用反解法: 解:由原不等式组得2m-1

相关文档
最新文档