固体物理学-宏观对称性和晶格分类
固体物理考试重点(广工版、复习资料)
一、晶体宏观特征(必考其一)1.晶体的自限性(自范性):自发形成封闭几何外形的能力。
2.晶面角守恒定律:同一种晶体在相同的温度和压力下,对应晶面之间的夹角不变。
3.晶体的解理性(Cleave property):晶体受到外力作用时会沿着某一个或几个特定的晶面劈裂开的性质称为解理性。
4-晶体的各向异性(anisotropy):沿晶体内部的不同方向上有不同的物理性质。
5.晶体的均匀性(homogeneity ):内部各部分的宏观性质相同。
6.晶体的对称性(symmetry):由于内部质点有规则排列而形成的特殊性质。
7.晶体的稳定性:与同种物质的其他形态(气态、液态、非晶态、等离子态等)相比,晶体的内能最小、最稳定。
晶体具有固定的熔点,而非晶体则没有固定的熔点。
二、空间点阵(基元、原胞(primitive cell)> 晶胞(conventional cell)> B 格子、WS 原胞)1.基元:组成晶体的最小结构单元。
2.初基原胞(原胞):一个晶格最小的周期性单元,称为原胞。
3.惯用原胞(晶胞):能使原胞同时反映晶体对称性和周期性特征的重复单元,称为晶胞。
4.B格子:如果晶体只由一种原子构成,且基元是一个原子,则原子中心与阵点重合,这种晶格称为布拉菲格子,或称B格子。
5.WS原胞:WS原胞是以晶格中某一格点为中心,作其与近邻的所有格点连线的垂直平分面,这些平面所围成的以该点为中心的凸多面体即为该点的WS原胞。
作法:(1)任选一格点为原点;(2)将原点与各级近邻的格点连线,得到几组格矢;(3)作这几组格矢的中垂面,这些中垂面绕原点围成的最小区域称W-S原胞。
三、第一布里渊区(二维):从倒格子点阵的原点出发,作出它最近邻点的倒格子点阵矢量,并作出每个矢量的垂直平分面,可得到倒格子的WS原胞,称为第一布里渊区。
注:写出二维坐标系j> b P b2( b为倒格子基矢)。
四、晶体的对称性、晶系、密堆积、配位数(一至二);1.晶体的对称性:晶体经过某种对称操作后物体能自身重合的性质,2.晶系:根据晶体空间点阵中6个点阵参数之间相对关系的特点而将其分为7类,各自称一晶系。
固体物理学§1.7 晶格的对称性
轴—m—i
Ci
C3i
S4
正四面体
T Th Td
正八面体
O Oh
8
固体物理
固体物理学
四、晶系和空间点阵形式:
1、七个晶系:根据晶胞的类型,找相应特征对称元素,可以把 32个点群划分为七个晶系。特征对称元素中,高轴次的个 数愈多,对称性高。晶系从对称性由高到低的划分。
划分的法: 首先规定每个晶系的特征对称元素, 不是该晶系 的晶体的全部对称元素,而是一些有代表性的对称元素(该晶 系所有点群共有的对称元素).
C3 ,C3i ,C3V ,D3 ,D3d
a b c, 900 a b c, 900
1200 a b c, 900
a b c, 900
C2V ,D2 ,D2h
a b c, 900
C2 ,CS ,C2h a b c, 900 , 900
19
固体物理
固体物理学
布拉维点阵中为什么没有底心四方和面心四方?
20
固体物理
六方
单斜
固体物理学
立方
正方 正交
三角
三斜
21
固体物理
固体物理学
原子分数坐标:顶点(0,0,0)
体心(1/2,1/2,1/2)
面心(1/2,1/2,0),(1/2,0,1/2),(0,1/2,1/2)
底心(1/2,1/2,0)
晶胞参数: a,b,c; , , ; 原子分数坐标
五、空间群:七个微观对称元素(i, m, n, n,点阵,nm , )
结合十四种空间点阵形式(立方P I F,六方H,四方P I,
三方R,正交P I F C,单斜P C,三斜P)进行合理组合,得
到且只能得到230种空间群。 由俄 федаров 完成 230个空间群分布:三斜 2个,单斜 13个,正交 59个,四方 68个
固体物理(第3课)晶格对称操作与分类
重合,则此对称操作称为旋转,轴u称为n度旋转对 称轴(n度轴),记作n。 n=1,2,3,4,6
n度旋转
=2 /4 =2 /2 /6 /1 /3
1984 年谢赫曼在二元和三元合金中发现了违反了晶体平 移对称性的五重旋转对称。 准晶具有清晰的五重衍射花样,肯定具有长程的五重旋 转对称,但不具有长程和平移对称性。 获2011年度诺贝尔化学奖。
1.7 晶体的宏观对称性与晶格结构的分类
系统的一些要素等价。
对称性使系统的描述简化。
晶体的对称操作:使晶体与自身重合的操作,操作 之后,点阵不变 。
1.7.1 晶体的对称性与对称操作
平移,旋转,镜反射, 中心反演。
1.7.2 对称操作的变换关系
(1)旋转/转动:
如果晶体绕固定轴u旋转角度=2/n后,能与自身
a=b≠c
α=β= 90º
c γ=120º
a 简单六方
a
一个6度轴
立方晶系
简单立方
体心立方
面心立方
四个3度轴和三个4度轴 a=b=c α=β=γ=90º
(100)(010)(001)完全对称,可用{100}表示,称为等效
晶面
布喇菲原胞示意图
返回
作业:
1 如果晶体中存在i和n,则晶体中必有n ;但晶 体中如果存在 n ,则未必有n和i。上述说法是否 正确,请举例说明。 2 总结像转与中心反演、旋转、镜面对称的关系。 3 总结七大晶系的对称特征及坐标轴的性质。
四个3度轴
返回
三斜晶系和单斜晶系
c
1度旋转
c b
a
2π/1
abc
a
b
固体物理_第一至第七章总复习详解
总复习
第二章 晶体结合 一、原子的负电性
负电性=常数(电离能+亲和能) 电离能:让原子失去电子所必需消耗的能量 亲和能:处于基态的中性气态原子获得一个电子所放出的能量
负电性大的原子,易于获得电子。 负电性小的原子,易于失去电子。
二、晶体结合的基本类型及其特性
1、离子结合:正负离子之间的库仑相互作用,强键
总复习
一维单原子链
重要结论:
试探解为: xn Aei(tnaq)
色散关系:
w2 2 (1 cosqa)
m
2
m
sin( qa ) 2
m
sin( qa ) 2
中心布里渊区范围: q
a
a
振动模式数目(格波数目):N
上页 下页 返回 结束
格波
总复习
• 格波:晶体中所有原子共同参与的一种 频率相同的振 动,不同原子间有振动
总复习
第一章 晶体结构
一、晶体的宏观特性:周期性、对称性、方向性(各向异性)
二、晶体的微观结构
1. 空间点阵(布拉伐格子) 基元、布拉伐格子、格点、单式格子、复式格子 晶体结构=基元+空间点阵 布拉伐格子(B格子)=空间点阵 复式格子=晶体结构 复式格子≠B格子
2.原胞 初基原胞、基矢、威格纳-赛兹原胞(W-S原胞,对称
位相差,这种振动以波 的形式在整个
晶体中传播,称为格波
xn Aei(tnaq)
上页 下页 返回 结束
3. 一维双原子链 总 复 习
mM 2n-2
2n-1 2n
2n+1 2n+2 2n+3
Ⅰ. 体系:N个原胞,每个原胞中包括2个原子 (m1=M, m2=m, M>m)。
23晶体的对称性和分类
操作前后晶体保持自身重合的操作,称为对称 操作.
晶体借以进行对称操作的轴、平面或点.称为对 称元素(简称对称素).
6)表示纯转动对称操作(或转动轴);i表示中心反演
(或对称中心);m表示镜面反映(或对称镜面)。
这种表示方法属于国际符号(International
notation)标记法,是海尔曼(Hermann)和毛衮
(Mauguin)制订的,在晶体结构分析中经常使用。
还有一套标记法,是固体物理中惯用的标记, 是熊夫利(Schoenflies)制订的,因此称为熊夫利 符号(Schoenflies notation). 熊夫利符号中Cn 表 示旋转轴;Sn 表示旋转反演轴;Ci 表示中心反 演;Cs 表示镜面反映。
x x
y
y
cos
z
sin
z
y
sin
z
cos
x 1 0 0 x
y0 cos siny z 0 sin cos z
所以,绕x轴旋转的变换矩阵为:
1 0
0
Ax
0
cos
sin
0 sin cos
同理可得绕y轴和绕z轴的变换矩阵
cos 0 sin
Ay
0
1
0
sin 0 cos
cos sin 0
晶体中允许的转动对称轴只能是1、2、3、4和6次轴, 称为晶体的对称性定律
晶体的对称性定律的证明 B
A
如图,A为格点,B为离A最近的 格点之一,则与 平A 行B 的格点
固体物理总结
4.当电子(或光子)与晶格振动相互作用时,交换能量以
为单位。
晶体热容
1.固体比热的实验规律 (1)在高温时,晶体的比热为3NkB; (2)在低温时,绝缘体的比热按T3趋于零。
2.模式密度
定义:
D(
)
lim
0
n
m D()d3N 0
计算:D3 n12 V π c3
ds
s qq
3.晶体比热的爱因斯坦模型和德拜模型
2.线缺陷
当晶格周期性的破坏是发生在晶体内部一条线的周围近邻,
这种缺陷称为线缺陷。位错就是线缺陷。
位错
刃型位错:刃型位错的位错线与滑移方向垂直。 螺旋位错:螺旋位错的位错线与滑移方向平行。
位错缺陷的滑移
刃位错:刃位错的滑移方向与晶体受力方向平行。
螺位错:螺位错的滑移方向与晶体受力方向垂直。
第 五 章 能带理论 总结
Kn
(k
Kn 2
)
0
紧束缚近似
1.模型
晶体中的电子在某个原子附近时主要受该原子势场V(rR n)
的作用,其他原子的作用视为微扰来处理,以孤立原子的电子
态作为零级近似。
2.势场
1.晶体的结合能 晶体的结合能就是自由的粒子结合成晶体时所释放的能量, 或者把晶体拆散成一个个自由粒子所需要的能量。
EbU(r0)U(r0)
2.原子间相互作用势能
u(r)rAm rBn A、B、m、n>0
其中第一项表示吸引能,第二项表示排斥能。
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
k
r
e ik r
uk
r
固体物理各章节知识点详细总结
3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
固体物理第二章第二节对称性和布拉维格子的分类
P28-29表2.1给出了32个晶体学点群,为了 便于大家看懂,下面给出符号的说明
Cn C1, C2 , C3, C4 , C6
900 1200
900
7个晶系(crystal system)相应的点群 S1, C2h , D2h , D4h , D3d , D6h , Oh
即:Ai G,i 1, 2,3 ,G {Ai}
必须满足下列条件: 1). 封闭性(closure property) 按照给定的乘法规则,群G中任何两个元素 相乘,得到的还是该群的一个元素。
Ai Aj Ak ,i j or i j
2). 群中一定包含一个不变元素(单位元素) E
E G, EAi Ai E Ai
我们这里要讨论的主要是晶格(或点阵)的对 称性(symmetry of lattice).
在晶格这个物理系统中,一种对称性是指某些 要素互相等价,而用来描述晶格的要素,无非就 是:点、线、面。而保持这些要素等价的操作---对称操作有三种:平移、旋转、镜反射。假设 在某一个操作过后,点阵保持不变,也就是每个 格点的位置都得到重复,那么这个相应的平移、 旋转或镜反射操作就叫作一个点阵对称操作。其 中的点、线、面分别叫做对称中心、对称轴、对 称面----称为对称元素
比如:绕x轴的旋转,设转角为θ,则有:
x x
y
y
cos
z sin
z
y
sin
z
cos
a11 a12 a13 1 0
0
固体物理学整理要点
固体物理复习要点第一章1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。
说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。
3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
4、试述固体物理学原胞和结晶学原胞的相似点和区别。
答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
它反映了晶体结构的周期性。
(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
其体积是固体物理学原胞体积的整数倍。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。
答:7.密堆积结构包含哪两种?各有什么特点?答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。
第二层:占据1,3,5空位中心。
第三层:在第一层球的正上方形成ABABAB······排列方式。
固体物理第一章总结
固体物理(黄昆)第一章总结(总5页)页内文档均可自由编辑,此页仅为封面第一章晶体结构1.晶格实例1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等1.5金刚石结构最近邻原子数4 次近邻原子数12 致密度0.34晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构2.1基本概念晶体:1. 化学性质相同 2. 几何环境相同 基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞2.2维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志 晶列(向)指数:[l m n]晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=4.1简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k ⎧=⎪=⎨⎪=⎩4.2体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体4.3面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.1对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪⎪ ⎪⎝⎭,中心反演的正交矩阵1 0 0 0 1 0 0 0 1-⎛⎫⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。
固体物理基础(第2版)(蓸全喜)1-4章 (1)
第1章 晶体结构
本章提要
本章的核心是讨论晶体结构的周期性和对称性。首先, 从晶体的宏观特征出发,揭示晶体微观结构的几何特征,阐明晶 体结构的周期性和对称性两大特点;其次,介绍了空间点阵、布 拉菲格子、基元、原胞、晶格、对称操作、晶体指数等重要概 念,并列举了一些常见的、典型的晶体结构;再次,简要介绍了晶 体 X 射线衍射的原理和方法,以及分析晶体衍射的倒格子和布 里渊区等概念;最后,在阅读材料里,简单介绍了准晶态和非晶态 材料的结构,群与晶体空间点阵的分类。
第1章 晶体结构
第1章 晶体结构
1.1 晶体的宏观特性 1.2 晶体的微观结构 1.3 晶体的基本类型 1.4 典型的晶体结构 1.5 晶体的对称性 1.6 晶面和晶面指数 1.7 晶体的倒格子与布里渊区 1.8 晶体中的X光衍射 *1.9 非晶态材料的结构 *1.10 准晶态 *1.11 群与晶体点阵的分类 本章小结 思考题 习题
图1-1给出了晶体生长过程的理想化模型图,其中 图(a)和图(b)的砌块是相同的,但其生长成的晶体面却不一 样,该图诞生于两个世纪以前的科学家们的想象。由此可见, 如果不考虑由于偶然因素混入结构中的杂质或缺陷,晶体就 是由这些全同砌块的三维周期性阵列构成的。
第1章 晶体结构 图1-1 晶体生长过程的理想化模型图
第1章 晶体结构 图1-3 石英晶体的若干外形
第1章 晶体结构
晶体的物理性质随观测方向不同而变化,称为各向异性。 晶体的很多物理性质,如压电性质、光学性质、磁学性质、热 学性质等都表现出各向异性。
当晶体受到敲打、剪切、撞击等外界作用时,它有沿某一 个或几个具有确定方位的晶面劈裂开来的性质。例如云母晶体 很容易沿着与自然层状结构平行的方向劈裂为薄片。晶体的这 一性质称为解理性,这些劈裂的晶面则称为解理面。自然界中 的晶体显露于外表的晶面往往就是一些解理面。
固体物理基础第1章-晶体结构
ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!
数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞
晶体结构和对称性
晶体宏观对称性受到的限制
晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不 是可以有任意多重,n仅为1,2,3,4,6,即在晶体结构中, 任何对称轴或轴性对称元素的轴次只有一重、二重、三重、 四重和六重这五种,不可能有五重和七重及更高的其它轴 次,这一原理称为“晶体的对称性定律”。
其对称操作是旋转反映。
sˆncˆnˆh
在晶体中反轴 n ,对应的操
作是先绕轴旋转 2P n,再过 轴的中心进行倒反。
L()I = L() ● I
由此可知,n 与Sn都属于复合对称操作,且都由旋转与另
一相连的操作组合而成。
关于旋转反映轴与反轴的说明
❖ 用映轴表示的对称操作都可以用反轴表示,所以在新的晶体 学国际表中只用反轴。
(1)晶体多面体外形是有限图形,故对称元素组合时必通 过质心,即通过一个公共点。
(2)任何对称元素组合的结果不允许产生与点阵结构不相 容的对称元素,如5、7、…。
晶体宏观对称元素的组合
组合程序:
(1)组合时先进行对称轴与对称轴的组合, (2)再在此基础上进行对称轴与对称面的组合, (3)最后为对称轴、对称面与对称中心的组合。
格子。空间格子一定是平行六面体。
顶点的阵点,对每单位贡献1/8; 边上的阵点,对每单位贡献1/4; 面上的阵点,对每单位的献1/2; 六面体内的阵点,对每单位贡献1。
空间点阵与正当空间格子
C 空间点阵
空间点阵对应的平移群
T m n p m a n b p cm , n ,p = 0 , 1 , 2 ,
固体物理名词解释
固体物理名词解释本文介绍了固体物理中的晶体结构和相关名词解释。
晶体是由内部组成粒子(原子、离子或原子团)在微观上有规则的周期性重复排列构成的固体。
晶体结构是指晶体中实际质点(原子、离子或分子)的具体排列情况,是决定固态金属的物理、化学和力学性能的基本因素之一。
所有晶体具有的共通性质包括自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
单晶体的内部粒子的周期性排列贯彻始终,而多晶体由许多小单晶无规堆砌而成。
晶体结构中的基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
原胞是在晶体结构中只考虑周期性时所选取的最小重复单元,WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
晶胞是在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元。
原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量,晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
倒格子是晶格经过傅里叶变换所得到的几何格子,其中倒格子基矢可以用公式(1)和(2)表示,其中2πρ是一个常数,a和b是正格子基矢,且b= a×a。
倒格子空间是正格子的倒易空间。
布里渊区是倒空间中由倒格矢的中垂面所围成的区域,其中第一布里渊区是倒格矢的中垂面所围成的最小区域,是倒空间中的对称性原胞。
固体物理学:1.5晶体的宏观对称性与点群
1) 绕三个立方轴转动 2) 绕4个立方体对角线轴 转动
—— 共有3个对称操作
—— 8个对称操作
3) 正交变换
—— 1个对称操作
4) 绕三个立方轴转动
—— 6个对称操作 5) 绕6条面对角线轴转动
加上中心反演 —— 6个对称操作
—— 正四面体 对称操作共有24个
加中心反演
3 正六面柱的对称操作 1) 绕中心轴线转动
整数群 —— 所有整数的集合,以加法为运算法则
—— 一个物体全部对称操作的集合满足上述群的定义 运算法则 —— 连续操作
单位元素 —— 不动操作
任意元素的逆元素 —— 绕转轴角度,其逆操作为绕转轴 角度- ;中心反演的逆操作仍是中心反演;
连续进行A和B操作 —— 相当于C操作
A 操作 —— 绕OA轴转动/2 —— S点转到T’点
B 操作 —— 绕OC轴转动/2
—— T’点转到S’点
S’
上述操作中S和O没动,而T点转动到T’点 —— 相当于一个操作C:绕OS轴转动2/3 表示为 —— 群的封闭性
可以证明
—— 满足结合律
S’
点群
—— 晶体中原子的周期性排列形成晶体一定的宏观对称性 —— 不同的形式原子排列形成的宏观对称性,对称操作也
y
y
'
a12
a22
a23
y
z z ' a13 a13 a33 z
—— 其中矩阵是正交矩阵
—— 绕z轴转角的正交矩阵 —— 中心反演的正交矩阵
对称操作 —— 一个物体在某一个正交变换下保持不变 —— 物体的对称操作越多,其对称性越高
1 立方体的对称操作 1) 绕三个立方轴转动
—— 该轴为物体n重旋转轴,计为 n
固体物理学第一章 晶体的结构(1)
1.3 晶向、晶面和它们的标志 晶体周期性的描述通常还要用到:晶列、晶向、晶 面和密勒指数、面间距等概念。
(1)晶列
• 通过Bravias格子的任意两点连一条直线,该直线上包括无限多 个格点,这样的直线称晶列.晶体外观上所见的晶棱为个别晶列。
• 通过其它任一格点可引出与原晶列平行的晶列,这些
相互平行的晶列族将包含全部的格点。 • 晶列的性质:同一晶列族上,格点具有 相同的周期分布 • 通过一个格点可以引出无数晶列,晶列 数目是无限的,(晶列的性质)。
固体由大量原子(离子)组成,1022—1023/cm3。晶体中原子、 离子的排列是有规律的,这种排列方式称固体晶体的结构。固体 的宏观物理性质是由组成材料的[原子、分子和离子]成分和原子 分子的排列方式共同决定的。
可以将固体分为:晶体和非晶体。 晶体:原子严格按一定周期性的规则排列,具有周期性和平移对 称性 ,即长程有序。 非晶:原子排列短程有序,长程无序。 何为长程有序呢?主要是与原子的尺寸相比。 晶体分为:单晶:理想的大块晶体 多晶:有许多晶粒组成的晶体 1984年 D.Shechtman等从实验上发现了具有五重旋转对称性的 不同于晶体和非晶体的固体,称准晶。准晶从结构上讲,其有序 程度是介于晶体和非晶之间的。
(2) 体心立方结构(bcc) • 排列方式:ABABAB….. • a为原子间的距离, 称为晶格常数。对角线距离
0.31ro
a
ro
• 体心立方结构晶体自然界中很多:Li, Na, K,ro 2ro 3
(3)六角密排结构(主要是金属晶体) • 排列方式:ABABAB….. • 层内原子密排列,层之 间原子紧密接触。 • 自然界中。碱土金属Be, Mg 及Zn, Cd, Ti等三十多种晶体
固体物理知识点总结
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念与基本理论与知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体与非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞就是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不就是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ε xy ε yy
ε ε
xz yz
⎤ ⎥ ⎥
⎣⎢ε zx ε zy ε zz ⎥⎦
立方对称晶体:
⎡ε0 0 0 ⎤
ε
=
⎢ ⎢
0
ε0
0
⎥ ⎥
⎣⎢ 0 0 ε0 ⎥⎦
六方对称晶体:
⎡ε ⊥ 0 0 ⎤
ε
=
⎢ ⎢
0
ε⊥
0
⎥ ⎥
⎣⎢ 0 0 ε // ⎥⎦
11
晶体宏观对称性及其分类
• 宏观对称性 • 点群 • 空间群 • 晶体结构分类
群为一组“元素”的集合,G≡(E, A, B, C, …),且这些“元素”在定义 一定的“乘法法则”下(不等价于数学乘法),满足下列性质: 1. 闭合性--- 集合内任意两元素“乘积”仍为集合元素
A, B ∈ G, 则AB=C ∈ G 2. 单元性---存在单位元素E,使得所有元素A:
AE= A 3. 可逆性---任意元素A存在逆元素A-1 满足
4
立方对称(sc、bcc、fcc)操作
(a)
(b)
(c)
•沿图(a)立方轴转动π/2、 π、 3π/2,有3个立方轴,共9个对称操作。 •沿图(b)面对角线转动π,有6条面对角线,共6个对称操作。 •沿图(c)体对角线转动2π/3、 4π/3,有4个体对角线,共8个对称操作。 •不动为一个对称操作。 •以上共24个对称操作,以上操作再加上反演为新的对称操作。 •共48个对称操作。
5
正四面体对称操作
•沿立方轴转动 π,有3个立方轴,共3个对称操作。 •沿图(c)体对角线转动2π/3、 4π/3,有4个体对角线,共8个对称操作。 •不动为一个对称操作。以上共12个对称操作。 •相对立方对称,少去的12个对称操作,即绕立方轴转π/2、3π/2以及绕 面对角线转动π,再加上中心反演为正四面体的对称操作。 •共24个对称操作。
晶格的周期性排列,还使其具有宏观对称性:例如立方晶胞。 当绕任一晶轴旋转90oC及其倍数或对任一原子作反演,晶格复 原。宏观对称性又称点对称性,因为进行此类对称操作时,晶 体至少一点不动,即未做平移。
晶体的宏观对称性产生于晶体中原子的周期排列,因此受到 晶体平移对称性的制约。
晶体的宏观对称性不仅反映在几何外形上,更重要的反映在 物理性质上,同时对晶格的分类起着重要作用。
3
宏观对称性的描述---对称操作
描述一个晶体具有的宏观对称性,最简单的办法就是列举 出所具有的全部对称操作。 一个物体在某种几何变换下不变,我们称此几何变换为其 对称操作。
三维晶体的对称操作包括:
•绕某一轴旋转角度θ •对某中心的反演 •以上二者的组合 •特殊的对称操作:不动
宏观对称操作是一个非平移操作,又称为点对称操作。 一个晶体具有的对称操作越多,表明它的对称性越高。
B’
θHale Waihona Puke AA’−θ
B
A' B' = m AB (m为整数)
A'B' = AB+ 2ABcos(1800 −θ) = AB(1−2cosθ)
13
所以 m = 1 − 2 cosθ
(m为整数)
m cosθ
θ
‐1
1
0 (2π)
0
1/2 2π/6
1
0 2π/4
2
‐1/2 2π/3
3
‐1 2π/2
因此宏观对称可能的对称素只有以下10种 (非完全独立):
第二讲 固体结构
一些晶格实例(自己看) 简单与复式晶格 晶格周期性的几何描述 晶列和晶面 晶体宏观对称性及其结构分类 倒点阵
1
晶体宏观对称性及其结构分类
• 宏观对称性 • 点群 • 空间群 • 晶体结构分类
2
宏观对称性
对称性是指在一定几何操作下,物体保持不变的特性。
晶体的显著特点是具有平移对称性:原子周期排列。平移Rl, 晶格复原。
AA-1= E 4. 结合律:
A(BC)= (AB)C
9
宏观对称性的描述---对称操作群
•一个物体的全部对称操作的集合,也满足群的定义,称为对 称操作群。
• “乘法法则”:连续操作。 • 单位元素:不动操作。 • 存在逆元素:中心反演的逆为其自身,转θ的逆为转-θ。 • 显然满足结合律。 • 闭合性:两个对称操作的“乘积”仍是物体的对称操作。
C P T’
O
A
T S
B
•描述物体的对称性只需找出其 对应的对称操作群。晶体对称 性的系统理论就是建立在“群” 的数学理论的基础上。
10
晶体宏观对称性与宏观物理性质
Neumann定理:晶体的任一宏观物理性质具有其晶 格所具有的全部对称性。
介电常数一般形式:
D = εε0E
ε
=
⎡ε ⎢⎢ε
xx yx
6
宏观对称性的描述---对称素
为简便起见,描述宏观对称性可以不用一一列举其对称 操作,而是指出其所具有的对称素。对称素就是一个物 体借以进行对称操作的一根轴、一个平面或者一个点。
I. 如果一个物体绕某轴旋转2π/n及其倍数不变,称该 轴为n次旋转轴,记为n。
II. 如果一个物体对某点反演不变,称这个点为对称心, 记为i。
12
宏观对称性破缺
晶体的宏观对称性不同于几何图形。晶体内部原子的周期排 列会对晶体点对称的对称素和对称素的组合产生严格限制。 因此,晶体的点对称素或者对称素之间的组合都是有限的和 一定的,称为宏观对称性破缺。
绕A点旋转θ角,B→B’ 绕B点旋转-θ角,A→A’
B' A' // AB
同族晶列格点的周期性要求
不动操作
回转群(只含 一个旋转轴)
双面群(一个n 重旋转轴和n个 垂直的二重轴)
熊夫利符号
C1 C2 C3 C4 C6 D2(V) D3 D4 D6 Ci(S1) Cs (S2)
III. 如果一个物体绕某轴旋转2π/n后再反演不变,称该
轴为n次旋转反演轴,记为 n
7
立方对称的对称素:
•三条4次旋转轴4和旋转-反演轴4 •六条2次旋转轴2和旋转-反演轴 2 •四条3次旋转轴3和旋转-反演轴 3 •中心反演:i •不动:1次旋转轴1或E
8
宏观对称性的描述---对称操作群
数学补充:群
1(E) 2 3 4 6 1(i) 2(m) 3 4 6
1次旋转轴即为不动(E). 1次旋转反演轴即为反演(i) 2次旋转反演轴等价晶面(m)
晶体内不可能由5重轴、7重轴、十重轴…..等等对称元素(原因?)
14
32种点群
•由于晶体平移对称性对其宏观对称性的限制,晶体只可能有上述10种对称 素,且对称素的组合也受到严格限制,10种对称素只能组成32种对称操作 群,称为点群。 •也就是说,晶体的宏观对称性只有32中类型,由32个点群来概括: