浙教版数学七年级下册 第二章 二元一次方程组 同步练习题(无答案)
浙教版七年级下数学第二章二元一次方程组单元测试及答案
浙教版初中数学七年级下册第二章二元一次方程组单元测试题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,3*10=30)1.方程2x﹣=0,3x+y=0,2x+xy=1,3x+y﹣2x=0,x2﹣x+1=0中,二元一次方程的个数是()A.5个B.4个C.3个D.2个2.若(a﹣2)x|a|﹣1+3y=1是关于x,y的二元一次方程,则a=()A.2 B.﹣2 C.2或﹣2 D.03.已知是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣54.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.45.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15 B.﹣15 C.16 D.﹣166.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4 B.1,4 C.1,4,49 D.无法确定7.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.28.已知方程组和有相同的解,则a,b的值为()A.B.C.D.9.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元10.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)11.已知3x m﹣2﹣y n+3=1是二元一次方程,则m=,n=.12.请写出适合方程3x+2y=1的一组解.13.若2x+3y=5,则x=.(用y的代数式表示x)14.方程组的解x,y满足x+y=9,则a的值为.15.如果(x﹣2y+9)2+|x+y﹣6|=0,则x﹣y=.16.三元一次方程组的解是.17.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的数是你现在的岁数时,你将61岁”.请你计算出甲现在是岁,乙现在是岁.18.为积极响应我区“创卫创模”工作精神,甲、乙两苗圃基地去年年底种植了同一品种的花卉,计划今年全部供应我区,这样两基地所供花卉就能占我区所需花卉的.由于受今年年初持续低温和霜冻影响,甲基地仅有的花卉能供应,乙基地仅有的花卉能供应,现两基地能供应的花卉仅占了我区所需花卉的,则甲基地的计划量与乙基地的计划量的比为.评卷人得分三.解答题(共8小题,66分)19.(6分)已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.20.(6分)在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为,乙看错了方程组中的b,而得到解为.(1)求正确的a,b的值;(2)求原方程组的解.21.(6分)解方程组:.22.(8分)已知关于x,y的方程组和有相同解,求(﹣a)b值.23.(8分)阅读材料:善于思考的小明在解方程组时,采用了一种“整体代换”的解法,解法如下:解:将方程②8x+20y+2y=10,变形为2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则y=﹣1;把y=﹣1代入①得,x=4,所以方程组的解为:请你解决以下问题:(1)试用小明的“整体代换”的方法解方程组(2)已知x、y、z,满足试求z的值.24.(10分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?25.(10分)某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花3600元购买了黑白两种颜色的文化衫200件.每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2035白色文化衫1525假设通过手绘设计后全部售出,求该校这次义卖活动所获利润.26.(12分)【方法体验】已知方程组求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组则3x+y﹣z=.【探究升级】已知方程组求﹣2x+y+4z的值.小明凑出“﹣2x+y+4z=2•(x+2y+3z)+(﹣1)•(4x+3y+2z)=20﹣15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设﹣2x+y+4z=m•(x+2y+3z)+n•(4x+3y+2z),对照方程两边各项的系数可列出方程组,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a﹣b+kc=4,且a+3b+2c=﹣2,当k为时,8a+3b﹣2c为定值,此定值是.(直接写出结果)参考答案与试题解析一.选择题(共10小题)1.D2.B3.B4.D5.B6.A7.A8.A9.B10.A 二.填空题(共8小题)11.3,﹣2.12.x=1,y=﹣1 13.14.5 15.﹣4;16.17.42,23 18.1:3三.解答题(共8小题)19.解:根据题意得:,②﹣①得:5k=15,解得:k=3,把k=3代入①得:﹣6+b=﹣8,解得:b=﹣2,答:k=3,b=﹣2.20.解:(1):将代入方程4x﹣by=1得b=5将代入方程ax+5y=﹣17得a=4(2)将a=4,b=5代入原方程组得,解此方程组得21.解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.22.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.23.解:(1)将②变形得3(2x﹣3y)+4y=11 ④将①代入④得3×7+4y=11y=把y=代入①得,∴方程组的解为(2)由①得3(x+4y)﹣2z=47 ③由②得2(x+4y)+z=36 ④③×2﹣④×3得z=224.解:设甲原有x文钱,乙原有y文钱,由题意可得,,解得:,答:甲原有36文钱,乙原有24文钱.25.解:设购进黑色文化衫x件,白色文化衫y件,根据题意得:,解得:,∴(35﹣20)×120+(25﹣15)×80=2600(元).答:该校这次义卖活动所获利润为2600元.26.解:【方法迁移】将中的两个方程相减得到:﹣3x﹣y+z=﹣5,则3x+y﹣z=5.故答案是:5;【探究升级】设2x+5y+8z=m(x+2y+3z)+n(4x+3y+2z)由题意得:解得:∴2x+5y+8z=(x+2y+3z)﹣(4x+3y+2z)故答案为:,﹣【巩固运用】设8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)∴解得∴8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)=3×4+2×(﹣2)=8 故答案为﹣2,8。
浙教版七年级下册数学第二章 二元一次方程组含答案
浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。
浙教版七年级数学下册第2章二元一次方程组单元测试题含答案
A .3x -6=xB .3x =2yC .x -=0D .2x -3y =xyy 2.二元一次方程x -2y =1有无数个解,下列四组值中不是该方程的解的是( )A.B. C. D.{x =0,y =-12){x =1,y =1){x =1,y =0){x =-1,y =-1)3.下列说法中正确的是( )A .二元一次方程只有一个解B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D .三元一次方程组一定由三个三元一次方程组成{x =1,)A .40,200B .80,160C .160,80D .200,4010.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面13的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为17则可列方程组为( )A.B.{x +y =3.2,(1+17)x =(1+13)y ){x +y =3.2,(1-17)x =(1-13)y )C.D.{x +y =3.2,13x =17y ){x +y =3.2,(1-13)x =(1-17)y )请将选择题答案填入下表:图2-Z -116.当a =_____________________时,方程组有正整数解.{2x +ay =16,x -2y =0)三、解答题(本题有8小题,共66分)17.(6分)解下列二元一次方程组:(1) (2){x =3y -5,3y =8-2x ;){x -2=2(y -1),2(x -1)+(y -1)=5.)18.(6分)已知2a m +1b -2n 与-3a 2-n b 4是同类项,求m ,n 的值.19.(6分)已知方程组的解也满足方程x +y =1,求m 的值.{2x +y =3,3x -2y =m )20.(8分)某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,则甲、乙两个旅游团各有多少人?图2-Z-2(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?23.(10分)为了拉动内需,全国各地汽车购置税补贴活动正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月销售的手动型和自动型汽车分别为多少台?每套服装的价格60元50元40元已知两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校分别有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.14. 15.675 cm 316.-3或-2或0或4或1217.解:(1){x =3y -5,①3y =8-2x ,②)把①代入②,得3y =8-2(3y -5),解得y =2.把y =2代入①,可得x =3×2-5,即x =1.∴原方程组的解为{x =1,y =2.)(2)方程组化简得:{x -2y =0,①2x +y =8,②)②-①×2,得5y =8,解得y =.85∴ 解得∴m =8.{2x +y =3,3x -2y =m ,x +y =1,){x =2,y =-1,m =8,)20.解:设甲旅游团有x 人,乙旅游团有y 人.根据题意,得解得{x +y =55,x =2y -5,){x =35,y =20.)答:甲、乙两个旅游团分别有35人、20人.21.解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得解得{x +y =40,x +1.2y =42,){x =30,y =10.)答:采摘的黄瓜和茄子分别有30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.22.解:(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x 元,y 元,根据题意可得:第一天:39x +21y =321①;第二天:26x +14y =204②;第三天:39x +25y =345③.由①÷3,得13x +7y =107,由②÷2,得13x +7y =102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴{39x +21y =321,①39x +25y =345,③)③-①,得y =6.把y =6代入①,得x =5,所以方程组的解为{x =5,y =6.)答:甲、乙两种商品的单价分别为5元,6元.23.解:(1)方法1:设政策出台前一个月销售的手动型汽车为x 辆,则自动型汽车为(960-x)辆.由题意,得(1+30%)x +(1+25%)(960-x)=1228.解得x =560,所以960-x =960-560=400.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.方法2:设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆.由题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,)解得{x =560,y =400.)答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)手动型汽车的补贴额为560×(1+30%)×8×5%=291.2(万元),自动型汽车的补贴额为400×(1+25%)×9×5%=225(万元).291.2+225=516.2(万元).答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.24.解:(1)由题意,得5000-92×40=5000-3680=1320(元).答:两校联合起来购买服装比各自购买服装可节省1320元.(2)设甲、乙两所学校分别有x 名、y 名学生准备参加演出.由题意,得解得{x +y =92,50x +60y =5000,){x =52,y =40.)答:甲、乙两所学校分别有52名、40名学生准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出.若两校联合购买服装,则需要50×(42+40)=4100(元),此时比各自购买服装节约(42+40)×60-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元的服装节约4100-3640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).。
浙教版七年级数学下册试题第2章 二元一次方程组.docx
第2章 二元一次方程组单元测试一、选择题(每小题3分,共24分)1.根据图1所示的计算程序计算y 的值,若输入2=x ,则输出的y 值是( )A .0B .2-C .2D .42.将方程121=+-y x 中含的系数化为整数,下列结果正确的是( )A .442-=-y xB .442=-y xC .442-=+y xD .442=+y x3.如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( ) A .⎩⎨⎧=-=01b a B .⎩⎨⎧==01b a C .⎩⎨⎧==10b a D .⎩⎨⎧-==10b a4.如果二元一次方程组⎩⎨⎧=+=-a y x a y x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( )A .3B .5C .7D .95.如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( ) A .⎩⎨⎧==31y x B .⎩⎨⎧==22y x C .⎩⎨⎧==21y x D .⎩⎨⎧==32y x 6.在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y7.如果⎩⎨⎧=+-=-+0532082z y x z y x ,其中xyz ≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:18.如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,共18分)9.已知43+=a x ,32+=a y ,如果用x 表示y ,则y = .10.a 与b 互为相反数,且4=-b a ,那么112+++-ab a ab a = .11.如果一个二元一次方程的一个解是⎩⎨⎧-==11y x ,请你写出一个符合题意的二元一次方程 .12.在等式5×口+3×Δ=4的口和Δ处分别填人一个数,使这两个数互为相反数.13.如果2006200520044321=+-+-+n m n m y x 是二元一次方程,那么32n m +的值是 .14.如果⎩⎨⎧-==66y x ,⎩⎨⎧=-=62y x ,都能使方程1=+b y a x 成立,那么当4=x 时,=y . 三、解答题(58分)15.如下图所示,是一个正方体的平面展开图,标有字母A 的面是正方体的正面,如果正方体的相对的两个面上标注的代数式的值与相对面上的数字相等,求x 、y 的值.16.若单项式式m n y x +-4563234123与m n y x 21234567678--的和与差仍是单项式,求n m 2-的值.17.在平面直角坐标系中,已知点A )82(--,b a 与点B )32(b a +-,关于原点对称,求a 、b 的值.18.已知2)(2005y x +与20062--y x 的值互为相反数,求:(1)x 、y 的值;(2)20062005y x +的值.19定义“*”:)1)(1(++++=*B A Y B A X B A ,已知321=*,432=*,求43*的值. 20.阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x 、y 、z 元,则需要求x+y+z 的值.由题意,知⎩⎨⎧----=++---=++)2(20.3342)1(25.99513z y x z y x ; 视x 为常数,将上述方程组看成是关于y 、z 的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.解法1:视x 为常数,依题意得⎩⎨⎧-----=+----=+)4(220.334)3(1325.995x z y x z y 解这个关于y 、z 的二元一次方程组得⎩⎨⎧-=+=x z x y 2105.0 于是05.12105.0=-+++=++x x x z y x .评注:也可以视z 为常数,将上述方程组看成是关于x 、y 的二元一次方程组,解答方法同上,你不妨试试.分析:视z y x ++为整体,由(1)、(2)恒等变形得25.9)2(4)(5=++++z x z y x ,20.3)2()(4=+-++z x z y x .解法2:设a z y x =++,b z x =+2,代入(1)、(2)可以得到如下关于a 、b 的二元一次方 程组⎩⎨⎧----=----=+)6(20.34)5(25.945b a b a 由⑤+4×⑥,得05.2221+a ,05.1=a .评注:运用整体的思想方法指导解题.视z y x ++,z x +2为整体,令z y x a ++=,z x b +=2,代人①、②将原方程组转化为关于a 、b 的二元一次方程组从而获解. 请你运用以上介绍的任意一种方法解答如下数学竞赛试题:购买五种教学用具A 1、A 2、A 3、A 4、A 5的件数和用钱总数列成下表:那么,购买每种教学用具各一件共需多少元?参考答案一、1.D ;2.A ;3.B ;4.C ;5.C ;6.A ;7.C ;8.B . 二、9.3132+x ; 10.4;11.043=--y x ;12.口=2,Δ=2-;13.2;14.2=a ,3=b ,3-=y .三、15.⎩⎨⎧==21y x ; 16.27692111269111-=⨯-=-⇒⎩⎨⎧==n m n m ; 17.⎩⎨⎧==22b a18.21120062005=+⇒⎩⎨⎧-==y x y x . 19.⎩⎨⎧-==13275Y X ,351442013277543=-=*. 20.1000元.初中数学试卷。
浙教版七年级数学下册第2章二元一次方程组单元综合测试题(Word版含答案)
2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。
浙教版七年级数学下册二元一次方程组练习题
浙教版七年级数学下册二元一次方程组练习题一、单选题1.若二元一次方程式组{5x −y =5y =15x 的解为x=a ,y=b ,则a+b 等于( ) A .54B .7513C .3125D .29252.关于x 的方程 2x +5a =1 的解与方程 x +2=0 的解相同,则a 的值是( )A .-1B .1C .35D .23.若整数m 使得关于x 的不等式组 {2x+m 3−5x+m2≤15x −1<3(x +1)有且只有三个整数解,且关于x ,y 的二元一次方程组 {3x −y =mx +y =−1 的解为整数(x ,y 均为整数),则符合条件的所有m 的和为( )A .27B .22C .13D .94.已知 {x =1y =−2 是方程kx+2y=-5的解,则k 的值为( )A .﹣1B .3C .4D .55.若二元一次方程2x+y=3,3x-y=2和2x-my=-1有公共解,则m 取值为( )A .-2-B .-1-C .3-D .46.若2a 3x b y+5与5a 2-4y b 2x 是同类项,则( )A .{x =1y =2B .{x =2y =−1C .{x =0y =2D .{x =3y =17.如图,下列关于数m 、n 的说法正确的是( )A .m >nB .m =nC .m >﹣nD .m =﹣n8.下列方程中,属于二元一次方程的是 ( ) A .x=1y +1B .xy+2=0C .x2+y=1D .x+2y=z9.已知 {2x +y =7x +2y =8 ,那么x ﹣y 的值是( )A .1B .0C .﹣1D .210.方程组 {3x +5y =84x +ky =14 的解也是方程3x+y=4的解,则k 的值是( )A .6B .10C .9D .110二、填空题11.若关于 x,y 的二元一次方程组 {3x +my =6x +y =4的解都为正整数,则 m =12.已知方程x m-3+y 2-n =6是二元一次方程,则m-n=13.关于x 、y 的二元一次方程组 {2x +y =3x −y =0的解为 .14.设有理数a 、b 在数轴上对应的位置如图所示,化简|a ﹣b|﹣|a|的结果是 .15.已知 {x =1y =−1 是关于 x 、 y 的二元一次方程组 {ax +by =−1ax −by =5 ,则 a b = .16.若关于 x ,y 的二元一次方程组 {mx +y =2n +13x +ny =m −10 的解是 {x =3y =4 ,则代数式 m +n的值是 .三、解答题17.已知关于x ,y 的方程组{x +2y =5mx −2y =9m的解满足3x+2y=19,求m 的值.18.解关于x ,y 的方程组 {ax +by =93x −cy =−2时,甲正确地解出 {x =2y =4,乙因为把c 抄错了,误解为{x =4y =−1,求2a+b-c 的平方根. 19.已知方程组{ax +5y =15(1)4x −by =−2(2),由于甲看错了方程①中的a 得到方程组的解为{x =−13y =−1,乙看错了方程②中的b 得到方程组的解为{x =5y =4,若按正确的a 、b 计算,则原方程组的解x 与y 的差x﹣y 的值是多少?20.解方程组 {ax +5y =15①4x −by =−2② 甲由于看错了方程(1)中的 a ,得到方程的解为 {x =−3y =−1 ,乙看错了方程②中的b,得到方程组的解为 {x =5y =4.求 3a −√6+b 的值. 21.已知关于x ,y 的方程组{2x +y =m −3,x +2y =2m.的解满足x −y <0,求m 的取值范围.22.在等式 y =kx +b 中,当 x =6 时, y =2 ;当 x =3 时, y =3 .求当 x =−3 时, y的值.四、综合题23.已知关于x,y 的方程组 {a 1x +b 1y =c 1a 2x +b 2y =c 2的解是 {x =4y =−6(1)若把x 换成m,y 换成n ,得到的关于m,n 的方程组为 {a 1m +b 1n =c 1a 2m +b 2n =c 2 ,则这个方程组的解是 {m =_______n =_______ .(2)若把x 换成2x,y 换成3y ,得到方程组 {2a 1x +3b 1y =c 12a 2x +3b 2y =c 2 ,则 {2x =_______3y =_______ ,所以这个方程组的解是 .(3)根据以上的方法解方程组 {2a 1x −b 1y =5c 12a 2x −b 2y =5c 224.定义新运算:对于任意实数 a , b ,都有 a ⊕b =2a −3b +1 ,等式右边是通常的加法、减法及乘法运算.(1)当 x ⊕y =5 ,且 (−1)⊕y =5 时,求 x 与 y 的值;(2)若 3⊕x 的值小于 4 ,求 x 的取值范围,并在图中所示的数轴上表示出来.25.对于未知数为 x , y 的二元一次方程组,如果方程组的解 x , y 满足 |x −y|=1 ,我们就说方程组的解 x 与 y 具有“邻好关系”.(1)方程组 {x +2y =7x =y +1 的解 x 与 y 是否具有“邻好关系”?说明你的理由: (2)若方程组 {4x −y =62x +y =4m的解 x 与 y 具有“邻好关系”,求 m 的值: (3)未知数为 x , y 的方程组 {x +ay =72y −x =5 ,其中 a 与 x 、 y 都是正整数,该方程组的解 x 与 y 是否具有“邻好关系”?如果具有,请求出 a 的值及方程组的解:如果不具有,请说明理由.答案1.A 2.B 3.A 4.A 5.C 6.B 7.D 8.C 9.C 10.B 11.0或1或−312.313.{x =1y =114.b 15.816.-217.解:①+②得x=7m ,①﹣②得y=﹣m , 依题意得3×7m+2×(﹣m )=19,∴m=1.18.解:把{x =2y =4代入方程3x −cy =−2,得:6−4c =−2,解得:c =2.把{x =2y =4,{x =4y =−1分别代入方程ax +by =9,得:{2a +4b =94a −b =9,解得{a =52b =1,∴a =52,b =1,c =2,∴2a+b-c=4,∴2a+b-c 的平方根是±2.19.解:将x=﹣13,y=﹣1代入方程组中的第二个方程得:﹣52+b=﹣2,解得:b=50,将x=5,y=4代入方程组中的第一个方程得:5a+20=15,解得:a=﹣1,则方程组为{−x +5y =15(1)4x −50y =−2(2),(1)×10+(2)得:﹣6x=148,解得:x=﹣743,将x=﹣743代入(1)得:y=2915,即方程组的正确解为{x =−743y =2915,则x ﹣y=﹣743﹣2915=﹣1335. 20.解:将 {x =−3y =−1 代入方程(2)得:-12+b=-2,即b=10;将 {x =5y =4 代入方程(1)得:5a+20=15,即a=-1,则 3a −√6+b =-3-4=-7. 21.解:{2x +y =m −3,①x +2y =2m.②①-②得:x −y =−m −3∵x −y <0∴−m −3<0解得m >−322.解:把 x =6 , y =2 和 x =3 , y =3 代入等式 y =kx +b 得:{6k +b =23k +b =3,解得: k =−13 , b =4 ,∴等式为: y =−13x +4∴当 x =−3 时, y =−13×(−3)+4=1+4=5 .23.(1){m =4n =−6(2){2x =43y =−6; {x =2y =−2(3)解:将方程组 {2a 1x −b 1y =5c 12a 2x −b 2y =5c 2,变形为 {25a 1x −15b 1y =c 125a 2x −25b 2y =c 2∴{25x =4−15y =−6 ,解得 {x =10y =30 ,∴方程组 {2a 1x −b 1y =5c 12a 2x −b 2y =5c 2 的解为 {x =10y =30 24.(1)解:∵a ⊕b =2a −3b +1∴根据题意得 x ⊕y =2x −3y +1=5 , (−1)⊕y =−2−3y +1=−1−3y ∴{2x −3y +1=5−1−3y =5∴解得 {x =−1y =−2(2)解:∵3⊕x <4,∴3⊕x =6−3x +1=7−3x <4 ,解得 x >1 . 数轴表示如图所示:25.(1)解:方程组 {x +2y =7①x =y +1② 由②得: x −y =1 ,即满足 |x −y|=1 . ∴ 方程组的解 x , y 具有“邻好关系”; (2)解:方程组 {4x −y =6①2x +y =4m②①-②得: 2x −2y =6−4m ,即 x −y =3−2m . ∵ 方程组的解 x , y 具有“邻好关系”, ∴|x −y|=1 ,即 3−2m =±1 ∴m =1 或 m =2(3)解:方程两式相加得: (2+a)y =12 , ∵a , x , y 均为正整数,∴{a =1x =3y =4 , {a =2x =1y =3 , {a =4x =−1y =2 (舍去), {a =10x =−3y =1 (舍去),在上面符合题宜的两组解中,只有 a =1 时, |x −y|=1 . ∴a =1 ,方程组的解为 {x =3y =4。
浙教版七年级数学下册第二章《二元一次方程组》测试卷
浙教版七年级数学下册第二章《二元一次方程组》测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.二元一次方程3x +y =7的正整数解有( )组.A .0B .1C .2D .无数2.关于x ,y 的方程组⎩⎨⎧=+=+m x m x y 522的解满足x +y =6,则m 的值为( ) A .﹣1 B .2 C .1 D .43.若方程x +y =3,x -y =5和x +ky =2有公共解,则k 的值是( )A.3B.-2C.1D.24.若方程组⎩⎨⎧=-=-92532ay ax y x 的解x 与y 互为相反数,则a 的值等于( ) A .1 B .2 C .3 D .45.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组 数为y 组,则列方程组为( )A .⎩⎨⎧+=-=5837x y x yB .⎩⎨⎧=-+=x y x y 5837C .⎩⎨⎧=++=x y x y 5837D .⎩⎨⎧+=+=5837x y x y 6.如果方程组()⎩⎨⎧=--=+614y m x y x 的解x 、y 的值相同,则m 的值是( ) A .1B .﹣1C .2D .﹣2 7.若关于 的方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 的值为( ) A.-6 B.6 C.9 D.308.使方程组⎩⎨⎧=-=+02162y x my x 有自然数解的整数m ( ) A. 只有5个 B. 只能是偶数 C. 是小于16的自然数 D. 是小于32的自然数9.若三元一次方程组⎪⎩⎪⎨⎧=-+=-+=-+864x y z y z x z y x 的解使a az y ax 62=++,则a 的值为( )A .1B .2C .-1D .-210.已知关于x ,y 的方程组⎩⎨⎧=--=+a y x a y x 3543,给出下列结论:①⎩⎨⎧-==15y x 是方程组的解;②无论a取何值,x ,y 的值都不可能互为相反数;③当a =1时,方程组的解也是方程x +y =4﹣a 的解;④x ,y 的都为自然数的解有3对.其中正确的为( )A .②③④B .②③C .③④D .①②④二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.若方程组⎪⎩⎪⎨⎧=--=++--5)3(26)(2842c b yc x xy b a x 是关于x ,y 的二元一次方程组,则代数式_____=abc 12.已知x 、y 互为相反数,且6)2)(3(=--++y x y x ,则______=x13、已知关于x ,y 方程组⎩⎨⎧=+=+54723ay x y x 有实数解,则a 的取值范围是____________14.已知x ,y 满足方程组⎩⎨⎧=+-=-k y x k y x 3221525,则无论k 取何值x ,y 恒有关系式是________ 15.若关于y x ,的二元一次方程组⎩⎨⎧=+=+463y x my x 的解都为正整数,则 =m ________16.现有甲、乙、丙三种钢笔给中考优秀者发奖品,若买甲3支,乙7支,丙1支,共需325元;若 买甲4支,乙10支,丙1支,共需420元,则甲、乙、丙各买1支需要 元.三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解下列方程组:(1)()()()()⎩⎨⎧=-++=--+201712201614y x y x , (2)⎪⎪⎩⎪⎪⎨⎧=---=+--61312304231y x y x18.(本题8分)如果b a ,为定值,那么关于x 的方程23323bk x a kx --=-,无论k 为何值, 它的解总是2,求b a ,的值19(本题8分).一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?20.(本题10分) 已知关于x ,y 的方程组⎩⎨⎧-=-+=+75393k y x k y x ,给出下列结论:①⎩⎨⎧==32y x 是方程组的解; ②当k =711-时,x ,y 的值互为相反数; ③若方程组的解也是方程x +y =1+k 的解,则k =-3;其中正确的是21.(本题10分)(1)已知二元一次方程组3423234x y k x y k +=-⎧⎨-=+⎩的解为x m y n =⎧⎨=⎩且2=+n m ,求k 的值. (2)已知代数式2x px q ++,当x =2时,它的值为3,当x =﹣3时,它的值是4,求p ﹣q 的值.22.(本题12分) 某中学组织七年级学生秋游活动,原计划租用49座客车若干辆,但有6人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知49座客车租金为每辆260元,60座客车租金为每辆320元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算?23(本题12分).对于未知数为x ,y 的二元一次方程组,如果方程组的解x ,y 满足|x ﹣y |=1,我 们就说方程组的解x 与y 具有“邻好关系”.(1)方程组⎩⎨⎧=-=+172y x y x 的解x 与y 是否具有“邻好关系”?说明你的理由; (2)若方程组⎩⎨⎧=+=-my x y x 6462的解x 与y 具有“邻好关系”,求m 的值;(3)未知数为x ,y 的方程组⎩⎨⎧=-=+527x y ay x ,其中a 与x ,y 都是正整数,该方程组的解x 与y 是否具有“邻好关系”?如果具有,请求出a 的值及方程组的解;如果不具有,请说明理由.。
浙教版七年级下数学第二章二元一次方程组解答题(共8张)
最新浙教版数学七年级下册第二章《二元一次方程组》单元测试题及答案考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.对于二元一次方程2x+3y=11,下列说法正确的是( )A. 只有一个解B. 有无数个解C. 共有两个解D. 任何一对有理数都是它的解2.下列方程组是二元一次方程组的是()A. B. C. D.3.若,则y用只含x的代数式表示为()A.y=2x+7B.y=7﹣2xC.y=﹣2x﹣5D.y=2x﹣54.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24B. 0C. ﹣4D. ﹣85.已知两数x、y之和是10,x比y的2倍大1,则下面所列方程组正确的是()A. B. C. D.6.若关于的方程组无解,则的值为()A.-6B.6C.9D.307.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A. B. C. D.8.如果方程组的解中与的值相等,那么的值是( )A.1B.2C.3D.49.使方程组有自然数解的整数m()A. 只有5个B. 只能是偶数C. 是小于16的自然数D. 是小于32的自然数10.如果,其中xyz≠0,那么x:y:z=()A. 1:2:3B. 2:3:4C. 2:3:1D. 3:2:1二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若3x3m+5n+9+9y4m﹣2n+3=5是二元一次方程,则=________.12.二元一次方程的非负整数解为________13.解方程组,小明正确解得,小丽只看错了c解得,则当x=﹣1时,代数式ax2﹣bx+c的值为________.14.对于x、y定义一种新运算“◎”:x◎y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算.已知3◎2=7,4◎(﹣1)=13,那么2◎3=________.15.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为________16.若关于的二元一次方程组的解都为正整数,则________三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(12分)解下列方程组:(1)(2),(3)(4).18.(8分)若与的值互为相反数,试求x与y的值.19(8分).如图所示,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x、y,请列出可以求出这两个角度数的方程组.20.(8分)先阅读下列材料,再解决问题:解方程组时,如果我们直接消元,那么会很麻烦,但若用下面的解法,则要简便得多.解方程组解:①-②得,即③③×16得④②-④得,将代入③得,所以原方程组的解是.根据上述材料,解答问题:若的值满足方程组,试求代数式的值.21(8分).某公园的门票价格如下表所示:某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?22.(10分)为了更好治理城市污水,保护环境,县治污公司决定购买10台污水处理设备.现有A,A B价格(万元/台) a b处理污水量(吨/天) 240 200经调查:购买一台设备比购买一台B设备多2万元,购买2台A设备比购买3台B设备少6万元.(1)求a,b;(2)现治污公司购买的设备每天能处理污水2160吨,求治污公司购买设备的资金.23.(12分)为了解决农民工子女入学难的问题.我市建立了一套进城农民工子女就学保障机制,其中一项就是免交“借读费”.据统计,2017年秋季有5000名农民工子女进入主城区中小学学习,预测2018年秋季进入主城区中小学学习的农民工子女将比2017年有所增加,其中小学增加20%,中学增加30%,这样,2018年秋季将新增1200名农民工子女在主城区中小学学习.(1)2017年秋季农民工子女进入主城区中小学学习的小学生、中学生各有多少名?(2)如果按小学每生每年收“借读费“600元,中学每生每年收“借读费”800元计算,求2018年新增的1200名中小学生共免收多少“借读费”?(3)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2018年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?参考答案一、单选题1、B2、D3、B4、A5、C6、A7、C8、C9、A 10、C二、填空题11、112、,,,,13、6.514、315、2016、0或1或−3三、简答题17、(1)∴原方程组的解是:(2)原方程组的解为:(3)∴原方程组的解为(4)∴原方程组的解是.18、解:而根据已知,它们互为相反数,所以一定都是0,即解得x=-1,y=519、解:由图可知∠1+∠2=180°,即x+y=180,由题意知∠1比∠2的3倍少10°,即x=3y﹣10,所以20、解:①-②得,即③,③×2007得④,②-④得,将代入③得,故原方程组的解是;所以21、解:设甲班x人,乙班y人,由题意建立二元一次方程组:,解得:,∴甲班55人,乙班48人22、(1)解:由题意得,解得:,即a的值为12,b的值为10.(2)解:设购买A设备x台,B设备y台,由题意得,解得:,购买设备的资金=4×12+6×10=108万元.答:现治污公司购买的设备每天能处理污水2160吨,治污公司购买设备的资金为108万元.23、(1)解:设2017年秋季农民工子女进入主城区中小学学习的小学生有x名,中学生有多少有y 名.由题意,得,解得,答:2017年秋季农民工子女进入主城区中小学学习的小学生2000名,中学生有3000名(2)解:20%x=20%×3000=600,30%y=30%×2000=600,∴600×600+800×600=840000(元)=84(万元),答:2018年新增的1200名中小学生共免收84万元“借读费”(3)解:2018年秋季入学后,在小学就读的学生有3000×(1+20%)=3600(名),在中学就读的学生有2000×(1+30%)=2600(名)∴(3600÷40)×2+(2600÷40)×3=90×2+65×3=375(名)答:一共需要配备375名中小学教师.浙教版七年级下册数学第二章二元一次方程培优试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x 则x +y 的值是( )A. 3B. 5C. 7D. 9 2.若方程组()⎩⎨⎧=+=-+143461y x y a ax 的解y x ,的值相等,则a 的值为( )A .﹣4B .4C .2D .1 3.下列方程组中,与方程组⎩⎨⎧=+-=73243y x y x 的解相同的是( )A.⎩⎨⎧=+=73211y x xB.⎩⎨⎧=+=7325y x yC.⎩⎨⎧=+--=734643y x y xD.⎩⎨⎧=-=y x y x 434﹒如图,是正方体的一种表面展开图,若这个正方体相对的两个面上的代数式的值相等,则a y x ++的值为( )A ﹒5B ﹒6C ﹒7D ﹒85.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.现有3艘大船与6艘小船,一次可以载游客的人数为( ) A .129B .120C .108D .966.已知关于y x ,的方程组⎩⎨⎧-=-=-52253a y x ay x ,若y x ,的值互为相反数,则a 的值为( )A. 5-B. 5C. 20-D.207.关于y x ,的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( )A . 1、2B .2、5C .1、5D .1、2、58.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购 买甲种奖品x 件,乙种奖品y 件,则方程组正确的是A.⎩⎨⎧=+=+400161230y x y x B.⎩⎨⎧=+=+400121630y x y x C.⎩⎨⎧=+=+400301612y x y x D. ⎩⎨⎧=+=+400301216y x y x10.已知a 为常数,且方程组⎩⎨⎧=+=+-1153)35(y ax y x a 只有唯一解,则a 的值为( )A. 65=a B. 65≠a C. 35<a D.a 为任意实数二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.二元一次方程x +3y=7的非负整数解是_________ 12.已知⎩⎨⎧==13y x 和⎩⎨⎧=-=112y x 都是方程7=+by ax 的解,则___________,==b a 13.若关于y x ,的二元一次方程组⎩⎨⎧=-=+k y x ky x 95的解也是二元一次方程2x +3y =6的解,则k 的值为___________ 14.已知⎩⎨⎧-=-=+122k y x ky x 如果x 是y 的3倍少1,那么______=k15.若关于x 、y 的二元一次方程组⎩⎨⎧=+=-232y mx ny x 有无数个解,则____________,==n m16.某公司去年的利润(总收入-总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,若今年的利润为780万元,则去年总收入是_________万元三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程组:(1)⎩⎨⎧=-=+82523y x y x (2)()()()⎪⎩⎪⎨⎧=--+-=+--3223121432y x y x yx y x18(本题8分)已知关于y x ,的方程组⎩⎨⎧=+=+142y x by ax 与()⎩⎨⎧=-+=-313y a bx y x 的解相同,求b a ,的值.19(本题8分)已知二元一次方程组的解为且m +n=2,求k 的值.20(本题10分)(1)满足方程组⎩⎨⎧=++=+532153y x k y x 的x 、y 值之和为2,求k 的值。
浙教版七年级数学下册第二章《二元一次方程组》常考题(解析版)
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
七年级数学下册《第二章 二元一次方程组》单元测试卷及答案(浙教版)
七年级数学下册《第二章 二元一次方程组》单元测试卷及答案(浙教版)一、选择题1.下列选项中,是二元一次方程的是( )A .a+3=5.B .x+y2=1.C .m+n=3.D .xy=6.2.已知关于x 、y 的方程组05mx y x ny +=⎧⎨+=⎩,解是13x y =-⎧⎨=-⎩,则2m+n 的值为( )A .-8B .-6C .-4D .03.若方程组34221x y x y -=⎧⎨=-⎩用代入法消去x ,所得关于y 的一元一次方程为( )A .32142y y ---=B .()31242y y --=C .()32142y y --=D .3242y y --=4.如图,宽为40cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .256cm 2B .320cm 2C .360cm 2D .400cm 25.已知12x y =⎧⎨=⎩是方程5ax by +=的解,则代数式246a b +-的值为( )A .4B .2C .1D .56.方程组23x y x y +=⎧⎨+=⎩的解为2x y =⎧⎨=⎩,则被遮盖的两个数分别为( )A .2,1B .2,3C .5,1D .2,47.已知关于x 、y 的方程组343x y ax y a+=-⎧⎨-=-⎩的解互为相反数,则a 的值是( )A .4B .0C .1-D .18.已知关于x ,y 的方程组{4x +3y =1(k −1)x +3ky =3的解中x 与y 互为相反数,则k 的值为( )A .2B .0C .2-D .4-9.方程组233730x y x z x y z +=⎧⎪-=⎨⎪-+=⎩的解为( )A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩10.我国古代数学名著《九章算术》中记载:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则下列方程组中正确的是( )A .{12x +y =50y +23x =50 B .{x +12y =50y +x =50C .{x +12y =5023y +x =50D .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩二、填空题11.若{x =1y =-2是关于x 和y 的二元一次方程ax+y=1的解,则a 的值等于 .12.若二元一次方程32kx y -=的一组解是12x y =⎧⎨=-⎩,则k 的值为 .13.在方程b y ax =-中,当2x =-时3y =,当1x =时,0y =,那么2a b += .14.如图,在长为20m ,宽为16m 的长方形空地上,沿平行于各边分割出三个形状、大小一样的小长方形花圃,则其中一个小长方形花圃的长为 m.三、解答题15.已知关于 ,x y 的方程组 2143x y m x y m -=+⎧⎨+=+⎩的解也是二元一次方程 237x y -= 的一个解,求m 的值.16.解关于x ,y 的方程组932ax by x cy +=⎧⎨-=-⎩时,甲正确的解出24x y =⎧⎨=⎩,乙因为把c 抄错了,误解为41x y =⎧⎨=-⎩,求a 、b ,c 的值. 17.已知关于x 、y 的二元一次方程组231mx ny mx ny +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,求2m n -的值.18.有一个三位数,个位数字是百位数字的3倍,十位数字比百位数字大5,若将此数的个位数与百位数互相对调,所得新数比原数的2倍多35,求原数.19.用铁皮材料做罐头盒,每张铁皮可制盒身30个,或制盒底50个,一个盒身与两个盒底配成一套.现有33张铁皮材料,分别用多少张制盒身、盒底,才能保证既恰好用完铁皮材料,又使盒身和盒底正好配套?四、综合题20.薇菜蕨类植物中紫萁科紫萁类植物是中国目前出口创汇的重要蔬菜之一,具有杀菌消炎,抗病毒,防止脑神经老化等多重功效,珍宝岛地区在扶贫攻坚战中为了推动农民创收,特别研发出保鲜包装和干制两种新产品再将两种产品包装成A ,B 两种型号的礼盒,每个A 型礼盒含2斤干薇菜和2袋鲜薇菜,每个B 型礼盒含4斤干薇菜和2袋鲜薇菜.现有1000斤干薇菜和400袋鲜薇菜需要包装销售(包装费用暂时忽略不计)两种礼盒的成本和售价如下表所示(单位:元)A 型礼盒B 型礼盒 成本 340 410 售价400500根据以上信息,解答下列问题(1)将上述干薇菜和鲜薇菜全部包装成A 型和B 型礼盒,求包装成的两种礼盒的数量各是多少?(2)若将上述干薇菜和鲜薇菜包装成280个礼盒后全部销售,包装后剩余的干薇菜和鲜薇菜不计入成本和利润,那么怎样包装可获得最大利润?最大利润是多少?(3)在(2)的条件下,将包装后剩余的干薇菜和鲜薇菜以成本价在当地销售,销售所得用来购买薇菜根苗在养植基地进行无土栽培,若每株薇菜根苗价格为15元,那么可以购买多少株?21.已知关于x ,y 的二元一次方程组53212x y m x y m +=-⎧⎨-=-+⎩,,的解满足3x y +=.(1)求m 的值; (2)求原方程组的解.22.水是生命之源,“节约用水,人人有责”.为了加强公民的节水意识,合理利用水资源,我市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水及阶梯计费价格表的部分信息(注:水费按月份结算,3m 表示立方米)每户每月用水量3(m ) 自来水销售价格(元3/m )污水处理价格(元3/m ) 不超出36m 部分a1.10 超出36m 不超出310m 的部分 b 1.10 超出310m 的部分7.001.10(注:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用). 已知2023年三月份,小红家用水38m ,交水费32.8元,小智家用水310m ,交水费44元. (1)请你根据以上信息,求表中a ,b 的值:(2)由于七月份正值夏天,小红家预计用水315m ,求小红家七月份预计应缴水费多少元? (3)若小智家四、五月份共用水320m ,其中四月份的用水量低于五月份的用水量,共缴水费89元,则小智家四、五月份的用水量各是多少?答案解析部分1.【答案】C【解析】【解答】解: A :a+3=5,只含有一个未知数,不是二元一次方程,不符合题意;B :x+y 2=1,含有未知数的最高次数是2次,不是二元一次方程,不符合题意;C :m+n=3,是二元一次方程,符合题意;D :xy=6,含未知数的项的次数是2次,不是二元一次方程,不符合题意; 故答案为:C.【分析】根据二元一次方程的定义对每个选项一一判断即可。
浙教版七年级数学下册《第2章二元一次方程组》单元练习卷
第2章二元一次方程组一、选择题下列是二元一次方程的是()A.x﹣xy=0B.x﹣2=3y C.2x=3+3x D.x﹣=22二元一次方程3x+y=6的解可以是()A.B.C.D.3足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.4关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.15若是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是()A.3B.2C.1D.﹣16当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣107与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1B.3x+2y=﹣8C.3x﹣4y=﹣8D.5x+4y=﹣38李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.二、填空题9解方程组,当采用加减消元法时,先消去未知数比较简便.10是关于x,y的方程ax﹣y=3的解,则a=.11已知3x﹣2y﹣3=0,求23x÷22y=.12方程组(a为常数)的解满足方程x﹣3y=﹣1,则a=.13甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.三.解答题14解方程组:(1);(2).15某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.16课本里,用代入法解二元一次方程组的过程是用下面的框图表示:根据以上思路,请用代入法求出方程组的解(不用画框架图).第2章二元一次方程组一、选择题下列是二元一次方程的是()A.x﹣xy=0B.x﹣2=3y C.2x=3+3x D.x﹣=2【考点】二元一次方程的定义.【专题】一次方程(组)及应用;分式方程及应用;符号意识.【答案】B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A.x﹣xy=0,是二元二次方程,故本选项不合题意;B.x﹣2=3y,属于二元一次方程,故本选项符合题意;C.2x=3+3x,是一元一次方程,故本选项不合题意;D.,是分式方程,故本选项不合题意;故选:B.2二元一次方程3x+y=6的解可以是()A.B.C.D.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】A【分析】将x=0代入方程求出y的值,判断所求值与各选项中对应的y的值是否一致,从而得出答案.【解答】解:A.当x=0时,y=6,是方程的解;B.当x=1时,9+y=6,解得y=3≠2,故不是方程的解;C.当x=2时,6+y=6,解得y=0≠1,故不是方程的解;D.当x=3时,9+y=6,解得y=﹣3≠3,故不是方程的解;故选:A.3足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【答案】A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.4关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.1【考点】二元一次方程组的解.【专题】常规题型.【答案】D【分析】根据二元一次方程组的解的定义,把方程组的解代入方程组,求解得到m、n 的值,然后代入代数式进行计算即可得解.【解答】解:∵方程组的解是,∴,解得,所以,|m﹣n|=|2﹣3|=1.故选:D.5若是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是()A.3B.2C.1D.﹣1【考点】二元一次方程的解.【专题】整式;一次方程(组)及应用;运算能力.【答案】A【分析】把代入方程nx+6y=4得出﹣2n+6m=4,求出3m﹣n=2,再代入求出即可.【解答】解:∵是方程nx+6y=4的一个解,∴代入得:﹣2n+6m=4,∴3m﹣n=2,∴3m﹣n+1=2+1=3,故选:A.6当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣10【考点】二元一次方程组的解.【专题】实数;一次方程(组)及应用;运算能力.【答案】B【分析】①﹣②×2得出﹣x﹣19y=36,得出方程组,求出x、y的值,再把x=2,y=﹣2代入①求出a即可.【解答】解:当x、y互为相反数时,x+y=0,∵,∴①﹣②×2得:﹣x﹣19y=36,解方程组得:,把x=2,y=﹣2代入①得:6+10=2a,解得:a=8,故选:B.7与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1B.3x+2y=﹣8C.3x﹣4y=﹣8D.5x+4y=﹣3【考点】二元一次方程组的解.【答案】C【分析】将分别代入四个方程进行检验即可得到结果.【解答】解:A、将代入x+2y=1,得左边=﹣2+1=﹣1,右边=1,左边≠右边,所以本选项错误;B、将代入3x+2y=﹣8,得左边=﹣6+1=﹣5,右边=﹣8,左边≠右边,所以本选项错误;C、将代入3x﹣4y=﹣8,得左边=﹣6﹣2=﹣8,右边=﹣8,左边=右边,所以本选项正确;D、将代入5x+4y=﹣3,得左边=﹣10+2=﹣8,右边=﹣3,左边≠右边,所以本选项错误;故选:C.8李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【答案】D【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.二、填空题9解方程组,当采用加减消元法时,先消去未知数比较简便.【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】y.【分析】由未知数的系数的特点,y的系数互为相反数,即可得到答案.【解答】解:把两个方程进行相加,即可消去未知数y,故答案为:y.10是关于x,y的方程ax﹣y=3的解,则a=.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】5.【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:代入方程得:a﹣2=3,解得:a=5,故答案为:5.11已知3x﹣2y﹣3=0,求23x÷22y=.【考点】同底数幂的除法.【专题】整式;运算能力.【答案】见试题解答内容【分析】把3x﹣2y﹣3=0变形为3x﹣2y=3,再根据同底数幂的除法法则计算即可.【解答】解:由3x﹣2y﹣3=0得3x﹣2y=3,∴23x÷22y=23x﹣2y=23=8.故答案为:8.12方程组(a为常数)的解满足方程x﹣3y=﹣1,则a=.【考点】二元一次方程的解;二元一次方程组的解.【专题】一次方程(组)及应用;运算能力.【答案】2.5.【分析】将只含有x,y的两个方程联立,解出x,y,代入含a的方程中求出a即可.【解答】解:,解得:,代入ax﹣y=4得:2a﹣1=4,∴a=2.5.故答案为:2.5.13甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.【考点】由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据题意,得出等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙,得出方程组即可.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故答案为:.三.解答题14解方程组:(1);(2).【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】(1);(2)..【分析】(1)利用代入法解方程组即可得到答案;(2)加减消元法求解可得答案.【解答】解:(1)解方程组,由①得,x=6+2y③把③代入②得,2(6+2y)+3y=﹣2解得,y=﹣2把y=14代入③得,x=2所以原方程组的解为:;(2)①﹣②,得:7y=14,解得:y=2,将y=2代入①,得:3x﹣2×2=20,解得:x=8,所以原方程组的解为:.15某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】(1)由第三次购买的东西多且总费用底,可得出该单位在第三次购物时享受了打折优惠;(2)设甲的标价是x元,乙的标价是y元,根据总价=单价×数量结合前两次购物的数量和费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:(1)观察表格数据,可知:第三次购物购买的物品更多,总费用反而更少,∴该单位在第三次购物时享受了打折优惠.故答案为:三.(2)设甲的标价是x元,乙的标价是y元,依题意,得:,解得:.答:甲的标价是9元,乙的标价是12元.16课本里,用代入法解二元一次方程组的过程是用下面的框图表示:根据以上思路,请用代入法求出方程组的解(不用画框架图).【考点】绝对值;解二元一次方程组.【专题】计算题;一次方程(组)及应用.【答案】见试题解答内容【分析】根据阅读材料中的思路利用代入法求出方程组的解即可.【解答】解:由①得:x=y③,把③代入②得:|y﹣2y|=2,解得:y=2或y=﹣2,当y=2时,x=y=2;当y=﹣2时,x=y=﹣2,∴方程组的解为或.。
2020-2021学年七年级数学浙教版下册第2章二元一次方程组同步练习卷 含答案
浙教版七年级数学下册第2章二元一次方程组同步练习卷一、选择题1.下列是二元一次方程的是( )A .310x =B .231x y -=-C .4x y z =-D .80xy +=2.解方程组272a b a b +=⎧⎨-=⎩①②时,下列步骤正确的是( ) A .代入法消去a ,由①得7a b =- B .代入法消去b ,由①得72b a =+C .加减法消去a ,①-①2⨯得35b =D .加减法消去b ,①+①得39a = 3.如果12313a a x y ++与2213b x y --是同类项,那么a ,b 的值分别是( ) A .1a =,2b = B .1a =,3b =C .2a =,3b =D .3a =,2b = 4.设实数x y ,满足方程组143123x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,则x y +=( )A .1-B .8C .9D .10 5.若方程组23x y x y +=⎧⎨+=⎩的解为2x y =⎧⎨=⎩,则被遮盖的两个数、分别为( ) A .2,1 B .2,3 C .5,1 D .2,46.小明骑着自行车以每分钟120m 的速度匀速行驶在环城公路上,每隔5min 就和一辆公交车迎面相遇,每隔15min 就被同向行驶的一辆公交车追上,如果公交车是匀速行驶的,并且每相邻的两辆公交车从起点车站发出的间隔时间相等,则公交车的速度是( ).A .180min mB .200min mC .240min mD .250min m7.有三种文具,每种价格分别是3元、7元和4元,现在有27元钱,三种文具都要买,恰好使钱用完的买法数有( )种.A .1B .2C .3D .48.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( ) A .3:2:1B .1:2:3C .4:5:3D .3:4:5 9.我国古代数学名著《九章算术》中记载:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则下列方程组中正确的是( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .150250x y y x ⎧+=⎪⎨⎪+=⎩C .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩10.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( )A .2-,3B .2,3C .2-,3-D .2,3-二、填空题11.对于方程31x y -=,用含x 的式子表示y 为:y =_________.12.已知21x y =-⎧⎨=⎩是方程35mx y +=的解,则m 的值是_______.13.已知方程组()()3104312m n x y x m n y ⎧--=⎪⎨++=⎪⎩①②,将①×2-①能消x ,将①+①能消y ,则m n -=__________.14.m 为正整数,已知二元一次方程组210320mx y x y -=⎧⎨-=⎩有整数解,则m ²=__________. 15.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .16.已知方程组1122a x y c a x y c +=⎧⎨+=⎩的解是510x y =⎧⎨=⎩,则关于x ,y 的方程组()()112211a x y c a x y c ⎧-+=⎪⎨-+=⎪⎩的解是__________.三、解答题17.解下列方程组(1)362x y y x +=⎧⎨=-⎩ (2)3510236x y x y -=⎧⎨+=-⎩(3)45321x y x y +=⎧⎨-=⎩ (4)()31511212x y x y ⎧-=+⎪⎨+=-⎪⎩18.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.19.阅读小林同学数学作业本上的截图内容并完成任务.任务:(1)这种解方程组的方法称为________;(2)小林的解法正确吗?________(填“正确”或“不正确”),如果不正确,错在第________步,并选择恰当的方法解该方程组.20.甲、乙两人同解方程组232ax by cx y -=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错c ,解得26x y =⎧⎨=-⎩.求a ,b ,c 的值.21.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料,该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?22.已知关于x,y的方程组260250 x yx y mx+-=⎧⎨-++=⎩(1)请直接写出方程x+2y-6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值时,方程x-2y+mx+5=0总有一个固定的解,求出这个解.(4)若方程组的解中x恰为整数,m也为整数,求m的值.。
浙教版七年级数学下册 第二章二元一次方程组 单元测试(无答案)
第二章 二元一次方程组一、仔细选一选(本题有10小题,每小题3分,共30分) 1.下列各方程中,是二元一次方程的是( ) A.x y yx 523+=- B.x y x 223=+2y 2+2 C.y x =512+1D.6534yx y -=2.若3=+b a ,7=-b a ,则=ab ( ) A.10-B.40-C.10D.403.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( )A.2±B.2C.4D.24.方程925-=+y x 与下列方程构成的方程组的解为⎪⎩⎪⎨⎧=-=212y x 的是( )A.12=+y xB.823-=+y xC.345-=+y xD.843-=-y x5.若42b a m -与n m n b a ++225可以合并成一项,则n m 的值是( ) A.2B.0C.-1D.16.方程■52+=-x y x 是二元一次方程,■是被弄污的x 的系数,请你推断■的值属于下列情况中的( )A.不可能是1-B.不可能是2-C.不可能是1D.不可能是27.若方程组⎩⎨⎧=-+=+1)3(734y k kx y x 的解满足y x =,则k 的值是( )A.1B.2C.3D.48.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A.9天B.11天C.13天D.22天9.在方程组⎩⎨⎧=+=-1253by x y ax 中,如果⎪⎩⎪⎨⎧-==121y x ,是它的一个解,那么b a ,的值是( )A.0,4==b aB.0,21==b aC.2,1==b aD.不能确定b a ,10.已知关于y x ,的方程组⎩⎨⎧=--=+a y x ay x 343,给出下列结论:①y x ,满足关系式32=+y x ;②当2-=a 时,y x ,的值互为相反数;③当1=a 时,方程组的解也是方程a y x -=+4的解;④⎩⎨⎧-==1,5y x 是方程组的解.其中正确的是( )A.①②③B.②③C.②③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.已知⎩⎨⎧==32y x 是二元一次方程组的解,试写出一个符合条件的二元一次方程组: .12.在042=-+y x 中,如果2-=y ,那么=x . 13.已知⎩⎨⎧=+=+4252y x y x ,则=+y x .14.已知关于y x ,的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 .15.关于y x ,的二元一次方程组⎩⎨⎧+=--=+m y x my x 3531中,m 与方程组的解中的x 或y 相等,则m 的值为 .16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,值金十两;牛二、羊五,直金八两.问牛、羊各值金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x ,每只羊各值金y 两,可列方程组为 . .七年级数学 第3页七年级数学 第 4 页2 三、全面答一答(本题有7小题,共66分) 17.(8分)解方程组:(1)⎩⎨⎧=-+=-03242y x y x (2)⎩⎨⎧=-=+6341953y x y x(3)⎪⎩⎪⎨⎧-=-=+487332y x y x (4)⎪⎩⎪⎨⎧=--+-=+--3)2(2)(312143)(2y x y x yx y x18.(8分)若方程组⎩⎨⎧=+=-24352y x y x 的解也是方程710=•my x 的解,求m 的值.19.(8分)下图是按一定规律排列的方程组集合和它的解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、...、方程组n .(1)将方程组1的解填入图中.(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中.(3)若方程组⎩⎨⎧=-=+161my x y x 的解是⎩⎨⎧-==910y x ,求m 的值,并判断该方程组是否符合(2)中的规律.20.(10分)定义新运算“※”:a ※b =abyb a x ++,已知1※2=8,2※3=4,求3※4的值.21.(10分)用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.第21题22.(10分)阅读下列解题过程 解方程组⎩⎨⎧=+=+②①572317631723y x y x解:①+②,得1204040=+y x ,即3=+y x ③. ①-②,得666=-y x ,即1=-y x ④. ③+④,得42=x ,2=∴x . ③-④,得22=y ,1=∴y . ⎩⎨⎧==∴12y x ,请你运用以上解法解方程组: ⎩⎨⎧=+=+201320132014201420142013y x y x .23.(12分)鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:请解答:(1)小王家今年3月份用水20吨,要交水费 元.(用含a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元.邻居小李家4月份用水27吨,交水费70元.求b a ,的值.(3)在第(2)题的条件下.小王家5月份用水量与4月份相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单价的b a ,的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组同解、错解、参数问题
一、方程组的同解问题
1.若二元一次方程组⎩⎨⎧=+=-1
3273y x y x ,和9+=kx y 有相同解,求2)1(+k 的值.
2.阅读以下内容:
已知实数x ,y 满足x +y =2,且⎩
⎨⎧=+-=+.6322723y x k y x ,求k 的值. 三位同学分别提出了以下三种不同的解题思路:
甲同学:先解关于x ,y 的方程组⎩
⎨⎧=+-=+.6322723y x k y x ,,再求k 的值. 乙同学:先将方程组中的两个方程相加,再求k 的值.
丙同学:先解方程组⎩
⎨⎧=+=+.6322y x y x ,,再求k 的值. (2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.
(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)
3.若方程组⎪⎩
⎪⎨⎧=+=+52243y b ax y x ,与⎪⎩⎪⎨⎧=-=+5243y x by x a ,有相同的解,则b a ,的值为多少?
二、方程组错解的问题
4.甲、乙两人同时解方程组⎩
⎨⎧=-=+,②,①123by x y ax 甲看错了b ,求得的解为⎩⎨⎧-==,,11y x 乙看错了a ,求得的解为⎩
⎨⎧=-=,,31y x 你能求出原题中的a ,b 的值吗?
5.由于粗心在解方程组⎩
⎨⎧=-=-△,②,①□y x y x 4752时,小明错把系数□抄错了,得到的解是⎪⎪⎩
⎪⎪⎨⎧-=-=,,31031y x 小亮把常数△抄错了,得到的解是⎩⎨⎧-=-=.169y x ,请找出错误,并写出□和△的原来的数字,并求出正确的解.
三、方程组的参数问题
6.已知x ,y ,z 满足⎩
⎨⎧=-+=--,,0720634z y x z y x 且x ,y ,z 都不为零,求z y x z y x 3223++++的值.
四、概念:二元一次方程、二元一次方程组、方程组的解
1. 下列方程中,二元一次方程是( )
A.1=xy
B.13-=x y
C.21=+y x
D.032=-+x x
2. 下列方程组中属于二元一次方程组的是( ) A.⎪⎩⎪⎨⎧=+=+65115y x y x B.⎩⎨⎧-=+=+2102y x y x C.⎩⎨⎧-==+58xy y x D.⎩
⎨⎧-=+=31y x x 3. 若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k
y x k y x 95的解也是二元一次方程632=+y x 的解,
则k 的值为_________.
4. 若方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==43y x ,则方程组⎩
⎨⎧=+=+222111523523c y b x a c y b x a 的解为______. 5. 已知两个方程组⎩⎨⎧-=-=+452by ax y x 和⎩
⎨⎧=+=-232645by ax y x 有公共解,求a ,b 的值. 6. 解方程组⎩⎨⎧=-=+872y cx by ax 时,一学生把c 看错而得⎩⎨⎧=-=22y x ,而正确的解是⎩
⎨⎧-==23y x ,那么( )
A.a 、b 、c 的值不能确定
B.a=4,b=5,c=﹣2
C.a 、b 的值不能确定,c=﹣2
D.a=4,b=7,c=2
7. 已知x 、y 、z 同时满足方程x+3y -5z=0,2x -y -3z=0.则x :y :z 的值为________.
8. 一宾馆有二人间、三人间、四人间三种客房供游客居住,某旅行团20人准备同时租用这三种客房共7间,若每个房间都住满,则租房的方案有_______种.
9. 已知m 是整数,方程组⎩
⎨⎧=+=-266634my x y x 有整数解,求m 的值.
10. 甲、乙两班学生到集市上购买苹果,苹果的价格如下:
甲班分两次购买苹果70千克(第二次多于第一次),共付出189元;而乙班则一次购买苹果70千克.
(1)乙班比甲班少付出多少元?(3)甲班第一次、第二次分别购买多少千克?
11.小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8m,2.5m且粗细相同的钢管分别为100根,32根,并要求这些用料不能是焊接而成的。
现钢材市场的这种规格的钢管每根为6m.
(1)试问一根6m长的圆钢管有哪些裁剪方法呢?请填写下空(余料作废).
方法①:当只裁剪长为0.8m的用料时,最多可剪______根;
方法②:当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料______根;
方法③:当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料______根。
(2)分别用(1)中的方法②和方法③各裁剪多少根6m长的钢管,才能刚好得到所需要的相应数量的材料?
(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6m长的钢管与(2)中根数相同?
12.温州苍南马站四季柚,声名远播,今年又是一个丰收年。
某经销商为了打开销路,对1000个四季柚进行打包优惠出售。
打包方式及售价如图。
假设用这两种打包方式恰装完全部柚子。
(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值。
(2)当销售总收入为7280元时。
①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋共包装了多少袋?
②若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值。