大学物理课后习题答案(上)
大学物理课后习题1第一章答案
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
大学物理第五版课后答案上完整版
3-6一架以 2 m s 解 0Δ-='v m t FN 1055.252⨯=='lm F v 鸟对飞机的平均冲力为 N 1055.25⨯-='-=F F3-7 质量为m 的物体,由水平面上点O 分析 3-8 Fx=30+4t 的合外力解 1 由分析知()s N 68230d 4302220⋅=+=+=⎰t t t t I 2 由I =300 =30t +2t 2 ,解此方程可得 t =6.86 s 另一解不合题意已舍去3 由动量定理,有 I =m v 2- m v 1由2可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得 112s m 40-⋅=+=mm I v v3-9 高空作业 51kg 的人3-10质量为m 的小球,在力F= - kx 作用下运动ωkA t t ωkA t kx t F I ωt t t t -=-=-==⎰⎰⎰2/π02121d cos d d 即()ωkA m -=v Δ3-11 在水平地面上,有一横截面S= 2()A B t S ρtv v v -==ΔΔIF , N 105.2232⨯-=-=-='v S ρF F 3-12 爆炸后 ,hgx t x x 21010==v 21121gt t h y --=v ;12121t gth -=v x x m m 2021v v = y m m 2121210v v +-=落地时,y 2 =0,由式5、6可解得第二块碎片落地点的水平位置 x 2 =500 m 3-13 A,B 两船在平静的湖面上平行逆行航行 B 船以 解()A A B A A m m m m v v v '=+- 1 ()''=+-B B A B B m m m m v v v 23-14 质量为m 丶的人手里拿着质量为m 的物体 解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有u m m m α'++=cos 00v v 人的水平速率的增量为u mm mα'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为 gαt sin 0v =所以,人跳跃后增加的距离()g m m αm t x '+==sin ΔΔ0v v3-15 一质量均匀柔软的绳竖直的悬挂着0N =-+F F yg l m1 y lmt F d 0d v -=' 2 而 F F '-= 3 3-16 设在地球表面附近,一初质量为 10 5解 1 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为ma mg tmu=-d d 1 2 t m mg t m u d d d d v=- 分离变量后积分,有 ⎰⎰⎰-=t m m t g m m u 0d d d 00v v v3-17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知 t=0时质点位于原点 解 2d 0000L F x x LF F W L=⎪⎭⎫⎝⎛-=⎰;mLF 0=v 3-18 如图 一绳索 5N 3-19 一物体在介质x=ct 3解 23d d ct tx==v ;3/43/242299x kc t kc k F ===v3-20 一人从 m 深的井中提水解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有 F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy 3-21 一质量为的小球 的细绳 解 1()J 53.0cos 1Δ=-==θmgl h P W P ;s F d T T ⋅=⎰W2 J 53.0k k ==E E 小球在最低位置的速率为 1PKs m 30.222-⋅===mW m Ev 3l m P F 2T v =- N 49.22T =+=lm mg F v3-22 一质量为m 的质点,系在细绳的一段,绳的另一端解 1 2202k 0k 832121v v v m m m E E W -=-=-= 1 2 由于摩擦力是一恒力,且F f =μmg ,故有mg μr πs F W 2180cos of -== 2rg πμ16320v = 3 34k0==W E n 圈3-23 如图所示,A 和B 两块板用一轻弹簧F 1 =P 1 +F 2221212121mgy ky mgy ky +=-;F 1 -F 2 =2P 1 F =P 1 +F 2 当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式3可得F =P 1 +P 2 =m 1 +m 2 g3-24有一自动卸货矿车W f = +′gl +x 1W f =-m -m ′ gl +x sin α 2 3-25 分铁锤敲入钉子木板 -2 解⎰⎰+=xx x x x kx x kx Δ000d d Δx = ×10 -2m3-26 m 的地球卫星, 3Re 解()E 22E E 33R m R m m G v = 则 E E 2K 621R m m G m E ==v 2 E E P 3R mm G E -=3 EE E E E E P K 636R mm G R m m G R m m G E E E -=-=+=3-27 天文观测台 冰块解 由系统的机械能守恒,有R m F θmgR 2N cos v =- o θ2.4832arccos ==;32cos RgθgR ==v v 的方向与重力P 方向的夹角为 α=90°-θ =°3-28 m= kg A 时 解 rm mg c 2v= 1()()22213Δ21c m r mg l k v += 2 由式1、2 可得 ()12m N 366Δ7-⋅==l mgr k 3-29 质量为m, 速度为v 的钢球 m 丶的靶. 解 ()1v v m m m '+= 1()20212212121kx m m m +'+=v v 2()v m m k m m x '+'=03-30 质量为m 的弹丸,穿过v v v ''+=m m m 21 l m g m h2v ''=' 2 221221hm gl m m v v ''+'='' 3glm m 52'=v 3-31 一个电子和一个3-32 质量为 x 10 -23kgαm βm m A B A cos cos 221v v v '+= 1αm βmA B sin sin 20v v '-= 2 222212m 2121A B A m v v v '+⎪⎭⎫ ⎝⎛= 3()1722s m 1069.42-⋅⨯='-=A A B v v v3-33 如图 质量为m 丶的物块 低端A 处解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= 1()αh αg m m μsin cos '+- ()()()21222121v v m m gh m m m m '+-'++'+= 2()1cot 2cos 202+-⎪⎭⎫ ⎝⎛'+=αμgh αm m m v v 3-34 如图 一质量为m 的小球 内壁半球形 3-35 打桩 m=10t解 1 在锤击桩之前,由于桩的自重而下沉,这时,取桩和地球为系统,根据系统的功能原理,有⎰='1h 01d 4h hK S gh m 1m 88.821='=KS gm h 2 ()v v m m m +'=0 2()()220h h h 21S 4d -211gh m m m m Kh +'-+'-=⎰+v v 3 h 2 = m ;v v ''+'-=m h g m m 20 ()23h 021d h m 354-3v ''-'-=+⎰m gh m h S 5h 3 = m3-36 一系统0332211=++x x x m m m v v v ;0332211=++y y y m m m v v v则 ()()j i 113s m 0.2s m 8.2--⋅-⋅-=v 3-37 如图 m1 = kg m2 = AB 小球m 5.1202120=+=x m m m x c ;m 9.1102110=+=y m m m y c ()t m m F m m t F x x tx2112101 ,d d +=+=⎰⎰v v v 3 ()t m m F m m t F y y ty2122101 ,d d +=+=⎰⎰v v v 4 t m m F y ty y c d d 0212cc0⎰⎰⎪⎪⎭⎫⎝⎛+=;()22212019.09.12t t m m Fy y c c +=++= 2()()()j i F F P P t t t t0.60.8d Δ021-=+==⎰4-6 一汽车 12s 3 r min 解()200s rad 1.13π2-⋅=-=-=t n n t ωωα ;()0020π221n n t ωωt αt ωθ-=-=+=4-7 某种电动机启动后 ;s()22//0s rad e 5.4e d d ---⋅===t τt τωt ωα;()rad 9.36d 1d /60060=-==-⎰⎰t e ωt ωθτt 则t = s 时电动机转过的圈数87.5π2/==θN 圈4-8 水分子 θd m J H A A 22sin 2='θd m J H B B 22cos 2='此二式相加,可得22d m J J H B B A A =+''则 m 1059.9211-''⨯=+=HB B A A m J J d由二式相比,可得 θJ J B B A A 2tan /='' 则 o 3.521.141.93arctan arctan===''B B A A J J θ 4-9 一飞轮 30cm cm4-10 如图 圆盘的质量为m 半径为R22/3222/2203215d 2 d π2πd mR r r R m r r R mr m r J R R RR ====⎰⎰⎰ 2 ;22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+='4-11 用落体观察法测定飞轮的转动惯量 4-12 一燃气轮机 m2解1 在匀变速转动中,角加速度tωωα0-=,由转动定律αJ M =,可得飞轮所经历的时间4-13 如图 m1 = 16kg 圆柱体A解 1αr m αJ r F T 2121== ;a m F g m F P T T 222='-='-21222m m g m a += ;m 45.222121222=+==m m gt m at s2 ()N 2.3922121=+=-=g m m m m a g m F T 4-14 m1 m2 A B 组合轮两端()αJ J r F R F T T 2121+=- 11T T F F =',22T T F F ='解上述方程组,可得gR r m R m J J r m R m a 222121211+++-=;gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=;g m rm R m J J Rr m R m J J F T 2222121121212++++++= 4-15 如图所示装置,定滑轮半径rαr a a ==21 αJ r F r F T T ='-'12 11T T F F =',22T T F F =' 4-16 飞轮 60kg()0121='-+l F l l F Nd μF l ll d μF d F M N 121f 2212+=== 1 4-17 一半径为R,质量为m 的匀质圆盘;; 停止 4-18 如图 通风机J ωC t ωα-==d d 1t JCωωt ωωd d 00⎰⎰-=J Ct e ωω/0-= 22ln CJt =24-19 如图 一长 2l 的细棒AB解()αe ωml mr ωJ L t 2022sin 122--===2 ()[]αe ωml tt L M t 202sin 12d dd d --==te αωml -=202sin 2 ;αωml M 202sin 2= 4-20 m 丶 半径R 的圆盘 裂开 解 1 R ω=0v4-21 光滑水平 木杆 m1= L=40cm解 根据角动量守恒定理()ωJ J ωJ '+=212;()1212212s 1.2936-=+=+='m m m J J ωJ ωv4-22 r1 r2 薄伞形轮 4-23 的 小孩R ωωωωv +=+=010;()010100=++ωωJ ωJ 122020s 1052.9--⨯-=+-=RmR J mR ωv4-24 一转台 砂粒 Q =2t 解 在时间0→10 s 内落至台面的砂粒的质量为kg 10.0Qd s 100==⎰t m ;()ωmr J ωJ 2000+= ;112000s π80.0-=+=J mrJ ωJ ω 4-25 为使运行中的飞船4-26 m 的蜘蛛解 1 ()b a ωJ J ωJ 100+=a a b ωmm m ωJ J J ω2100+''=+=2 即22mr J =.在此过程中,由系统角动量守恒,有()c a ωJ J ωJ 100+=4-27 的均匀细棒解 1 由刚体的角动量定理得 28388Δ31arccos o 222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ 4-28 第一颗人造卫星 5 2211v v mr mr = 12221212121r Gmm m r Gmm m EE -=-v v 2()1321121s m 1011.8-⋅⨯=+=r r r r Gm E v ;131212s m 1031.6-⋅⨯==v v r r4-29 地球对自传解 1 地球的质量m E = ×1024 kg,半径R = ×106 m,所以,地球自转的动能2 对式T ωπ2=两边微分,可得T Tωd π2d 2-= T ωT T ωΔπ2Δπ2Δ22-=-= T E ωT J ωωωJ E K K ΔπΔπ2ΔΔ3-=-== 2式中n 为一年中的天数n =365,ΔT 为一天中周期的增加量.4-30 如图 一质量为m 的小球由一绳索 ;;; 新的角速度 解 1200mr J =和20141mr J =,则00014ωωJ J ω==2 2020200211232121ωmr ωJ ωJ W =-=4-31 质量 解 1 棒绕端点的转动惯量231ml J =由转动定律M =Jα可得棒在θ 位置时的角加速度为()lθg J θM α2cos 3==;2s 418-=.α 由于θωωt ωαd d d d ==,⎰⎰=o 6000d d θαωωω ;1600s 98.7sin 3o -==l θg ω 2J 98.021==mgl E K3 由于该动能也就是转动动能,即221ωJ E K =,1s 57.832-==='l g J E ωK 4-32 如图 A B 两飞轮 J1 = kg;M解 1 取两飞轮为系统,根据系统的角动量守恒,有2 ()J 1032.12121Δ42112221⨯-=-+=ωJ ωJ J E 4-34 如图 OO 丶自由转动解()B ωmR J ωJ 2000+= 1()2220200212121BB m ωmR J mgR ωJ v ++=+ 22000mR J ωJ ωB +=2022002mRJ RωJ gR B ++=v 0ωωC = ;gR C 4=v 4-35 为使运行中飞船停止绕其中心轴转动 ,一种可能方案有()()2222122121ωl R m ωJ J '+=+ ⎪⎪⎭⎫ ⎝⎛-'+=141m m R l 4-37 一长为L, 质量为m 的均匀细棒,在光滑的;;绕质心ωJ ωJ t F-'=-Δ21;ωωml J J ω41412=+='2 22223212121ωml ωJ ωJ E ΔK -=-''=4-38 如图 细绳 大木轴 解 设木轴所受静摩擦力F f 如图所示,则有F mR J R R θR a C C 212121cos ++= ;F mR J R θR R a αC C 21211cos ++== 5-6 1964 年,盖尔曼等人 解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力. 5-7 质量为m , 电荷为-e 的电子由此出发命题可证.证 由上述分析可得电子的动能为r e εm E K 202π8121==v ;3022π4mrεe ω=;432022232π4me E εωK ==v 5-8 在氯化铯 1 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.2 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为5-9 若电荷均匀地分布在长为L 的细棒 , 求证 证 1 延长线上一点P 的电场强度⎰'=Lr πεqE 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.2, E rεqαE Ld π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则5-10 一半径为R 的半球壳,均匀的带有电荷, 解由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有 5-11 水分子H2O解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上 5-13 如图为电四级子解 由点电荷电场公式,得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=; 5-14 设匀强电场的电场强度E 与半径为R 的半球面对称轴平行 5-15 如图 边长为a 的立方体,其表面同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ 5-16 分析 地球周围的大气犹如;;5-17 设在半径为R 的球体内 ,其电荷为对称分布球体内0≤r ≤R()40022πd π41π4r εk r r kr εr r E r==⎰ ,()r εkr r e E 024=球体外r >R()40022πd π41π4r εk r r kr εr r E R==⎰,()r εkR r e E 024=5-18 如图 , 一无限大均匀带电薄平板n εσe E 012=;nr x xεσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 ,n rx x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0 在距离圆孔较远时x >>r ,则5-19 如图, 在电荷体密度p 的均匀带电球体证 带电球体内部一点的电场强度为r E 03ερ=r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ;a E 03ερ=5-20 一个内外半径分别为R1和R2的均匀带电球壳,总电荷为Q1解 取半径为r 的同心球面为高斯面,由上述分析 r <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故 r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故5-21 两个带有等量异号电荷的无限长同轴圆柱面解 ∑=⋅0/π2εq rL E r <R 1 , 0=∑q 01=E 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2, 0=∑q 03=E 5-22 如图 ,有三个点电荷Q1Q2Q3解 在任一点电荷所受合力均为零时Q Q 412-=,并由电势5-23 已知均匀带电直线附近的1 ,12012ln π2d 21r r ελU r r =⋅=⎰r E 2 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5-24 水分子电偶极矩解 由点电荷电势的叠加1 若o 0=θ V 1023.2π4320P -⨯==rεpV 2 若o45=θ V 1058.1π445cos 320o P -⨯==r εp V 3 若o90=θ 0π490cos 20oP ==r εp V5-25 一个球形雨滴半径当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势5-26 电荷面密度分别为;;;两块无限大解 ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x0 2 00i E ()a x a x εσV x <<--=⋅=⎰ d 00l E()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a -axl E l E ;()a x a εσV >-=⋅+⋅=⎰⎰ d d 00a -a x l E l E 5-27 两个同心球面的半径分别为R1 R2 , 各自带有解 1 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则 202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= 2 ; ()2011012112π4π42R εQ R εQ V V U R r -=-== 5-28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布当r ≤R 时02/ππ2ερl r rl E =⋅ ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅ ()rεR ρr E 022=当r ≤R 时()()22004d 2r R ερr εr ρr V R r-==⎰当r ≥R 时()rR εR ρr r εR ρr V R r ln 2d 20202==⎰5-29 一圆盘半径R= 10 -2解 1 带电圆环激发的电势220d π2π41d x r r r σεV +=()x x Rεσxr r r εσV R-+=+=⎰22222d 2 12 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V 2 电场强度方向沿x 轴方向.3 将场点至盘心的距离x = cm 分别代入式1和式2,得当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 5-30 两根同长的圆柱面 R1= 10 -2 m R2=解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ2 解得两圆柱面之间r = 处的电场强度 5-31 轻原子核结合成为较重原子核解 1 两个质子相接触时势能最大,根据能量守恒由20K021v m E =可估算出质子初始速率17k 00s m 102.1/2-⋅⨯==m E v 该速度已达到光速的4%.2.kT E E 23K K0== K 106.5329K0⨯≈=kE T 5-32 在一次典型的闪电中Kg 1098.8Δ4⨯===LqUL E m 即可融化约 90 吨冰. 2 一个家庭一年消耗的能量为5-33 两个半径为R 的圆环分别带等量异电荷 正负q解 1 由带电圆环电势的叠加,两环圆心连线的x 轴上的电势为2 当R x l x >>>>,时,化简整理得在R x >>时带电圆环等效于一对带等量异号的点电荷,即电偶极子.上式就是电偶极子延长线上一点的电势.5-34 如图 , 在Oxy 平面上倒扣着半径为R 的半球面,假设将半球面扩展为带有相同电荷面密度σ的一个完整球面,此时在A 、B 两点的电势分别为5-35 在玻尔的氢原子模型中,电子 10-10解 1 电子在玻尔轨道上作圆周运动时,它的电势能为2 电子在玻尔轨道上运动时,静电力提供电子作圆周运动所需的向心力,即()r m r εe /π4/2202v =.此时,电子的动能为电子的电离能等于外界把电子从原子中拉出来需要的最低能量 6-6 不带电的导体球A 含有两个 ; ()20π4rεq q q F d c b d +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电 荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.6-7 一真空二极管,其主要构件是是一个半;;R1=解 1 电子到达阳极时,势能的减少量为 26-8 一导体球半径为R1,外罩一半径为R2r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E += r <R 1时, R 1<r <R 2 时, r >R 2 时,也可以从球面电势的叠加求电势的分布.在导体球内r <R 120101π4π4R εQR εq V += 在导体球和球壳之间R 1<r <R 2 2002π4π4R εQ r εq V +=在球壳外r >R 2 r εQ q V 03π4+= ;102001π4π4R εQR εq V V +== 102001π4π4R εQR εq V V +== 代入电场、电势的分布得 r <R 1时, 01=E ;01V V = R 1<r <R 2 时,22012012π4rR εQ R r V R E -=;r R εQR r r V R V 201012π4)(--= r >R 2 时,6-9 如图 ,在一半径为R1 = cm 的金属球 A 外面 套 解V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V BA B 2 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为 6-10 两块带电量分别为Q1,Q2的导体平板平行证明 1 设两块导体平板表面的电荷面密度分别为σ1、σ2、σ3、σ4 ,取如图b所示的圆柱面为高斯面,高斯面由侧面S 1和两个端面S 2、S 3构成,由分析可知得 0,0ΔΔ3232=+=+=∑σσS σS σq相向的两面电荷面密度大小相等符号相反.2 由电场的叠加原理,取水平向右为参考正方向,导体内P 点的电场强度为 6-11 将带电量为Q 的导体板A 从远处移至不带电的导体板B 附件解 1 如图b所示,依照题意和导体板达到静电平衡时的电荷分布规律可得()Q S σσ=+21 ;()Q S σσ=+43;041=-σσ;032=+σσSQσσσσ24321==-==两导体板间电场强度为S εQ E 02=;方向为A 指向B .两导体板间的电势差为 SεQd U AB 02=2 如图c 所示,导体板B 接地后电势为零. 两导体板间电场强度为S εQ E 0=';方向为A 指向B . SεQdU AB0=' 6-12 如图 Q>0, 内半径为a, 外半径b6-13 如图, 在真空中将半径为R 的金属球接地,在与球心 6-14 地球和电离层可当做一个球形电容器 6-15 两线输电线的线径代入数据 F 1052.512-⨯=C 6-16 电容式计算机键盘解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC ;mm 152.0ΔΔΔ00min20min =+=-=S εC d Cd d d d6-17 盖革-米勒管 可用解 1 由上述分析,利用高斯定理可得L λεrL E 01π2=⋅,则两极间的电场强度 2 当611 2.010V m E -=⨯⋅ ,R 1 = mm,R 2 = mm 时,6-18 解 1 查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容2 C 1084.18-⨯==CU Q 2-80m C 1084.1⋅⨯==-SQσ 31-5m V 102.1⋅⨯==dUE 6-19 如图 , 半径R= 的导体球带有电荷 Q = -8C解 1 取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D 01=D ;01=E R <r <R +d Q r D =⋅22π422π4r Q D =;202π4r εεQ E r=r >R +d Q r D =⋅23π4;23π4r Q D =;203π4r εεQE r =r 1 =5 cm,该点在导体球内,则01=r D ;01=r Er 2 =15 cm,该点在介质层内,εr =,则2822m C 105.3π42--⋅⨯==r Q D r ;12220m V 100.8π42-⋅⨯==r εεQ E r r r 3 =25 cm,该点在空气层内,空气中ε≈ε0 ,则2823m C 103.1π43--⋅⨯==r Q D r ;12220m V 104.1π43-⋅⨯==r εQ E r 2 取无穷远处电势为零,由电势与电场强度的积分关系得 r 3 =25 cm,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2 =15 cm, ()()V480π4π4π4d d 0020r 3222=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ r εεQ V r r dR dR rE r E r 1 =5 cm,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E3 均匀介质的极化电荷分布在介质界面上,因空气的电容率ε =ε0 ,极化电荷可忽略.故在介质外表面; 6-20 人体的某些细胞壁两侧解 1细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. 2 细胞壁两表面间的电势差V 101.52-⨯==Ed U . 6-21 有一个平板电容器 = 10-5 C;M-2解 250m C 105.4Δ--⋅⨯===σSQD 16r 0m V 105.2-⋅⨯==εεDE D 、P 、E 方向相同,均由正极板指向负极板图中垂直向下.6-22 在一个半径为R1的长直导线外套有氯解 由介质中的高斯定理,有⎰=⋅=⋅L λrL D d π2S D ;r rλe D π2=r r r εελεεe D E 00π2==;r r rλε-εe E -D P π2110⎪⎪⎭⎫ ⎝⎛== 6-23 如图 , 球形电极浮在相对电容率 = 的油槽中解 R εC 01π2= ;R εεC r 02π2=6-24 如图 , 由两块相距为 mm 的 薄金属板A,B 构成的空气平板电容器解 1 13232123C C C C C C C C ++⋅=+=32122d d d ==且,故1322C C C == ,因此A 、B 间的总电容12C C =2 若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于C2 或者C3 极板短接,其电容为零,则总电容6-25 如图 , 在点A 和点B 之间有五个电容器 解 1 由电容器的串、并联,有求得等效电容C AB =4 μF.2 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U 6-26 如图,有一空气电热板级板面积S ,间距d 解 12 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ ;()δd εδSU εεU C C r r -+==011 ()δd εδU S εεQ E r r -+=='011;()δd εδUεS εQ E r r -+==0113 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为导体中电场强度 02='E δd UE -=2 6-27 为了实时检测纺织品6-28 利用电容传感器测量油料液面高度证 由分析知,导体A 、C 构成一组柱形电容器,它们的电容分别为d D L εαln π20=;()dD L εεβr ln π20-= UX βaU CU Q +== 6-29 有一电容为 uF 的平行平板电容器解 1 V 190max ==d E U b2J 1003.92132max -⨯=CU W e6-30 半径为的长直导线,解 1 导线表面最大电荷面密度 250max m C 1066.2--⋅⨯==b E εσ 2 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210π2R r R rRr ελE m <<==0=E 其他 6-31 一空气平板电容器,空气厚解 ()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E > ,空气层被击穿,击穿后40 kV 电压全部加在玻璃板两侧,此时玻璃板内的电场强度由于玻璃的击穿电场强度'110V m b E M -=⋅,b E E '> ,故玻璃也将相继被击穿,电容器完全被击穿.6-32 某介质的相对电容率 er=解 16m V 1018-⋅⨯=≤b E E m 1022.2/4-⨯==b m E U d要制作电容为 μF 的平板电容器,其极板面积 210m 42.0==εεCdS 6-33 一平行板空气电容器,极板面积S,极板间距d, 充电解 1 20220221S εQ E εw e == Sεd Q V w W e e 022ΔΔ== 2 两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为7-6 北京正负电子对撞机 7-7 已知铜的摩尔质量解 1M ρN n A /= 14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v 2 室温下T =300 K电子热运动的平均速率与电子漂移速率之比为 7-8 有两个同轴导体圆柱面,它们的长度均为20m解 由分析可知,在半径r = mm 的圆柱面上的电流密度 7-9 已知地球北极磁场磁感应强度B 的大小为 T解 设赤道电流为I,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度 7-10 如图,有两根导线沿半径方向接到铁环 7-11 如图 几种截流导线在平面内分布解 aRIμB 800=B 0 的方向垂直纸面向外. b 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里. c 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外. 7-12 截流导线形状如图, 球O 点 ;; B7-13 如图, 一个半径为R 的无限长半球圆柱面导体,解 根据分析,由于长直细线中的电流R l I I π/d d =,它在轴线上一点激发的磁感强度的大小为RIμB B x 20π== B 的方向指向Ox 轴负向. 7-14 分实验室常用所谓亥姆霍兹线圈由 0d d =xB, 解得 x =0 由0d d 022==x x B ,解得 d =R① 将磁感强度B 在两线圈中点附近用泰勒级数展开,则若x <<1;且()0d 0d =xB ;()0d 0d 22=x B .则磁感强度Bx 在中点O 附近近似为常量,场为均匀场.这表明在d =R 时,中点x =0附近区域的磁场可视为均匀磁场. 7-15 如图,截流长直导线的电流为L,求通过矩形面积的磁通量 7-16 已知 10mm2 裸铜线;; 50A在导线内r <R , 2222πππR r r R I I ==∑,因而202πRIr μB =在导线外r >R ,I I =∑,因而rIμB 2π0=2 在导线表面磁感强度连续,由I =50 A,m 1078.1π/3-⨯==s R ,得 7-17 有一同轴电缆, 其尺寸如图解 由上述分析得r <R 1 22101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅ rI μB 2π02= R 2 <r <R 3r >R 3 ()02π04=-=⋅I I μr B 04=B7-18 如图,N 匝线圈均匀密绕;;中空骨架上∑=⋅I μr B 02π r <R 1 02π1=⋅r B01=B R 2 >r >R 1 NI μr B 022π=⋅ rNIμB 2π02=r >R 2 02π3=⋅r B 03=B RNIμB 2π0≈7-19 电流I 均匀的流过半径为R 的圆形长直导线 7-20 设 电流均匀流过无限大导电平面 7-21 设有两无限大平行载流平面 ,解 1 取垂直于纸面向里为x 轴正向,合磁场为 2 两导体载流平面之外,合磁场的磁感强度 7-22 已知地面上空 B= -4解 1 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. 2N 102.316-⨯==B F v q L N 1064.116-⨯==g m G p因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力. 7-23 在一个显像管的电子 4 eV 解 1 B F ⨯=v q电子带负电,q <0,因而可以判断电子束将偏向东侧.2m 71.62===eBmE eB m R k v 由题知cm 20=y ,并由图中的几何关系可得电子束偏向东侧的距离m 1098.2Δ322-⨯=--=y R R x 即显示屏上的图像将整体向东平移近3 mm .这种平移并不会影响整幅图像的质量.7-24 试证明霍尔电场强度与恒流强度之比j E ρC = ;B E ⨯-=v H ; v ne =jnev ρρC ==j E ;;B E ⨯-=v H ; B/ne ρB/ρ/ρB/ρ/E E C H ===v v v / 7-25 霍尔效应 测量血流的速度7-26 磁力可以用来输送导电液体 1JBl S IBl S F p ===Δ 2 26A/m 1038.3Δ⨯==Blp J 7-27 带电粒子在过饱和液体中运动 半径7-28 从太阳射来的速率 10 7解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v ;m 2322==eB m R v 7-29 如图, 一根长直导线载有电流I1 = 30A I2=20Adl I I μF π22103=; ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线.7-30 一直流变电站电压500kv解 1 d I μBI F B π220== ;dεU C λE F E 022π2== 由0=+E B f f 可得 2 输出功率7-31 将一电流均匀分布的无限大...B0依照右手定则可知磁场力的方向为水平指向左侧.7-32 在直径为的刚棒上解 1 因为所有电子的磁矩方向相同,则圆盘的磁矩27m A 1056.1⋅⨯==-e μN m2 由磁矩的定义,可得圆盘边缘等效电流A 100.2/3-⨯==S m I 7-33 在氢原子中,L=h/2π7-34 如图 ,半径为R 的圆片均匀带电,电荷面密度解 由上述分析可知,轴线上x 处的磁感强度大小为7-35 如图 一根长直同轴电缆, 内外解 1 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f I r H π2 对r <R 1 221ππr R I I f =∑ 2112πR Ir H = 01=M ,21012πR Ir μB = 对R 2 >r >R 1 I I f =∑ rI H 2π2= 填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 03=M , 对r >R 3 0=-=∑I I I f 04=H ,04=M ,04=B 2 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为7-36 设长L= ,截面积S= 2解 1 A N M SL ρN 0= ;2000m A 85.7-⋅===m N M SL ρNm m A 2 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受的磁力矩 7-37 在实验室,为了测试;;平均周长分析 根据右手定则,磁感线与电流相互环连,磁场沿环型螺线管分布,当 环形螺线管中通以电流I 时,由安培环路定理得磁介质内部的磁场强度为 由题意可知,环内部的磁感强度S ΦB /=,而H μμB r 0=,故有解 磁介质内部的磁场强度和磁感强度分别为L NI /和S Φ/,因而。
大学物理上册-课后习题答案全解
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答
第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。
《新编大学物理》(上、下册)教材习题答案
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
大学物理学(第三版上)课后习题3答案详解
习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) (B) 02ωmRJ J +02)(ωR m J J +(C) (D) 02ωmRJ 0ω[答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s(C)10rad/s (D)18rad/s (a)(b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。
(B )动量不变,动能改变。
(C )角动量不变,动量不变。
(D )角动量改变,动量改变。
(E )角动量不变,动能、动量都改变。
[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n = 。
0.15; 1.256[答案:](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。
木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。
题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。
大学物理课后习题答案(上下册全)武汉大学出版社 第11章 习题解答
第11章 习题与答案11-1 一凸透镜在空气中的焦距为40cm, 在水中时焦距为136.8cm, 问此透镜的折射率为多少(水的折射率为1.33)? 若将此透镜置于CS 2中(CS 2的折射率为1.62), 其焦距又为多少? 解:由题意知凸透镜的焦距为11212n f n n n n r r =---+又∵在同一介质中12n n =,'f f =-设12'n n n ==21111''n f n n r ⎛⎫⎛⎫∴=--- ⎪ ⎪⎝⎭⎝⎭因为对同一凸透镜而言,211n r -是一常数, 设11''n t f n ⎛⎫∴=-- ⎪⎝⎭当在空气中时1'1n =,140f =,在水中时2' 1.33n =,2136.8f =11401n t ⎛⎫∴=- ⎪⎝⎭,11136.8 1.33n t ⎛⎫=-- ⎪⎝⎭,两式相比,可得 1.54n =,将其代入上 得0.0463t =∴在CS 2中,即1' 1.62n =时,1 1.5410.0463' 1.62f ⎛⎫=-⨯ ⎪⎝⎭得'437.4cm f =-. 即透镜的折射率为1.54,在CS 2中的焦距为437.4cm -。
11-2 会聚透镜和发散透镜的焦距都是10cm, 求(1)与主轴成30︒度的一束平行光入射到每个透镜上, 像点在何处? (2)在每个透镜左方的焦平面上离主轴1cm 处各置一发光点, 成像在何处?作出光路图。
解:(1)由'1'f f s s+=,s =∞,对于会聚透镜''10cm x s f ==,''tan30 5.8cm y x s s =︒=或者()''tan 30 5.8cm y x s s =-︒=-,像点的坐标为()10,5.8,同理,对于发散透镜:像点的坐标为()10,5.8-。
大学物理上册(湖南大学出版社-陈曙光)-课后习题答案全解
大学物理上册课后习题答案第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t -=+.计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =. 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).图1.3人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其它问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变数得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变数得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n -=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+. 即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .v[注意]选择不同的坐标系,如x方向沿着a的方向或者沿着v0的方向,也能求出相同的结果.1.7一个半径为R= 1.0m的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A.在重力作用下,物体A从静止开始匀加速地下降,在Δt = 2.0s内下降的距离h = 0.4m.求物体开始下降后3s末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A下落加速度.由于212th a t=∆,所以a t = 2h/Δt2 = 0.2(m·s-2).物体下降3s末的速度为v = a t t = 0.6(m·s-1),这也是边缘的线速度,因此法向加速度为2nvaR== 0.36(m·s-2).1.8一升降机以加速度1.22m·s-2上升,当上升速度为2.44m·s-1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at=+;螺帽做竖直上抛运动,位移为22012h v t gt=-.由题意得h = h1 - h2,所以21()2h a g t=+,解得时间为t=.算得h2 = -0.716m,即螺帽相对于升降机外固定柱子的下降距离为0.716m.[注意]以升降机为参考系,钉子下落时相对加速度为a + g,而初速度为零,可列方程h = (a + g)t2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A处向东飞到B处,然后又向西飞回到A处.已知气流相对于地面的速度为u,AB之间的距离为l,飞机相对于空气的速率v保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为2ltv=;(2)如果气流的速度向东,证明来回飞行的总时间为01221/ttu v=-;(3)如果气流的速度向北,证明来回飞行的总时间为2t=.[证明](1)飞机飞行来回的速率为v,路程为2l,所以飞行时间为t0 = 2l/v.(2)飞机向东飞行顺风的速率为v + u,向西飞行逆风的速率为v - u,所以飞行时间为1222l l vltv u v u v u=+=+--022222/1/1/tl vu v u v==--.(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB方向的速度大小为V=,所以飞行时间为图1.7A BA Bvv + uv - uA Bv uuvv22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律 2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、图1.101h lα图2.1与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m ga m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆12图2.32 图2.4线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T ==.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求:(1)小球通过竖直位置时的速度为多少?此时绳的张力多大?(2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大? [解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此(2)图2.6d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C=+,当h = 0时,v = 0,所以C = 0,因此速率为v =图2.72.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x 处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程222d d k xf ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv Cx =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k kmv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C=-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =. (2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101nk C x n -=--, 因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d v f mg kv mt =--=,分离变数得d d()d v m mg kv t m mg kv k mg kv +=-=-++, 积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+,当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得001/k v v v t R μ=+. 由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,mg图2.11积分得冲量为/20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作向量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆=s -1). 棒给球冲量为I = m Δv = 7.3(N·s),对球的作用力为(不计重力):F = I/t = 366.2(N).2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma , 联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;t =.此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45° = 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πv xΔv v y图2.17sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为4520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR =+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因子为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理教程上课后习题答案
物理部分课后习题答案标有红色记号的为老师让看的题27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度;解:1由运动方程消去时间t 可得轨迹方程,将t =,有21)y =或 1=2将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小 231r =+=3 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量;求1质点的速度;2速率的变化率;解 1质点的速度为sin cos d rv R ti R t j dtωωωω==-+ 2质点的速率为v R ω==速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+;求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小;解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量;解 由冲量的定义,有2.02.02.02(63)(33)18I Fdt t dt t t N s ==+=+=⎰⎰2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力空气阻力和摩擦力f kv =-k 为常数作用;设撤除牵引力时为0t =,初速度为0v ,求1滑行中速度v 与时间t 的关系;20到t 时间内飞机所滑行的路程;3飞机停止前所滑行的路程;解 1飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有dvf mkv dt ==- 即 dv k dt v m=- 两边积分,速度v 与时间t 的关系为2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球半径的2倍即2R ,试以,m R 和引力恒量G 及地球的质量M 表示出:(1) 卫星的动能;(2) 卫星在地球引力场中的引力势能.解 1 人造卫星绕地球做圆周运动,地球引力作为向心力,有22(3)3Mm v G m R R= 卫星的动能为 2126k GMmE mv R ==2卫星的引力势能为3p GMmE R=-00v t v dv k dt v m =-⎰⎰2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以500/m s的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后停止;求:(1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少;解 子弹与木块组成的系统沿水平方向动量守恒12mv mv Mu =+对木块用动能定理2102Mgs Mu μ-=-得 1 2212()2m v v Mgsμ-==322(210)(500100)0.16219.80.2-⨯⨯-=⨯⨯⨯ 2 子弹动能减少2212121()2402k k E E m v v J -=-= 114页3-11,3-9,例3-2 如图所示,已知物体A 、B 的质量分别为A m 、B m ,滑轮C 的质量为C m ,半径为R ,不计摩擦力,物体B 由静止下落,求1物体A 、B 的加速度; 2绳的张力;3物体B 下落距离L 后的速度; 分析: 1本题测试的是刚体与质点的综合运动,由于滑轮有质量,在运动时就变成含有刚体的运动了;滑轮在作定轴转动,视为圆盘,转动惯量为例3-2图212J mR =; 2角量与线量的关系:物体A 、B 的加速度就是滑轮边沿的切向加速度,有t a R β=; 3由于滑轮有质量,在作加速转动时滑轮两边绳子拉力12T T ≠; 分析三个物体,列出三个物体的运动方程:物体A 1A T m a = 物体B 2B B m g T m a -= 物体C ''22111()22C C T T R J m R m Ra ββ-=== 解 112B A B Cm g a m m m =++;2112A B A B C m m g T m m m =++, 21()212A C AB Cm m g T m m m +=++;3对B 来说有,2202v v aLv -===例3-4 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止 已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量 分析: 利用积分求圆形平板受桌面的摩擦力矩,运用转动定律求出平板的角加速度,再用运动学公式求转动的圈数.解:在距圆形平板中心r 处取宽度为dr 的环带面积,环带受桌面的摩擦力矩为r r r RmgM d 2d 2⋅π⋅π=μ总摩擦力矩为mgR M M Rμ32d 0==⎰ 故平板的角加速度为M Jβ=222 可见圆形平板在作匀减速转动,又末角速度0ω=,因此有2022M Jθωβθ==设平板停止前转数为n,则转角2n θπ=,可得22003416J R n M ωωμ==πgπ3-2:如题3-2图所示,两个圆柱形轮子内外半径分别为R 1和R 2,质量分别为M 1和M 2;二者同轴固结在一起组成定滑轮,可绕一水平轴自由转动;今在两轮上各绕以细绳,细绳分别挂上质量为m 1和m 2的两个物体;求在重力作用下,定滑轮的角加速度;解: m 1:1111a m g m T=-m 2:2222a m T g m=-转动定律:βJ T R T R =-1122其中:2222112121R M R M J += 运动学关系:2211R a R a ==β 解得:222221111122)2/()2/()(R m M R m M gR m R m +++-=β3-6 一质量为m 的质点位于11,y x 处,速度为j v i v v y x+=, 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解: 由题知,质点的位矢为j y i x r11+=作用在质点上的力为i f f -=所以,质点对原点的角动量为v m r L⨯=0)()(11j v i v m i y i x y x +⨯+=k mv y mv x x y )(11-=作用在质点上的力的力矩为k f y i f j y i x f r M1110)()(=-⨯+=⨯=3-11 如题3-11图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求:1初始时刻的角加速度; 2杆转过θ角时的角速度. 解: 1由转动定律,有2123()=l mgml β 则 lg23=β 2由机械能守恒定律,有22110232()-=lml ωmg sin θ题3-11图所以有 lg θωsin 3=3-13 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 可看作匀质圆盘,在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3-13图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. 1问它能升高多少2求余下部分的角速度、角动量和转动动能.解: 1碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有 题3-13图gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==2圆盘的转动惯量212=J MR ,碎片抛出后圆盘的转动惯量2212'=-J MR mR ,碎片脱离前,盘的角动量为J ω,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即'=+'0J ωJ ωmv R式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωωωω'-=-)21()21(2222mR MR mR MR 得ωω=' 角速度不变圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=258页8-2,8-12,8-178-7 试计算半径为R 、带电量为q 的均匀带电细圆环的轴线过环心垂直于圆环所在平面的直线上任一点P 处的场强P 点到圆环中心的距离取为x .解 在圆环上任取一电荷元dq ,其在P 点产生的场强为 ()2204Rx dqdE +=πε方向沿dq 与P 点的连线.将其分解为平行于轴线的分量和垂直于轴线的分量,由电荷分布的对称性可知,各dq 在P 点产生的垂直于轴线的场强分量相互抵消,而平行于轴线的分量相互加强,所以合场强平行于轴线, 大小为:E =E ∥=()()()23220212222044cos R x qxR x x R x dq dE q +=+⋅+=⎰⎰πεπεθ 方向:q >0时,自环心沿轴线向外;q <0时,指向环心.8-12 两个均匀带电的同心球面半径分别为R 1和R 2R 2>R 1,带电量分别为q 1和q 2,求以下三种情况下距离球心为r 的点的场强:1r <R 1;2R 1<r <R 23r >R 2.并定性地画出场强随r 的变化曲线解 过所求场点作与两带电球面同心的球面为高斯面,则由高斯定理可知: (1) 当r <R 1时,0,04cos 2=∴=⋅==Φ⎰E r E dS E e πθ(2) 当R 1<r <R 2时,2010124,4cos rq E q r E dS E e πεπθ=∴=⋅==Φ⎰(3) 当r >R 2 时,()()2021021244cos rq q E q q r E dS E e πεεπθ+=∴+=⋅==Φ⎰8-13 均匀带电的无限长圆柱面半径为R ,每单位长度的电量即电荷线密度为λ. 求解8-7图E12解8-12图 场强随r 的变化曲线圆柱面内外的场强.解 过所求场点作与无限长带电圆柱面同轴的、长为l 的封闭圆柱面,使所求场点在封闭圆柱面的侧面上.由电荷分布的对称性可知,在电场不为零的地方,场强的方向垂直轴线向外设λ>0,且离轴线的距离相等的各点场强的大小相等. 所以封闭圆柱面两个底面的电通量为零,侧面上各点场强的大小相等,方向与侧面垂直与侧面任一面积元的法线方向平行.设所求场点到圆柱面轴线的距离为r ,当r <R 即所求场点在带电圆柱面内时,因为0,02000cos cos =∴=⋅=++==Φ⎰⎰E rl E dS E dS E e πθ;当r >R 即所求场点在带电圆柱面外时,rE l rl E e 002,2πελελπ=∴=⋅=Φ . 8-15 将q=×10-8C 的点电荷从电场中的A 点移到B 点,外力作功×10-6J .问电势能的增量是多少 A 、B 两点间的电势差是多少哪一点的电势较高若设B 点的电势为零,则A 点的电势是多少解 电势能的增量:J 100.56-⨯==-=∆外A W W W A B ;A 、B 两点间的电势差:V 100.2105.2100.5286⨯-=⨯⨯-=-=-=---q W W q W q W U U B A B A B A <0, ∴ B 点的电势较高;若设B 点的电势为零,则 V 100.22⨯-=A U .8-17 求习题8-12中空间各点的电势.解 已知均匀带电球面内任一点的电势等于球面上的电势Rq 04πε,其中R 是球面的半径;均匀带电球面外任一点的电势等于球面上的电荷全部集中在球心上时的电势.所以,由电势的叠加原理得:(1) 当r <R 1即所求场点在两个球面内时:20210144R q R q U πεπε+=;(2) 当R 1<r <R 2即所求场点在小球面外、大球面内时:2020144R q rq U πεπε+=;当r >R 2即所求场点在两个球面外时:r q q r q r q U 0210201444πεπεπε+=+=当r >R 2即所求场点在两个球面外时:rq q rq rq U 0210201444πεπεπε+=+=285页9-3,9-49-3.如图,在半径为R 的导体球外与球心O 相距为a 的一点A 处放置一点电荷+Q ,在球内有一点B 位于AO 的延长线上,OB = r ,求:1导体上的感应电荷在B 点产生的场强的大小和方向;2B 点的电势.解:1由静电平衡条件和场强叠加原理可知,B 点的电场强度为点电荷q 和球面感应电荷在该处产生的矢量和,且为零,即04130=+'=r rE E p B πε r r a E B30)(41+-=πε 2由电势叠加原理可知,B 点的电势为点电荷q 和球面感应电荷在该处产生的电势的标量和,即rq V V BB 04πε+'=由于球体是一个等势体,球内任一点的电势和球心o 点的电势相等aq V V V B 0004πε+'==因球面上的感应电荷与球心o 的距离均为球的半径R,且感应电荷的总电贺量为零,所以感应电荷在o 点产生的电势为零,且00V V =',因此aq V V B 004πε==所以, B 点的电势 aq V B 04πε=9-4.如图所示,在一半径为R 1 = cm 的金属球A 外面罩有一个同心的金属球壳B.已知球壳B 的内、外半径分别为R 2 = cm,R 3 = cm,A 球带有总电量Q A = ×10-8 C,球壳B 带有总电量Q B = ×10-8 C.求:1球壳B 内、外表面上所带的电量以及球A 和球壳B 的电势;2将球壳B 接地后再断开,再把金属球A 接地,求金属球A 和球壳B 的内、外表面上所带的电量,以及球A 和球壳B 的电势.习题图解:1在导体到达静电平衡后,A Q 分布在导体球A的表面上.由于静电感应,在B 球壳的内表面上感应出负电荷A Q ,外表面上感应出正电荷A Q ,则B 球壳外表面上的总电荷B A Q Q +;由场的分布具有对称性,可用高斯定理求得各区域的场强分布)(4),(02120211R r R r Q E R r E A<<=<=πε)(4),(03204323R r rQ Q E R r R E BA >+=<<=πε E 的方向眼径向外.导体为有限带电体,选无限远处为电势零点;由电势的定义可计算两球的电势B A V V 和. A 球内任一场点的电势A V 为)(4144321020204321321332211R Q Q R Q R Q rd r Q Q r d r Q rd E r d E r d E r d E V BA A A RB A R R A R R R R R R rA ++-=++=⋅+⋅+⋅+⋅=⎰⎰⎰⎰⎰⎰∞∞πεπεπεB 球壳内任一点的电势B V 为30204344333R Q Q dr r Q Q rd E r d E V B A R B A R R rB πεπε+=+=⋅+⋅=⎰⎰⎰∞∞9-5.两块无限大带电平板导体如图排列,试证明:1相向的两面上图中的2和3,其电荷面密度大小相等而符号相反;2背向的两面上图中的1和4,其电荷面密度大小相等且符号相同. 解:因两块导体板靠得很近,可将四个导体表面视为四个无限大带点平面;导体表面上的电荷分布可认为是均匀的,且其间的场强方向垂直导体表面;作如图所示的圆柱形高斯面,因导体在到达静电平衡后内部场强为零,导体外的场强方向与高斯面的侧面平行,由高斯定理可得习题图320320σσεσσ-=∴+=; 再由导体板内的场强为零,可知P 点合场强0)2()2()2(204030201=-++-+εσεσεσεσ 由 32σσ-= 得41σσ-=9-7. 一平行板电容器,充电后极板上的电荷面密度为σ = ×10-5 C . m -2,现将两极板与电源断开,然后再把相对电容率为εr = 的电介质充满两极板之间.求此时电介质中的D 、E 和P . 解:当平行板电容器的两板与电源断开前后,两极板上所带的电荷量没有发生变化,所以自由电荷面密度也没有发生变化,由 1-'=r r εσεσ ∴极化电荷面密度rr )(εεσσ1-='对于平行板电容器σ'=P 0r E εεσ)1(-'=∴1-'=r r D εσε 且E D P ,,的方向均沿径向.9-11.圆柱形电容器由半径为R 1的导线和与它同轴的导体圆筒构成,其间充满相对电容率为εr 的电介质.圆筒内半径为R 2.电容器长为L,沿轴线单位长度上的电荷为± λ,略去边缘效应,试求:1两极的电势差;2电介质中的电场强度、电位移、极化强度; 3电介质表面的极化电荷面密度.解:1 设导线上的电荷均匀地分布在导线的表面上,圆筒上的电荷均匀的分布在圆筒的内表面上,可由高斯定理求得各区域的场强110R ,rE <=习题图10-6ByOlllzx12022R r ,R rE r >>=επελ23,0R r E >= ∴两极的电位差1201202ln 2ln 221R R R R r l d E u r r R R επελεπελ==⋅=⎰2 由第1问知,电介质中的电场强度 rE r επελ02=电位移rr r E D πλεε20== 极化强度 0)1(εε-=r P rr r πελε2)1(-=329页10-9,10-1010-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(2)总通量0B ds Φ=•=⎰⎰10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度; 2通过图中矩形面积的磁通量 ()31r r =解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()r d Ir I B P -+=πμπμ22 (1) 在导线等距的点有 2d r =, dI B πμ2= (2) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d -10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方习题图10-10习题图10-6By Olllzx向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度10-6 一边长为0.15l =m 的立方体如图放置,有一均匀磁场(63 1.5)B i j k =++T 通过立方体所在区域.计算:1通过立方体上阴影面积的磁通量; 2通过立方体六面的总磁通量. 解:1立方体一边的面积2S l =2(63 1.5)(0.15)0.135B S i j k i Wb Φ==++=(3)总通量0B ds Φ=•=⎰⎰ 10-11 如图所示,已知相距为d 的两平行长直导线载有相同电流,求1两导线所在平面与此两导线等距一点处的磁感应强度;通过图中矩形面积的磁通量 ()31r r =2解 在两导线所在平面内,两导线之间的任一点P 处,两导线所产生的磁感应强度B 1和B 2方向相同,都垂直纸面向外;故P P P B B B 21+= 设P 点离导线1的距离为r ,则 RIB P πμ21=,()r d I B P -=πμ22代入上式得()rd Ir I B P -+=πμπμ22(3) 在导线等距的点有002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aI a I a μμθθππμπμπ=-=-=--=2d r =, dI B πμ2= (4) 取面积元ldr dS =,则通过矩形面积的磁通量为⎰=ΦSm B d S ()ldr r d I r I r r r ⎰+⎥⎦⎤⎢⎣⎡-+=21122πμπμ πμ2Il =㏑121r r r ++πμ2Il ㏑211r r d r d ---πμIl =㏑11r r d - 10-10 如图,载流导线弯成a 、b 、c 所示的形状,求三图中P 点的磁感应强度B 的大小和方向.解:a 水平方向的载流导线对P 电磁感应强度的贡献为0;竖直部分对P 点磁感应强度方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则00123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性习题图10-10002100(cos cos )(cos90cos180)44[0(1)]44o o I IB r aIa I aμμθθππμπμπ=-=-=--=习题图10-1401231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯.方向垂直纸面向外.bP 点处的磁感应强度为三部分载流导线所产生的磁感应强度的叠加,则习题图10-1400123132*********22(cos cos )422;90;108;2[0(1)]42224I I B B B B B B r r r a I I I IB a r a rμμθθθππθθθπμμμμππππ=++=+=-+====∴=--+=+方向垂直纸面向里.cB 为三边磁感应强度叠加,由对称性01231210033(cos cos )41393.42IB B B B B rr h IB I h aμθθπμμππ=++==-=∴==方向垂直纸面向里.10-14 一根很长的铜导线,载有电流10 A,在导线内部通过中心线作一平面S ,如图所示.试计算通过导线1m 长的S 平面内的磁通量铜材料本身对磁场分布无影响.解:设距轴线为r 处的磁感应强度为B .则0222200022002000000220076,;22224410101 1.0104R Rs I IB dl I r R r r I I B r I R R I B rRI I l I l B d s r ld r rdr R R Wbμπππμμπμμμπππππ--⋅==∴=⋅=∴=Φ====⨯⨯⨯==⨯⎰⎰⎰⎰⎰即S 平面内的磁通量为61.010Wb -⨯. 367页11-1,11-511-1 一载流I 的无限长直导线,与一N 匝矩形线圈ABCD 共面;已知AB 长为L ,与导线间距为a ;CD 边与导线间距为bb ›a;线圈以 v 的速度离开直导线,求线圈内感应电动势的方向和大小;解 由于I 为稳恒电流,所以它在空间各点产生的磁场为稳恒磁场;当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量发生变化,故有感应电动势产生;取坐标系如图a 所示;设矩形线圈以速度 v 以图示位置开始运动,则经过时间t 之后,线圈位置如图b 所示;取面积元ldx dS =,距长直导线的距离为x ,按无限长直载流导线的磁感应强度公式知,该面积元处B 的大小为 B =xπμ20I 通过该面积元的磁通量为 ldx xIBdS d πμ20==Φ 于是通过线圈的磁通量为 ()⎰⎰⎰++++==Φ=Φvt b vt a vtb vt a xldxI ldx x I d t πμπμ2200 =πμ20Il ㏑vta vtb ++ 由法拉第电磁感应定律可知,N 匝线圈内的感应电动势为()()()⎥⎦⎤⎢⎣⎡++-+++-=Φ-=202vt a v vt b v vt a vt b vt a lIN dt d N E πμ ()()()()vt a vt b vvt b v vt a lIN +++-+-=πμ20令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势()ab a b NlIv b a lIvN dtd NE t πμπμ2112000-=⎪⎭⎫ ⎝⎛-=Φ-== 按楞次定律可知,E 感应电动势的方向沿顺时针方向;11-5 在无限长螺线管中,均匀分布着与螺线管轴线平行的磁场B t;设B 以速率dtdB=К变化К为大于零的常量;现在其中放置一直角形导线 abc;若已知螺线管截面半径为R,l ab =,求:1螺线管中的感生电场EV;2bc ab ,两段导线中的感生电动势;解 1由于系统具有轴对称性,如图所示,可求出感生电场;在磁场中取圆心为O ,半径为()R r r <的圆周,根据感生电场与变化磁场之间的关系m V LS d BE dl d S dtt Φ∂=-=-∂⎰⎰可得222V dBE r r r dtπππκ=-=- 有2V rE κ=-()R r < 由楞次定律可以判断感生电场为逆时针方向;2解法一 用法拉第电磁感应定律求解;连接Ob Oa ,和Oc ,在回路OabO 中,穿过回路所围面积的磁通量为1222124l BS Bl R ⎛⎫Φ=-=-- ⎪⎝⎭则11222221112424d l dB l E l R l R dt dt κ⎛⎫⎛⎫Φ=-=--=- ⎪ ⎪⎝⎭⎝⎭而ab oa bo ab E E E E E =++=1 所以12221124ab l E E lk R ⎛⎫==- ⎪⎝⎭方向由a 指向b同理可得 1222124bc l E lk R ⎛⎫=- ⎪⎝⎭方向由b 指向c解法二 也可由感生电场力做功求解;由于1中已求出EV;则122224bab V ak l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰122224cbc V bk l E E dl l R ⎛⎫=⋅=- ⎪⎝⎭⎰11-1.解: 1由电磁感应定律812)1(--=Φ-t dtd i ε2)2(102.3-⨯-=i ε2 2106.1-⨯==RI iε由于磁通量是增加的,所以线圈中产生的感应电动势使R 中产生感应电流的方向是由左向右11-4解:由题意可知金属棒沿杆下滑的速度为重力加速度所引起t BgL L Bgt l d B V )cos sin (cos sin )(θθθθε==⋅⨯=⎰11-5解:由于I 为稳定电流,所以它在空间各点产生的磁场为稳恒磁场.当矩形线圈ABCD 运动时,不同时刻通过线圈的磁通量回发生变化,故有感应电动势产生.取坐标系如图;设矩形线圈以速度V 从图示位置开始运动,经过时间t 之后,线圈位置如图b 所示,取面积元ds=ldx,距长直导线的距离为x,按无限长直载流导体的磁感应强度公式知,该面积元外B的大小为x I B πμ20= 通过该面积元的磁通量为ldx x I Bds d ⋅==Φπμ20 于是通过线圈的磁通量为⎰⎰⎰++++⋅=⋅=Φ=Φvt b vt a vt b vt a xldx x I ldx x I d t πμπμ22)(00 va vtb IL ++=ln 20πμ 由法拉第电磁感应定律可知,N 匝线圈中的感应电动势为])()()([220vt a v vt b v vt a vt b vt a ILN dt d N E ++-+++-=Φ-=πμ -=))(()()(20vt b vt a v vt b v vt a IN +++-+πμ 令t=0,代入数据,得到线圈,刚离开直导线时的感应电动势)11(200ba LIVN dt d N E t -=Φ-==πμ )(100.32.01.02)1.02.0(0.30.52.010104737V --⨯=⨯⨯-⨯⨯⨯⨯⨯⨯=ππ 按楞次定律E 的方向为图b 中的顺时针方向1、 一质点作匀速率圆周运动,其质量为m,线速度为v,半径为R;求它对圆心的角动 量;它相对于圆周上某一点的角动量是否为常量,为什么答:它对圆心的角动量Rmv ,是常量;它相对于圆周上某一点的角动量不是常量;4、彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨道的一个焦点上,问系统的角动量是否 守恒 近日点与远日点的速度哪个大答:在彗星绕太阳轨道运转过程中,只受万有引力作用,万有引力对太阳不产生力矩,系统角动量守恒;近日点 r 小 v 大,远日点 r 大 v 小;这就是为什么彗星运转周期为几十年,而经过太阳时只有很短的几周时间;彗星接近太阳时势能转换成动能,而远离太阳时,动能转换成势能;8.利用角动量守恒定律简要分析花样滑冰、跳水运动过程;答:对这一力学现象可根据角动量守衡定律来解释;例如旋转着的芭蕾舞演员要加快旋转时,总是将双手收回身边,这时演员质量分布靠近转轴,转动惯量变小,转动速度加快,转动动能增加;3-5题图。
大学物理_(第五版)(上册)_课后习题答案_马文蔚
习题11-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。
(1)根据上述情况,则必有( ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)dsdt;(4下列判断正确的是:(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。
对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。
下述判断正确的是( )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D)切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率v收绳,绳不伸长且湖水静止,小船的速率为v,则小船作()(A)匀加速运动,0cosvvθ=(B)匀减速运动,cosv vθ=(C)变加速运动,0cosvvθ=(D)变减速运动,cosv vθ=(E)匀速直线运动,v v=答案:1-5 B 、C , D , D , B , C。
大学物理上课后习题答案
第1章 质点运动学 P21一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计;⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;5计算t =0s 到t =4s 内质点的平均加速度;6求出质点加速度矢量的表示式,计算t =4s 时质点的加速度请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式;解:1j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ 5 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v 6 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量; 质点沿x 轴运动,其加速度和位置的关系为226a x=+,a 的单位为m/s 2,x 的单位为m;质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值;解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 一质点在半径为的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α= rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度;解:s 2=t 时,4.022.0=⨯==t αω 1s rad -⋅则0.40.40.16R ω==⨯=v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅0.40.20.08a R τα==⨯=2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n与切向夹角arctan()0.06443n a a τϕ==≈︒第2章 质点动力学质点在流体中作直线运动,受与速度成正比的阻力kv k 为常数作用,t =0时质点的速度为0v ,证明:⑴t 时刻的速度为()0=k t me-v v ;⑵ 由0到t 的时间内经过的距离为x =0m k v 1-t m ke )(-;⑶停止运动前经过的距离为0()mkv ;⑷当m t k =时速度减至0v 的e1,式中m 为质点的质量;解:f k =-v ,a f m k m ==-v⑴ 由d d a t =v 得:d d d k a t t m==-vv分离变量得:d d kt m =-v v ,即00d d t k t m-=⎰⎰v v v v , 因此有:0ln ln kt m e -=v v , ∴ 0k m te -=v v ⑵ 由d d x t =v 得:0d d d k m t x t e t -==v v ,两边积分得:000d d k mx t t x e t-=⎰⎰v∴ 0(1)k m tm x e k-=-v ⑶ 质点停止运动时速度为零,00k mt e -=→v v ,即t →∞,故有:000d k mt x et m k ∞-'==⎰v v⑷ t m k =时,其速度为:1000k m m kv e e e -⋅-===v v v ,即速度减至0v 的1e .作用在质量为10 kg 的物体上的力为(102)F t i =+N,式中t 的单位是s,⑴ 求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;⑵ 为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m/s 的物体,回答这两个问题; 解: ⑴ 若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,1111115.6m s 56kg m s p m i I p i --∆=∆=⋅=∆=⋅⋅;v若物体原来具有6-1s m -⋅初速,则000000, (d )d t tp m p m F m t m F t=-=-+⋅=-+⎰⎰v v v 于是:⎰∆==-=∆t p t F p p p 0102d, 同理有:21∆=∆v v ,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理;⑵ 同上理,两种情况中的作用时间相同,即:⎰+=+=tt t t t I 0210d )210(亦即:0200102=-+t t , 解得s 10=t ,s 20='t 舍去设N 67j i F -=合;⑴ 当一质点从原点运动到m 1643k j i r++-=时,求F所作的功;⑵ 如果质点到r 处时需,试求平均功率;⑶ 如果质点的质量为1kg,试求动能的变化;解: ⑴ 由题知,合F为恒力,且00r =∴ (76)(3416)212445J A F r i j i j k =⋅∆=-⋅-++=--=-合⑵ w 756.045==∆=t A P ⑶ 由动能定理,J 45-==∆A E k一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如图;求这一系统静止时两弹簧的伸长量之比和弹性势能之比;解: 弹簧B A 、及重物C 受力如题图所示平衡时,有: Mg F F B A == ,又 11x k F A ∆=,22x k F B ∆=所以静止时两弹簧伸长量之比为:1221x x k k ∆∆= 弹性势能之比为:22111222211212p p E k x k E k x k ⋅∆==⋅∆第3章 刚体力学基础一质量为m 的质点位于11,y x 处,速度为x y i j =+v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩;解: 由题知,质点的位矢为:j y i x r11+=作用在质点上的力为:i f f-=所以,质点对原点的角动量为:01111()()()x y y x L r m x i y j m i j x m y m k =⨯=+⨯+=-v v v v v作用在质点上的力的力矩为:k f y i f j y i x f r M1110)()(=-⨯+=⨯=哈雷彗星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为1r =×1010m 时的速率是1v =×104m/s,它离太阳最远时的速率是2v =×102 m/s,这时它离太阳的距离2r 是多少太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力,即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有:1122r m r m =v v ∴ 10412112228.7510 5.4610 5.2610m 9.0810r r ⨯⨯⨯===⨯⨯v v 物体质量为3kg,t =0时位于m 4i r=,6i j =+v m/s,如一恒力N 5j f =作用在物体上,求3秒后,⑴ 物体动量的变化;⑵ 相对z 轴角动量的变化; 解:⑴ ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p⑵ 解法一 由53 N a f m j ==得:0034437m x t x x t t ==+=+=+=v222031515663325.52623y t y t at t t j ==+=+=⨯+⨯⨯=v即有:i r41=,j i r 5.2572+=01x x ==v v ;0653311y y at =+=+⨯=v v即有:216i j =+v ,211i j =+v∴ 11143(6)72L r mi i j k =⨯=⨯+=v 222(725.5)3(11)154.5L r m i j i j k =⨯=+⨯+=v∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L解法二 ∵d LM dt =, ∴ 2032031d ()d 15 (4)(6))5d 23 5(4)d 82.5kg m s t tL M t r f tt i t t j j t t k t k -∆=⋅=⨯⎡⎤=+++⨯⨯⎢⎥⎣⎦=+=⋅⋅⎰⎰⎰⎰平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少解:只挂重物1M 时,小球作圆周运动,向心力为g M 1,即:2001ωmr g M = ①挂上2M 后,则有:221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒;即:00r m r m ''=v v ωω''=⇒2020r r ③联立①、②、③得:100M g mr ω=,2112301()M g M M mr M ω+'=, 112130212()M M M r g r m M M ω+'==⋅'+ 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900 rev/min;现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速;已知闸杆的尺寸如题图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算;试求:⑴ 设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 ⑵ 如果在2s 内飞轮转速减少一半,需加多大的力F解:⑴ 先作闸杆和飞轮的受力分析图如图b;图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力;杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有:121()0F l l N l '+-=, 121)N l l F l '=+(对飞轮,按转动定律有r F RIβ=-,式中负号表示β与角速度ω方向相反; ∵ N F r μ= ,N N '=∴ F l l l N F r 121+='=μμ 又∵ 212I mR =,∴1212()r F R l l F I mRl μβ+=-=-① 以N 100=F 等代入上式,得:2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为:s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为:2201900291409()53.12rad 2604234t t πφωβπππ⨯=+=⨯-⨯⨯=⨯可知在这段时间里,飞轮转了1.53转; ⑵10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 200215rad s 22ttωωωπβ--==-=-⋅ 用上面式⑴所示的关系,可求出所需的制动力为:112600.250.50151772()20.40(0.500.75)2mRl F N l l βπμ⨯⨯⨯=-==+⨯⨯+⨯计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m 1=50kg,m 2=200 kg,M =15 kg,r = m解:分别以m 1、m 2滑轮为研究对象,受力图如图b 所示.对m 1、m 2运用牛顿定律,有:a m T g m 222=- ;a m T 11=对滑轮运用转动定律,有:β)21(212Mr r T r T =- 又βr a = 由以上4个方程解得:22122009.87.6 m s 25200152m g a m m M -⨯===⋅++++题a 图 题b 图如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下;求:⑴ 初始时刻的角加速度;⑵ 杆转过θ角时的角速度. 解:⑴ 由转动定律有:211()23mg l ml β=, ∴ lg23=β⑵ 由机械能守恒定律有:22)31(21sin 2ωθml l mg = ∴ lg θωsin 3= 如题图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上;现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞;相撞后,使棒从平衡位置处摆动到最大角度=θ30°处;⑴设这碰撞为弹性碰撞,试计算小球初速0v 的值; ⑵相撞时小球受到多大的冲量解:⑴ 设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:0m l I m l ω=+v v ①2220111222m I m ω=+v v②上两式中23I Ml =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得:2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式得:0I mlω=-v v ④ 由②式得:2220I m ω=-v v ⑤所以:22200()I I ml mωω-=-v v求得:026(23)13(1)(1)22312gl l I l Mm M ml m mωω-+=+=+=v ⑵相碰时小球受到的冲量为:0d ()F t m m m =∆=-⎰v v v由①式求得:06(23)1d 36gl I F t m m Ml M l ωω-=-=-=-=-⎰v v 负号说明所受冲量的方向与初速度方向相反;一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动;另一质量为0m 的子弹以速度0v 射入轮缘如题图所示方向; ⑴开始时轮是静止的,在质点打入后的角速度为何值⑵用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比;解:⑴ 射入的过程对O 轴的角动量守恒: ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω⑵ 022*******000sin 1[()][]2()sin 2k k m m m R E m m R m E m m m θθ++==+v v 弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N/m ;定滑轮的转动惯量是0.5kg·m 2,半径为0.30m ,问当6.0 kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;解:以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有:222111222mgh m I kh ω=++v 又/R ω=v ,故有:2222221(2)(2 6.09.80.4 2.00.4)0.36.00.30.5 2.0m s mgh kh R mR I --⨯⨯⨯-⨯⨯==+⨯+=⋅v第5章 机械振动质量为kg 10103-⨯的小球与轻弹簧组成的系统,按0.1cos(82x t ππ=+的规律作谐振动,求:⑴ 振动的周期、振幅和初位相及速度与加速度的最大值; ⑵ 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等⑶ s 52=t 与s 11=t 两个时刻的位相差;解:⑴设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又0.8m A ωπ==v 1s m -⋅ 51.2=1s m -⋅,2.632==A a m ω2s m -⋅⑵ 0.63N m m F ma ==,J 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即:)21(212122kA kx ⋅=∴ m 20222±=±=A x ⑶ ππωφ32)15(8)(12=-=-=∆t t一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示;如果0=t 时质点的状态分别是:⑴A x -=0; ⑵ 过平衡位置向正向运动; ⑶过2Ax =处向负向运动; ⑷过2A x -=处向正向运动; 试求出相应的初位相,并写出振动方程;解:因为000cos sin x A A φωφ=⎧⎨=-⎩v将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相;故有:)2cos(1πππφ+==t T A x , )232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x , )452cos(454πππφ+==t T A x一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+;求:⑴s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; ⑵由起始位置运动到cm 12=x 处所需的最短时间; ⑶在cm 12=x 处物体的总能量;解:由题已知s 0.4,m 10242=⨯=-T A ,∴ -120.5 rad s ωππ==⋅ 又,0=t 时,00 , 0x A φ=+∴= 故振动方程为:m )5.0cos(10242t x π-⨯=⑴ 将s 5.0=t 代入得:0.17m m )5.0cos(102425.0=⨯=-t x π23231010(2)0.17 4.210N F ma m x ωπ--=-=-=-⨯⨯⨯=-⨯方向指向坐标原点,即沿x 轴负向;⑵ 由题知,0=t 时,00=φ;t t =时,02,0,3t x A φπ=+<=且故v ∴ s 322/3==∆=ππωφt ⑶ 由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:22232241111010()(0.24)7.110J 2222E kA m A πω--===⨯⨯⨯=⨯ 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4;用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后,给予向上的初速度0 5.0cm /s =v ,求振动周期和振动表达式; 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x 设向上为正又 30.225 , 1.26s 810k T m πωω-=====⨯即 222222205.010 ()(1.010)()210m 5v A x ω---⨯∴=+=⨯+=⨯200020 5.0105tan 1 , 1.01054x πφφω--⨯=-===⨯⨯即v ∴ m )455cos(1022π+⨯=-t x题图为两个谐振动的t x -曲线,试分别写出其谐振动方程;解:由题图a,∵0=t 时,0000 , 0 , 32 , 10cm , 2s x A T φπ=>∴===又v即:1s rad 2-⋅==ππωT,故 m )23cos(1.0ππ+=t x a由题图b ∵0=t 时,0005,0,23A x πφ=>∴=v01=t 时,0005,0,23A x πφ=>∴=v又ππωφ253511=+⨯=,∴ πω65=故m t x b )3565cos(1.0ππ+=一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子;现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动;⑴ 此时的振动周期与空盘子作振动时的周期有何不同⑵ 此时的振动振幅多大⑶ 取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程; 解:⑴ 空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大;⑵按⑶所设坐标原点及计时起点,0=t 时,则0x mg k =-;碰撞时,以M m ,为一系统动量守恒,即:02()m gh m M =+v则有:02m gh m M=+v ,于是22220022()()1()()v mg m gh mg kh A x k k m M k m M gω=+=+=+++3gm M khx v )(2tan 000+=-=ωφ 第三象限,所以振动方程为 221cos arctan ()()mg khk kh x t k m M gm MM m g ⎡⎤=++⎢⎥+++⎣⎦有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量41.010kg m s F t -∆=⨯⋅,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程; 解:由动量定理,有:0F t m ⋅∆=-v∴ 4-131.0100.01 m s 1.010F t m --⋅∆⨯===⋅⨯v 按题设计时起点,并设向右为x 轴正向,则知0=t 时,1000 , 0.01m s x -==⋅v >0,∴ 2/30πφ=又1s rad 13.30.18.9-⋅===l g ω ∴ 2230000.01() 3.210m 3.13A x ωω-=+===⨯v v故其角振幅:33.210rad A l θ-==⨯小球的振动方程为:rad )2313.3cos(102.33πθ+⨯=-t有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动π/6的位相差为,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差;解:由题意可做出旋转矢量题图;由图知222211222cos30(0.173)(0.2)20.1730.23/20.01A A A A A =+-︒=+-⨯⨯⨯=,∴ m 1.02=A 设角θ为O AA 1,则:θcos 22122212A A A A A -+=即:2222221212(0.173)(0.1)(0.02)cos 0220.1730.1A A A A A θ+-+-===⨯⨯即2θπ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π; 一质点同时参与两个在同一直线上的简谐振动,振动方程为:⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程;解:∵ πππφ=--=∆)65(6, ∴ m 1.021=-=A A A 合 1122112250.4sin 0.3sinsin sin 366tan 5cos cos 30.4cos 0.3cos 66A A A A ππφφφππφφ⨯-+===++ ∴ 6φπ=其振动方程为:0.1cos(26)m x t π=+作图法略第6章 机械波已知波源在原点的一列平面简谐波,波动方程为y =A cos Cx Bt -,其中A ,B ,C 为正值恒量;求:⑴ 波的振幅、波速、频率、周期与波长;⑵ 写出传播方向上距离波源为l 处一点的振动方程; ⑶ 任一时刻,在波的传播方向上相距为d 的两点的位相差;解:⑴ 已知平面简谐波的波动方程:)cos(Cx Bt A y -= 0≥x 将上式与波动方程的标准形式:)22cos(λππυxt A y -=比较,可知:波振幅为A ,频率πυ2B =,波长C πλ2=,波速B u C λν==, 波动周期12T Bπν==;⑵ 将l x =代入波动方程即可得到该点的振动方程:)cos(Cl Bt A y -=⑶ 因任一时刻t 同一波线上两点之间的位相差为:)(212x x -=∆λπφ将d x x =-12,及2Cπλ=代入上式,即得:Cd =∆φ; 沿绳子传播的平面简谐波的波动方程为y =10x t ππ4-,式中x ,y 以米计,t 以秒计;求:⑴ 绳子上各质点振动时的最大速度和最大加速度;⑵ 求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =时刻到达哪一点 解:⑴ 将题给方程与标准式2cos()y A t x πωλ=-相比,得:振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速 2.5m s 2u ωλνλπ===;绳上各点的最大振速,最大加速度分别为:ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅⑵2.0=x m 处的振动比原点落后的时间为:08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点0=x ,在92.008.010=-=t s 时的位相,即:2.9=φπ;设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则,825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m一列平面余弦波沿x 轴正向传播,波速为5 m/s,波长为2m,原点处质点的振动曲线如题图所示;⑴ 写出波动方程;⑵作出t =0时的波形图及距离波源0.5m 处质点的振动曲线;解: ⑴ 由题a 图知,1.0=A m,且0=t 时,000 , 0y =>v ,∴230πφ=, 又52.52uνλ===Hz ,则ππυω52== 取])(cos[0φω+-=u x t A y ,则波动方程为:30.1cos[5()]52x y t ππ=-+m⑵ 0=t 时的波形如题b 图5.0=x m 代入波动方程,得该点处的振动方程为:50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=-+=+m如题c 图所示;如题图所示,已知t =0时和t =时的波形曲线分别为图中曲线a 和b,周期T>,波沿x 轴正向传播,试根据图中绘出的条件求: ⑴ 波动方程;⑵P 点的振动方程; 解:⑴ 由题图可知,1.0=A m ,4=λm ,又,0=t 时,000,0y =<v , ∴20πφ=,而-11 2 m s 0.5x u t ∆===⋅∆,20.5Hz 4u νλ===,∴ππυω==2故波动方程为:]2)2(cos[1.0ππ+-=x t y m⑵ 将1=P x m 代入上式,即得P 点振动方程为:t t y ππππcos 1.0)]22cos[(1.0=+-= m一列机械波沿x 轴正向传播,t =0时的波形如题图所示,已知波速为10 m/s 1,波长为2m,求: ⑴波动方程;⑵ P 点的振动方程及振动曲线; ⑶ P 点的坐标;⑷ P 点回到平衡位置所需的最短时间;解:由题图可知1.0=A m ,0=t 时,00,02A y =<v ,∴30πφ=,由题知2=λm ,-110m s u =⋅,则5210===λυuHz ,∴ππυω102==⑴ 波动方程为:0.1cos[10()]103x y t ππ=-+m⑵ 由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P P 点的位相应落后于0点,故取负值∴P 点振动方程为)3410cos(1.0ππ-=t y p ⑶ 由πππ34|3)10(100-=+-=t x t 解得:67.135==x m ⑷ 根据⑵的结果可作出旋转矢量图如题图a,则由P点回到平衡位置应经历的位相角πππφ6523=+=∆ ∴所属最短时间为:121106/5==∆=∆ππωφt s 如题图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =Acos 0ϕω+t ;⑴ 分别就图中给出的两种坐标写出其波动方程;⑵ 写出距P 点距离为b 的Q 点的振动方程;解:⑴ 如题图a,则波动方程为:0cos[()]l xy A t u uωϕ=+-+ 如图b,则波动方程为:0cos[()]x y A t uωϕ=++⑵ 如题图a,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=-+如题图b,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=++一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为×10-3J/m 2·s,频率为300 Hz,波速为300m/s,求波的平均能量密度和最大能量密度.解: ∵u w I =, ∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅, 4max 102.12-⨯==w w 3m J -⋅如题图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求:⑴ 1S 外侧各点的合振幅和强度;⑵ 2S 外侧各点的合振幅和强度 解:1在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为:πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r ,∴ 0,0211===-=A I A A A 2在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差:0)4(2222=-+-=∆r r λλππφ,∴ 2121114,2A A I A A A A ===+=一平面简谐波沿x 轴正向传播,如题图所示;已知振幅为A ,频率为ν,波速为u ;⑴ 若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;⑵ 若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置;解: ⑴ ∵0=t 时,0,000>=v y ,∴20πφ-=,故波动方程为:cos[2()]2x y A t u ππυ=--m⑵ 入射波传到反射面时的振动位相为即将λ43=x 代入2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为:πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为23542πλππλ--⨯-=,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为:]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为:cos[2()]cos[2()]222 2cos cos(2)2x x y A t A t u u x A t u πππυπυπυππυ=--++-=-故波节位置为:2)12(22πλππυ+==k x u x故 4)12(λ+=k x ,2,1,0±±=k …根据题意,k 只能取1,0,即λλ43,41=x 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =t x ππ4-SI, 2y =t x ππ4+SI;⑴ 试证明绳子将作驻波式振动,并求波节、波腹的位置; ⑵ 波腹处的振幅多大x =1.2m 处振幅多大 解:⑴ 它们的合成波为:0.06cos(4)0.06cos(4)0.12cos cos 4y x t x t x t ππππππ=-++=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动; 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置;⑵波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即:097.0)2.1cos(12.0=⨯=π驻A m第7章 气体动理论基础 P218设有N 个粒子的系统,其速率分布如题图所示;求⑴ 分布函数f υ的表达式; ⑵ a 与υ0之间的关系; ⑶ 速度在υ0到υ0之间的粒子数; ⑷ 粒子的平均速率; 5 υ0到υ0区间内粒子平均速率;解:⑴从图上可得分布函数表达式: 00000()/(0)()(2)()0(2)Nf a Nf a Nf υυυυυυυυυυυυ=≤≤⎧⎪=≤≤⎨⎪=≥⎩, 00000/(0)()/(2)0(2)a N f a N υυυυυυυυυυ≤≤⎧⎪=≤≤⎨⎪≥⎩⑵ f υ满足归一化条件,但这里纵坐标是N f υ而不是f υ,故曲线下的总面积为N.由归一化条件:20d d a NN a N υυυυυυυ+=⎰⎰,可得023Na υ=⑶ 可通过面积计算001(2 1.5)3N a N υυ∆=⨯-=⑷N 个粒子平均速率:220220001()d ()d d d 11311()329a f Nf a Na a N υυυυυυυυυυυυυυυυυυ∞∞===+=+=⎰⎰⎰⎰5 υ0到υ0区间内粒子数:100013(0.5)(0.5)284NN a a a υυυ=+-== υ0到υ0区间内粒子平均速率:000000.50.50.5111d d ()d NN N N f N N N N υυυυυυυυυυυυ===⎰⎰⎰ 0020.510d N a N N υυυυυυ=⎰0033220000.51010017111d ()32424a av a a N N N υυυυυυυυυ==-=⎰ 2007769a N υυυ==试计算理想气体分子热运动速率的大小介于υp -υp /100与υp +υp /100之间的分子数占总分子数的百分比; 解:令P u υυ=,则麦克斯韦速率分布函数可表示为:du e u N dN u 224-=π因为u=1,∆u=由u e u N N u ∆=∆-224π,得 %66.102.0141=⨯⨯⨯=∆-e N N π容器中储有氧气,其压强为P=即1atm 温度为27℃求:⑴ 单位体积中的分子数n ;⑵ 氧分子的质量m ;⑶ 气体密度ρ;⑷ 分子间的平均距离e ;5 平均速率υ;62υ7分子的平均动能ε; 解:⑴ 由气体状态方程nkT p =得:242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n m -3⑵ 氧分子的质量:26230mol 1032.51002.6032.0⨯=⨯==N M m Kg ⑶ 由气体状态方程RT M MpV mol =,得: 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ3m kg -⋅⑷ 分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m5 平均速率:mol 8.313001.601.60446.580.032RT M υ⨯=≈=1s m -⋅ 题图Nf υO2υ0υυ0a6482.87≈=1s m -⋅ 7 氧分子的平均动能:20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少解:理想气体分子的能量:RT iE 2υ= 平动动能 t=3 5.373930031.823=⨯⨯=t E J转动动能 r=2 249330031.822=⨯⨯=r E J内能 i=5 5.623230031.825=⨯⨯=i E J一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求⑴氧气和氢气分子数密度之比;⑵氧分子和氢分子的平均速率之比; 解:⑴ 因为nkT p =,则:1O H n n =⑵由平均速率公式υ=,得:14O H υυ== 7-25 一真空管的真空度约为×10-3 Pa 即×10-5 mmHg,试 求在27℃时单位体积中的分子数及分子的平均自由程设分子的有效直径d =3×10-10 m; 解:由气体状态方程nkT p =得:317-3231.3810 3.3310m 1.3810300p n kT -⨯===⨯⨯⨯ 由平均自由程公式nd 221πλ=得: 5.71033.3109211720=⨯⨯⨯⨯=-πλ m ⑴ 求氮气在标准状态下的平均碰撞频率;⑵ 若温度不变,气压降到×10-4Pa,平均碰撞频率又为多少设分子有效直径为10-10m解:⑴碰撞频率公式2z d n υ=对于理想气体有nkT p =,即:kTpn =,所以有:2d p z kT υ=而-1455.43 m s υ≈≈=⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz s -1⑵气压下降后的平均碰撞频率2042310455.43 1.33100.7141.3810273z ---⨯⨯⨯⨯==⨯⨯ s -11mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间⑴气体分子方均根速率之比;⑵ 分子平均自由程之比; 解:⑴ 由气体状态方程:2211T p T p = 及 3322V p V p =====⑵ 对于理想气体,nkT p =,即 kTpn =所以有:pd kT 22πλ=,即:12121==T p p T 末初λλ第8章 热力学基础.如题图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统做功126 J;⑴ 若沿adb 时,系统做功42 J,问有多少热量传入系统⑵ 若系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84 J,试问系统是吸热还是放热热量传递是多少 解:由abc 过程可求出b 态和a 态的内能之差:A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热1mol 单原子理想气体从300K 加热到350K,问在下列两过程中吸收了多少热量增加了多少内能对外做了多少功⑴ 容积保持不变; ⑵ 压力保持不变; 解:⑴ 等体过程对外作功0=A∴ V 2121()()2328.31(350300)623.25J iQ E A E C T T R T T νν=∆+=∆=-=-=⨯⨯-=, ⑵ 等压过程,吸热:P 212125()()8.31(350300)1038.75J 22i Q C T T R T T νν+=-=-=⨯⨯-=内能增加:V 21()328.31(350300)623.25J E C T T ν∆=-=⨯⨯-=对外作功:5.4155.62375.1038=-=∆-=E Q A J一个绝热容器中盛有摩尔质量为M mol ,比热容比为γ的理想气体,整个容器以速度υ运动,若容器突然停止运动,求气体温度的升高量设气体分子的机械能全部转变为内能;解:整个气体有序运动的能量为212m υ,转变为气体分子无序运动使得内能增加,温度变化;2V 12m E C T m M υ∆=∆=,22mol mol V 111(1)22T M M C R υυγ∆==- 0.01m 3氮气在温度为300K 时,由压缩到10MPa;试分别求氮气经等温及绝热压缩后的⑴ 体积;⑵ 温度;⑶ 各过程对外所做的功; 解:⑴ 等温压缩过程中,T =300K,且2211V p V p =,解得:3112210.0111010p V V p -==⨯=⨯m 3 , 6321112lnln 0.1100.01ln0.01 4.6710J V pA vRT p V V p ===⨯⨯⨯=-⨯ ⑵ 绝热压缩:R C 25V =,57=γ 由绝热方程 γγ2211V p V p =,得:111/33111421221()()()0.01 1.9310m 10p V p V V p p γγγ-===⨯=⨯由绝热方程 111122T p T p γγγγ----=,得11.40.4122211300(10)579K T p T T p γγγγ--==⨯⇒=Oab c d由热力学第一定律A E Q +∆=及0=Q 得:)(12molT T C M MA V --=, 又RT M MpV mol=,所以 51121135 1.013100.015()(579300)23002 2.3510Jp V A R T T RT ⨯⨯=--=-⨯⨯-=-⨯ 理想气体由初状态P 1,V 2经绝热膨胀至末状态P 2,V 2;试证过程中气体所做的功为:12211--=γV P V P w 式中γ为气体的比热容比;证明: 由绝热方程C V p V p pV ===γγγ2211得γγV V p p 111= 故,22111121221111221121d 11d ()11 ()11V V r V V V C A p V C V V V p V p V p V p V V V γγγγγγγγγ----===----=--=--⎰⎰1 mol 的理想气体的T -V 图如题图所示,ab 为直线,延长线通过原点O ;求ab 过程气体对外做的功; 解:设T kV =,由图可求得直线的斜率k 为:2T k V =,得过程方程002T T V V =由状态方程pV vRT=得:RT p V ==R V 02T V V =002RT V ab 过程气体对外作功:⎰=02d V v V p A 02000d 22V V RT RTV V ==⎰某理想气体的过程方程为Vp 1/2=a ,a 为常数,气体从V 1膨胀到V 2;求其所做的功;解:气体做功:22211122221211d d ()|()V V V V V V a a A p V V a V V V V ===-=-⎰⎰设有一以理想气体为工质的热机循环,如题图所示;试证其循环效率为:η=1212111V V p p ηγ-=--解:等体过程:1V 21()0Q vC T T '=->,吸热,∴ )(1221V 11RV p R V p C Q Q -='= 绝热过程:03='Q 等压压缩过程:2p 21()0Q vC T T '=-<,放热 ∴ 212222P 21P ()()p V p V Q Q vC T T C R R'==--=-,则, 循环效率为:p 21222121V 122212()(/1)111()(/1)C p V p V Q Q C pV p V p p ννηγ--=-=-=--- 一卡诺热机在1000K 和300K 的两热源之间工作,试计算⑴ 热机效率;⑵ 若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少⑶ 若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少T Oab题图Vp OV绝热题图V 2 V 1 p 1p解:⑴ 卡诺热机效率 213001170%1000T T η=-=-= ⑵ 低温热源2300K T =不变时,即1130080%T η'=-=,解得:11500K T '=,则: 11115001000500K T T T '∆=-=-=即高温热源温度提高500K;⑶ 高温热源11000K T =不变时,即21100080%T η'=-= 解得:2200K T '=,则:222200300-100K T T T '∆=-=-=即低温热源温度降低100K;如题图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为T 2和T 3;求此循环效率;这是卡诺循环吗解:⑴热机效率211Q Q η=-AB 等压过程1P 21()0Q C T T ν'=->,吸热,即有: 11P mo ()B A lMQ Q C T T M '==- CD 等压过程2P 21()0Q vC T T '=-<,放热,即有: )(P mol22D C T T C M MQ Q -='-= ∴)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= AD 绝热过程,其过程方程为:γγγγ----=D D AA T p T p 11 BC 绝热过程,其过程方程为:γγγγ----=C C B BT p T p 111 又 A B C D p p p p ==,,所以得:D C BT TT T = ∴ 231T T -=η⑵ 不是卡诺循环,因为不是工作在两个恒定的热源之间;⑴ 用一卡诺循环的致冷机从7℃的热源中提取1000J 的热量传向27℃的热源,需要多少功从-173℃向27℃呢⑵ 一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于做功就愈有利;当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利为什么解:⑴卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功:12122300280100071.4J 280T T A Q T --==⨯= 173-℃→27℃时,需作功:1222230010010002000J 100T T A Q T --==⨯= ⑵从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的;p O 题图A B C D第9章 静电场长l =15.0cm 的直导线AB 上均匀地分布着线密度λ= C/m 的正电荷;试求:⑴ 在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;⑵ 在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强; 解:⑴ 如题图所示,在带电直线上取线元d x ,其上电量d q 在P 点产生场强为:20)(d π41d x a xE P -=λε 22200220d d 4π()11 []4π22π(4)l P P l x E E a x a l a l la l λελελε-==-=--+=-⎰⎰用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得:21074.6⨯=P E 1C N -⋅ 方向水平向右⑵ 同理,2220d d π41d +=x xE Q λε 方向如题图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220ddd d π41d ++=x x xE Qy λε22223222222022d d d 4π(d )2π4ll Qy Qy l x lE E x d l d λλεε-===++⎰⎰以9100.5-⨯=λ1cm C -⋅,15=l cm ,5d 2=cm 代入得:21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强; 解:如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为:20π4d d R R E εϕλ=,方向沿半径向外,则:ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-= 积分得:R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x 0π2ελ==,方向沿x 轴正向;均匀带电的细线弯成正方形,边长为l ,总电量为q ;⑴求这正方形轴线上离中心为r 处的场强E ;⑵证明:在l r >>处,它相当于点电荷q 产生的场强E ;解:如图示,正方形一条边上电荷4q 在P 点产生物强P E 方向如图,大小为:()12220cos cos 4π4P E r l λθθε-=+∵1222cos 2l r l θ=+ ,12cos cos θθ-=∴ 222204π42P lE r l r l λε=++P E 在垂直于平面上的分量cos P E E β⊥=∴ 22222204π424lr E r l r l r l λε⊥=+++由于对称性,P 点场强沿OP 方向,大小为:22220444π(4)2PO lrE E r l r l λε⊥=⨯=++∵ l q4=λ ∴ 222204π(4)2P qrE r l r l ε=++ , 方向沿OP⑴ 点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;⑵ 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少解: ⑴ 立方体六个面,当q 在立方体中心时,每个面上电通量相等,由高斯定理0d sE S q ε⋅=⎰得:各面电通量06εq e =Φ; ⑵ 电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe ;均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×510-C/m 3求距球心5cm,8cm ,12cm 各点的场强;解:高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E5=r cm 时,0=∑q ,0=E8=r cm 时,334π()3q pr r =-∑内 ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外; 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1CN -⋅ 沿半径向外. 半径为1R 和2R 2R >1R 的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:⑴r <1R ;⑵ 1R <r <2R ;⑶ r >2R 处各点的场强;解:取同轴圆柱形高斯面,侧面积rl S π2=,则:rl E S E Sπ2d =⋅⎰⑴ 1R r <时,0q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =;⑵ 21R r R <<时,λl q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:rE 0π2ελ= 沿径向向外;⑶ 2R r >时,0=∑q ,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强;解:如题图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外,n E)(21210σσε+-=2σ面外,n E )(21210σσε+=, n:垂直于两平面由1σ面指为2σ面;半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题图所示;试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的;。
[实用参考]大学物理学第四版课后习题答案(赵近芳)上册
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx +[答案:D](2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。
[答案:D](3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2(B)tRπ2,0 (C)0,0(D)0,2tRπ[答案:B]1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案:10m ;5πm] (2)一质点沿G 方向运动,其加速度随时间的变化关系为a=3+2t(SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案:23m·s -1](3)轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案:0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1)物体的大小和形状; (2)物体的内部结构; (3)所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)G=4t -3;(2)G=-4t 3+3t 2+6;(3)G=-2t 2+8t+4;(4)G=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
《大学物理学》第二版上册课后答案
(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?
(10)质点沿圆周运动,且速率随时间均匀增大,an、at、a三者的大小是否随时间改变?
(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?
(5)
(6)设质点的运动方程为:x=x(t),y=y(t),在计算质点的速度和加速度时,有人先求
出r=x2+y2,然后根据
d2r
a=
dt2
而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即
你认为两种方法哪一种正确?两者区别何在?
(7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系 是否也是线性的?
00
令
而t3s时,v0,v= -v。因而质点在0 ~4s时间内的路程为
43434
s
00303
32
13
3
32
13
t2-
t3
t2-
t3
2
3
0
2
3
1.8在离船的高度为h的岸边,一人以恒定的速率v0收绳,求当船头与岸的水平距离为x时, 船的速度和加速度。
解:建立坐标系如题1.8图所示,船沿X轴方向作直线运动,欲求速度,应先建立运动方 程,由图题1.8,可得出
(1)
(2)
(3)
解:(1)
消去时间参数t,得到轨迹方程为:
y=-2(v+v0)2(若以竖直向下为y轴正方向,则负号去掉,下同)
(3)以炮弹为参照系,只需在(2)的求解过程中用-x代替x,-y代替y,可得y=gx.2v2
大学物理课后答案第1章质点运动学习题解答
,解得
(2) , ,
1-13质点M作平面曲线运动,自O点出发经图示轨迹运动到C点。图中,OA段为直线,AB、BC段分别为不同半径的两个1/4圆周。设 时,M在 点,已知运动方程为 (SI),求 s时刻,质点M的切向加速度和法向加速度的大小。
解: 时 此时质点在大圆上
…
时
1-14一质点沿半径为 的圆周按 的规律运动,其中 和 都是常数。求:(1)质点在 时刻的加速度;(2) 为何值时,加速度在数值上等于 ;(3)当加速度大小为 时质点已沿圆周运行了几圈
解:
,
&
1-8一艘正在沿直线行驶的快艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即 ,式中 为正常数。试证明快艇在关闭发动机后又行驶 距离时的速度为 ,式中 是发动机关闭瞬时的速度。
解:
,
1-9一飞轮的转速在5s内由900rev/min均匀地减到800rev/min。求:(1)飞轮的角加速度;(2)在此5s内飞轮的总转数;(3)再经几秒飞轮将停止转动。
解: ,即
~
1-5一质点在 平面内运动,运动方程为 (SI)。(1)求质点运动的轨道方程并画出运动轨道;(2)计算1s末和2s末质点的瞬时速度和瞬时加速度;(3)在什么时刻质点的位置矢量与其速度矢量恰好垂直这时,它们的 、 分量各为多少(4)在什么时刻质点离原点最近算出这一距离。
解: , ,
(1) ,
消t,得轨道方程: ,
其曲线为开口向下的抛物线,如右图。
(2) ,
,
(3) ,
*
解得: ,
时, , , ,
时, , , ,
以上物理量均为国际单位。
(4)
令 ,解得
1-6一物体沿 轴运动,其加速度和位置的关系满足 (SI)。物体在 处的速度为10 m/s,求物体的速度和位置的关系。
(完整版)(上海交大)大学物理上册课后习题答案1质点运动
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +v v v其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +v v v,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=v v ,有速度:sin Rcos v R t i t j ωωωω=-+v v v而v v ϖ=,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)rt i t j =++v v v,式中r ϖ的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。
解:(1)由24(32)r t i t j =++v v v ,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)从0=t 到1=t s 的位移为:j i j j i r r r ϖϖϖϖϖϖϖϖ243)54()0()1(+=-+=-=∆(3)由d rv dt =v v ,有速度:82v t i j =+v v v0=t 和1=t 秒两时刻的速度为:(0)2v j =v v,(1)82v i j =+v v v 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+v v v ,式中r ϖ的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =v v ,有:22v t i j =+v v v ,d v a dt=v v ,有:2a i =v v ;(2)而v v ϖ=,有速率:12222[(2)2]21v t t =+=+∴tdv a dt=21t =+,利用222t n aa a =+有: 22221n t a a a t =-=+。
大学_大学物理教程上册(范仰才著)课后答案
大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ ___________ 成绩 ________说明:字母为黑体者表示矢量一、选择题1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为: [ D ](A)x q04πε. (B)204x qπε.(C) 302xqa πε (D) 30x qaπε. 3.图1.2所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为 ( x< 0)和( x > 0),则xOy 平面上(0, a )点处的场强为:[ A ] (A ) i a02πελ.(B) 0.(C)i a 04πελ.(D))(40j +i aπελ. 4. 真空中一“无限大”均匀带负电荷的平面如图1.3所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负) ?[ D ]5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变;(B) f 12的大小改变了,但方向没变, q 1受的总电场力不变;(C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化;-q-a +q aP (x,0) x x yO图1.1+λ-λ• (0, a ) xy O图1.2σ-x OE x 02εσO 02εσ-E x O 02εσ-E x 02εσO 02εσ-O E x 02εσ(D)图1.3(D) f 12的大小、方向均发生改变, q 1受的总电场力也发生了变化.二、 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为1和2,则场强等于零的点与直线1的距离a=211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E =23220)(2a y +πε ,场强最大值的位置在y = a 22±. 3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E ρ。
І区E ρ的大小 02εσ , 方向 右 。
Π区E ρ的大小 023εσ,方向 右 。
Ш区E ρ的大小 02εσ,方向 左 三、计算题1. 一段半径为a 的细圆弧,对圆心的角为0θ,其上均匀分布有正电荷 q ,如图1.7所示,试以a 、q 、0θ表示出圆心O 处的电场强度。
解:设电荷的线密度为λ,取一微电量,则在O 产生的场强为:θπεcos 420adQdE = 又,dl dQ λ= 其中,0θλa q =所以, θπεθλcos 420a ad dE =从而,θπεθλθθcos 42022a ad E ⎰-=d a 12λ1 λ2图1.4+q-a +q axyO图1.5I II III σ2-σq 0θao+++++++++积分得到,020022sinθπεθa q E =2.均匀带电细棒,棒长L ,电荷线密度。
求:(1)棒的延长线上与棒的近端相距d 1处的场强;(2)棒的垂直平分线上与棒的中点相距d 2处的场强.(1)如图(a),取与棒端相距d 的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d 0λ=至P 点的距离x ,它在P 点的场强大小为20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xx E E πε ⎪⎪⎭⎫⎝⎛+-=L d d 110114πελ 方向沿x 轴方向。
(2)坐标如图(b)所示,在带电细棒上取电荷元x q d d λ=与Q 点距离为r ,电荷元在Q 点所产生的场强20d 41d r xE λπε=,由于对称性,场d E 的x 方向分量相互抵消,所以E x =0,场强d E 的y 分量为θλπεθsin d 41sin d d 20rxE E y ==因θθθπθθd csc d d ,d 2d ,csc d 22222=-=⎪⎭⎫⎝⎛-==x ctg tg x r ∴ θθπελθλπεd sin d 4sin d 41d 202==r xE y)cos (cos d 4d sin d 4d 21202021θθπελθθπελθθ-===⎰⎰y y E E其中 22222221)2/(d 2/cos ,)2/(d 2/cos L L L L +-=+=θθ代入上式得图(a )图(b )222200)2/(4L d L d E y +=πελ方向沿y 轴正向。
《大学物理》练习题 No .2 静电场中的高斯定理班级 ___________ 学号 ___________ ___________ 成绩 ________说明:字母为黑体者表示矢量一、 选择题1.关于电场线,以下说法正确的是[ B ] (A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行; (C) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合; (D) 在无电荷的电场空间,电场线可以相交.2.如图2.1,一半球面的底面圆所在的平面与均强电场E 的夹角为30° ,球面的半径为R ,球面的法线向外,则通过此半球面的电通量为[ A ] (A) R 2E/2 . (B) R 2E/2.(C) R 2E . (D) - R 2E .3.关于高斯定理的理解有下面几种说法,其中正确的是 [ D ] (A) 如高斯面上E 处处为零,则该面必无电荷;(B) 如高斯面无电荷,则高斯面上E 处处为零; (C) 如高斯面上E 处处不为零,则高斯面必有电荷;(D) 如高斯面有净电荷,则通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称的电场4. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <) , 所带电量分别为a Q 和b Q ,设某点与球心相距r , 当b a R r R <<时, 该点的电场强度的大小为: [ D ](A)2b a 041r Q Q +⋅πε (B) 2ba 041rQ Q -⋅πε (C))(412b b 2a 0R Q r Q +⋅πε (D) 2a 041r Q ⋅πεSE n ⎫30° 图2.15. 如图2.2所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,轴线方向单位长度上的带电量分别为1λ 和2λ, 则在圆柱面里面、距离轴线为r 处的P 点的电场强度大小 [ D ] (A)r 0212πελλ+(B)20210122R R πελπελ+(C) 1014R πελ(D) 0二、 填空题1.点电荷q 1 、q 2、q 3和q 4在真空中的分布如图2.3所示,图中S 为闭合曲面,则通过该闭合曲面的电通量S E d ⋅⎰S=42εq q +,式中的E 是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是 43,2,1q q q q .2.如图2.4所示,真空中两个正点电荷,带电量都为Q ,相距2R ,若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=εQ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度的矢量式分别为020185r R Q ϖπε,00r ϖ.三、计算题1. 一半径为R 的带电球体,其电荷体密度分布为⎩⎨⎧><=)(0)(R r R r Arρ , 其中A 为一常数,试求球体、外的场强分布。
解:在球体,由高斯定理:24ερπdr r dS E S⎰⎰=⋅30244εππAdrr r E r ⋅=⋅⎰得到,024εAr E =1λ2λ2R r PO1R •q 1•q 2 •q 3 •q 4S图2.3+Q +Q · b · a 2RRO S 图2.4图2.2球体外:30244εππAdrr r E R⋅=⋅⎰所以,2044r AR E ε=2.一对“无限长”的同轴直圆筒,半径分别为和(),筒面上匀带电,沿轴线单位长度电量分别为和。
试求空间的场强分布。
解:无限长均匀带电圆柱面产生的电场具有轴对称性,方向垂直柱面,以斜半径r 作一与两无限长圆柱面的同车圆柱面以及两个垂直轴线的平面所形成的闭合面为高斯面,由高斯定理可得⎰∑==⋅Si q rlE S E 02d επϖϖ∴ rl q E i∑=021πε(1)当r <R 1,;0,01==∑E q i (2)当21R r R <<时l q i 1λ=∑ ∴ rrllE 01102221πελλπε==; (3)当2R r >时,l l q i 21λλ+=∑,∴ r rl l E 02121032)(21πελλλλπε+=+=《大学物理》练习题 No. 3环路定理 电势班级 ____________ 学号 ___________ ____________ 成绩 ________说明:字母为黑体者表示矢量1R 2R <1R 2R 1λ2λ一、选择题1.关于静电场中某点电势值的正负,下列说法中正确的是: [ C ](A) 电势值的正负取决于置于该点的试验电荷的正负; (B) 电势值的正负取决于电场力对试验电荷作功的正负;(C) 电势值的正负取决于电势零点的选取;(D) 电势值的正负取决于产生电场的电荷的正负。
2. 真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示。
设无穷远处为电势零点,则在球离球心O 距离为r 的P 点处电势为: [ B ](A)rq 04πε (B))(410RQ r q +πε (C)r Q q 04πε+ (D) )(410RqQ r q -+πε 3. 在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示。