离散数学集合论期末复习题

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

离散数学期末考试卷

离散数学期末考试卷

离散数学期末考试卷一、选择题(每题2分,共20分)1. 在集合论中,下列哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 幂集2. 命题逻辑中,下列哪个命题不是合取命题?A. (p ∧ q)B. (p ∨ q)C. (p → q)D. (p ↔ q)3. 关系R在集合A上是自反的,这意味着:A. 对于所有a∈A,(a, a)∈RB. R是对称的C. R是传递的D. R是反对称的4. 在图论中,下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 矩阵5. 布尔代数中,下列哪个操作不是基本操作?A. 与(AND)B. 或(OR)C. 非(NOT)D. 模(MOD)6. 函数f: A → B,下列哪个条件不是函数的一一对应的必要条件?A. 对于A中不同的元素,它们的函数值不同B. 对于B中的每个元素,A中至少有一个元素映射到它C. 对于A中的每个元素,B中只有一个元素映射到它D. A和B的元素数量相同7. 在组合数学中,下列哪个是排列的定义?A. 从n个不同元素中取出r个元素的所有可能组合B. 从n个不同元素中取出r个元素的所有可能排列C. 从n个元素中取出r个元素的所有可能组合,不考虑顺序D. 从n个元素中取出r个元素的所有可能排列,考虑顺序8. 逻辑等价是指两个命题:A. 总是同时为真或同时为假B. 在所有可能的真值分配下都具有相同的真值C. 只有在某些真值分配下具有相同的真值D. 至少在一个真值分配下具有相同的真值9. 递归函数的特点是:A. 只能通过迭代来实现B. 必须有一个或多个基本情况C. 只能通过递归调用自身来实现D. 不能包含任何循环结构10. 在证明中,归纳法的基本步骤是:A. 基础步骤和归纳步骤B. 假设步骤和证明步骤C. 假设步骤和归纳步骤D. 基础步骤和假设步骤二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集包含元素个数为______。

离散数学复习题含答案

离散数学复习题含答案

离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。

请写出集合{1, 2, 3}和{2, 3, 4}的交集。

答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。

请判断复合命题“p且q”的真值。

答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。

请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。

答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。

请计算表达式(A∨B)∧(¬A∨¬B)的值。

答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。

答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。

若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。

答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。

8. 正则表达式正则表达式用于描述字符串的模式。

请写出匹配任意长度的数字串的正则表达式。

答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。

请判断命题p∨¬p和命题¬(p∧¬p)是否等价。

答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。

请简述后序遍历的步骤。

答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。

离散数学期末考试试卷

离散数学期末考试试卷

离散数学期末考试试卷一、选择题(每题2分,共20分)1. 集合A={1, 2, 3},集合B={2, 3, 4},请找出A与B的交集。

A. {1, 2}B. {2, 3}C. {1, 3}D. {4}2. 命题逻辑中,若P∨Q为真,P∧Q为假,以下哪个命题一定为真?A. P为真B. Q为真C. P为假D. 不能确定3. 以下哪个选项表示的是函数f(x) = x^2 + 3x + 2的值域?A. (-∞, +∞)B. [1, +∞)C. [0, +∞)D. (-∞, 1]4. 在图论中,一个图的度是指什么?A. 顶点的个数B. 边的个数C. 与顶点相连的边的个数D. 图的连通性5. 以下哪个命题是可满足的?A. ∀x P(x) → ∃x ¬P(x)B. ∃x P(x) ∧ ∀x ¬P(x)C. ∀x P(x) ∨ ∃x ¬P(x)D. ∀x ¬P(x) → ∃x P(x)...(此处省略其他选择题)二、简答题(每题10分,共20分)1. 简述什么是归纳推理,并给出一个具体的例子。

2. 解释什么是二元关系,并给出一个二元关系的例子。

三、证明题(每题15分,共30分)1. 证明:对于任意的自然数n,n^2 + 3n + 2总是大于等于n + 2。

2. 证明:如果一个图是连通的,并且每个顶点的度至少为1,那么这个图至少有一个环。

四、应用题(每题15分,共30分)1. 给定一个无向图,顶点集为{A, B, C, D, E},边集为{(A, B), (B,C), (C, D), (D, E), (E, A), (B, D)}。

请找出这个图的所有简单路径。

2. 假设有一个有限状态机,状态集合为{S1, S2, S3},初始状态为S1,接受状态为S3。

给定一个转换函数δ,其中δ(S1, a) = S2, δ(S2, b) = S3, δ(S3, a) = S1,以及一个输入字符串"ab",请确定这个有限状态机是否接受该字符串。

离散数学期末复习习题

离散数学期末复习习题

离散数学一、选择题1△O Y C3A^Q un ㊉iv1.设:P:张三可以作这件事,Q:李四可以作这件事,命题“张三或李四都可以做这件事”的符号化为()A、PVQB、PVi QC、P—QD、-P V -Q2.谓词公式V x(P(x)V m yR(y))fQ(x)中量词V x的作用域是()A. V x(P(x) V3yR(y))B.P(x)C. (P(x) V3yR(y)) D,P(x), Q(x)3.若个体域为整体域,下列公式中哪个值为真?()A. V x 3y(x+y=0)B. 3y V x(x+y=0)C. V x V y(x+y=0)D. n 3x 3y(x+y=0)4.空集①的幂集P (①)的基数是()A. 1B.2C.3D.45.设R、S是集合A上的任意关系,则下面命题是真命题的是()。

A.若R、S是自反的,则R・S是自反的B.若R、S是反自反的,则R・S是反自反的C.若R、S是对称的,则R・S是对称的D.若R、S是传递的,则R・S是传递的6.集合 A={1, 2,…,10}上的关系 R={(x, y)|x+y=10 且x, y£A},则 R 的性质为()A.自反的B.对称的C.传递的,对称的口.非自反的,传递的7.含有5个结点,3条边的不同构的简单图有()A.2个B.3个C.4个D.5个8.设G (n, m),且G中每个结点的度数不是K就是K+1,则G中度数为K的结点数()A.2/nB.n(n+1)C.nkD.n(k+1)-2m9.设谓词P(x) :x是奇数,Q(x):x是偶数,谓词公式m(x) (P(x) AQ(x))在下面哪个论域中是可满足的。

()A自然数集 B整数集 C实数集 D以上均不成立10.设C(x): x是运动员,G(x): x是强壮的。

命题“没有一个运动员不是强壮的”可符号化为()A. n V x(C(x) A n G(x))B. iV xOx) — G(x))C. _|m x(C(x)A_|G(x))D. im x(C(x) - 1 G(x))11.设集合 M={x|f (x) =0}, N={x|g (x) =0},则方程 f (x)・g (x) =0 的解集是()A.MANB.MUNC.M ㊉ ND.M-N12.设A=/"a}},下列选项错误的是()A. {a} e p(A)B. {a}U p(A)C. {{a}} e p(A)D. {{a}} e p(A)13.设A={1,2,3,4,5},p{<i,j>|i<j,i,j £ A}则 p 逆的性质是()A.对称的B.自反的C.反对称的D.反自反,反对称,传递的14.设R和S是集合A上的等级关系,则RUS的对称性()A. 一定成立B.一定不成立C.不一定成立D.不可能成立15. K4中含有3条边的不同构生成子图有()A.1个B.3个C.4个D.2个16.设G=<V,E>为无向图,u,v £V,若u,v连通,则()A.d(u,v)>0B.d(u,v)=0C.d(u,v)<0D.d(u,v)三0二、填空题1.命题公式I(P-Q)的主析取范式为(),主合取式的编码表示为().2.设Q(x): x是奇数,Z(x): x是整数,则语句“不是所有整数都是奇数”所对应的谓词公式为()。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案1.选择题(每题3分,共30分)1. 下列命题中,属于复合命题的是:A. 3是一个奇数,且2是一个偶数B. 如果2是一个素数,那么4也是一个素数C. 不是所有奇数都是素数D. 存在一个整数x,使得x>5且x是一个偶数答案:D2. 已知命题p:草地是绿的,命题q:天空是蓝的。

下列表述可以表示p ∧ ¬q 的是:A. 草地是绿的,天空是蓝的B. 草地不是绿的,天空是蓝的C. 草地是绿的,天空不是蓝的D. 草地不是绿的,天空不是蓝的答案:B3. 设命题p表示“这个数是偶数”,q表示“这个数大于10”。

那么“这个数既是偶数又大于10”可以表示为:A. p ∧ qB. p ∨ qC. ¬p ∧ qD. ¬p ∨ q答案:A4. 下列以下列集合的方式描述,其中哪个是空集∅:A. {x | 0 ≤ x ≤ 1}B. {x | x是一个自然数,x > 10}C. {x | x是一个正偶数,x < 2}D. {x | x是一个负整数,x < -1}答案:C5. 设A = {a, b, c},B = {c, d, e},C = {a, c, e}。

则(A ∪ B) ∩ C等于:A. {a, b, c, d, e}B. {a, c, e}C. {c}D. 空集∅答案:B6. 假设U是全集,A、B、C是U的子集。

则(A ∪ B) ∩ C 的补集是:A. A ∩ B ∩ C的补集B. (A ∪ B) ∩ C的补集C. A ∪ (B ∩ C)的补集D. (A ∩ C) ∩ (B ∩ C)的补集答案:D7. 若关系R为集合A到集合B的一种映射,且|A| = 7,|B| = 4,则R包含的有序对数目为:A. 4B. 7C. 11D. 28答案:D8. 设A={1,2,3},B={4,5,6},则从A到B的映射总数为:A. 3B. 9C. 6D. 18答案:C9. 设A={a,b,c,d,e},则集合A的幂集的元素个数是:A. 2B. 5C. 10D. 32答案:D10. 若f:A→B为满射且g:B→C为单射,则(g ∘ f):A→C为:A. 双射B. 满射C. 单射D. 非单射且非满射答案:A2.简答题(每题10分,共20分)1. 请简要解释什么是关系R的自反性、对称性和传递性。

离散数学期末考试复习题及参考答案

离散数学期末考试复习题及参考答案
A. B. C. D.
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。

离散数学期末考试题(附答案和含解析3)

离散数学期末考试题(附答案和含解析3)

一、单项选择题2.设集合A={1,2,3},下列关系R 中不.是等价关系的是( D ) A.R={<1,1>,<2,2>,<3,3>}; B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>};C. R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};D. R={<1,1>,<2,2>,<3,3>,<1,2 >}.3.在公式(x ∀)F (x ,y )→(∃ y )G (x ,y )中变元x 是( B )A .自由变元;(前面无∀或∃量词)B .既是自由变元,又是约束变元;C .约束变元;(前面有∀或∃量词)D .既不是自由变元,又不是约束变元.4.设A={{1,2,3},{4,5},{6,7,8}},下列选项正确的是( C )A .1∈A ;B .{1,2,3}⊆A ;C .{{4,5}}⊆A ;D .∈A. 5.设论域为{l ,2},及公式)()(x A x ∃等价的是( A )A.A (1)∨A (2);B. A (1)→A (2);C.A (1)∧A (2);D. A (2)→A (1).6.一棵树有5个3度结点,2个2度结点,其它的都是l 度结点,那么这棵树的结点数是( B )A.13 ;B.14 ;C.16 ;D.17 .//设一度结点数为n,则有:5×3+2×2+n=2[(5+2+n)-1]解得:n=7, 所以这棵树的结点数为:m=5+2+7=14.7.设A 是偶数集合,下列说法正确的是( A )A .<A ,+>是群;B .<A ,×>是群;C .<A ,÷>是群;D .<A ,+>, <A ,×>,<A ,÷>都不是群。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

离散数学期末复习题(6套)

离散数学期末复习题(6套)

《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。

电大《离散数学》(集合论部分)期末复习题及答案

电大《离散数学》(集合论部分)期末复习题及答案

一、单项选择题1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}∈AB.{1,2}∉A C.{a}⊆A D.∅∈A正确答案:C2.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A.A⊂B,且A∈BB.B⊂A,且A∈BC.A⊂B,且A∉BD.A⊄B,且A∈B正确答案:A注意:这两个题是重点,大家一定要掌握,还有灵活运用,譬如,将集合中的元素作一些调整,大家也应该会做.例如,2011年1月份考试的试卷的第1题1.若集合A={ a,{1}},则下列表述正确的是( ).A.{1}∈AB.{1}⊆AC.{a}∈AD.∅∈A答案:A3.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}正确答案:C注意:若集合A有一个或有三个元素,那么P(A)怎么写呢?若A是n元集,则幂集P(A )有2 n个元素.当n=8或10时,A的幂集的元素有多少个?(应该是256或1024个)4.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的因为写出二元关系R的集合表达式为R = {<2 , 8>,<8 , 2>,<3 , 7>,<7 , 3>,<4 , 6>,<6 ,4>,<5 , 5>}显然,R是对称的,不是自反的、反自反的、传递的.要求大家能熟练地写出二元关系R的集合表达式,并能判别R 具有的性质.正确答案:B5.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2C.1 D.3教材第40页第三行指出,若R1和R2是A上的自反关系,则R1∪R2,R1∩R2也是A上的自反关系.正确答案:B注意:若R1和R2是A上的对称关系,则R1∪R2,R1∩R2,R1-R2中有几个是对称关系?6.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 ,1>,<2 , 2>,<2 , 3>,<4 ,4>},S = {<1 , 1>,<2 , 2>,<2 ,3>,<3 , 2>,<4 , 4>},则S是R的()闭包.A.自反B.传递C.对称D.以上都不对由42页定义2.3.4知道,关系R的对称闭包s (R)是包含R并具有对称性的最小的关系,由此也可以判定S是R的对称闭包.正确答案:C7.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3 , 4 , 5},则元素3为B的().A.下界B.最大下界C.最小上界D.以上答案都不对由教材第54页的定义2.5.11知道,集合B的最大元一定是B的上界,而且是B的最小上界.因此可以判定选项C 正确.正确答案:C8.设A={1, 2, 3, 4, 5, 6, 7,8},R是A上的整除关系,B={2,4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A.8、2、8、2B.8、1、6、1C.6、2、6、2D.无、2、无、2集合A上的整除关系R的哈斯图如右图所示.由哈斯图可知,集合B的无最大元和上界,最小元和下界都是2,因此,选项D正确正确答案:D9.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A.R1B.R2C.R3D.R1和R3由教材第55页的定义2.6.1知道,函数是单值性,也就是说,定义域A中任意一个a与值域B中唯一的b有关系,而R2中的a有两个值2,1与它有关系,所以而R2不是函数.正确答案:B10.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().A.2 B.3C.6 D.8因为:f1= {<a , 1>,<b ,1>,<c , 1>},f2= {<a , 1>,<b , 1>,<c , 2>},f3={<a , 1>,<b ,2>,<c , 1>},f4= {<a , 2>,<b , 1>,<c , 1>},f5={<a , 1>,<b ,2>,<c , 2>},f6= {<a , 2>,<b , 1>,<c , 2>},f7={<a , 2>,<b ,2>,<c , 1>},f8=<a , 2>,<b , 2>,<c , 2>}.正确答案:D二、填空题1.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,},,{BAyxByAxyxR⋂∈∈∈><=且且则R的有序对集合为.因为A∩B={2, 3 },所以从集合A,B中只能分别去2,3组成关系R.应该填写:R = {<2 , 2>,<2 ,3>,<3 , 2>,<3 , 3>}注意:如果将二元关系R改为,{ByAxyxR∈∈><=且且则R的有序对集合是什么呢?2.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=},,2,{ByAxxyyx∈∈=><那么R-1=因为R={<3,6>,<4,8>},所以R-1={<6,3>,<8,4>}应该填写:{<6,3>,<8,4>} 3.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则二元关系R具有的性质是.根据教材第38页的定义2.3.1,若对任意a∈A,a与a 都没有关系,即<a , a>∉R,则称R为A上反自反的关系.应该填写:反自反的4.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素,则新得到的关系就具有对称性.应该填写:<c, b>, <d, c>注意:第3,4题是重点,我们不仅要熟练掌握,尤其是A和R 的元素都减少的情况,而且如果新得到的关系具有自反性,那么应该增加哪两个元素呢?5.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y=10},则R的自反闭包为.因为满足条件x∈A,y∈A,x+y =10的关系只有空关系,空关系的闭包是I A.应该填写:I A注意:如果二元关系改为R={<x, y>|x∈A,y∈A, x+y <10},则R的自反闭包是什么呢?6.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含等元素.因为等价关系一定是自反的、对称的、传递的,由二元关系R是自反的,所以它至少包含<1, 1>, <2, 2>, <3, 3>等元素.应该填写:<1, 1>, <2, 2>, <3, 3> 7.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是.应该填写:{<1, a >, <2, b >},{<1, b >, <2, a >}想一想:集合A到B的不同函数的个数有几个?三、判断说明题(判断下列各题,并说明理由.)1.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:正确.因为R1和R2是A上的自反关系,即I A⊆R1,I A⊆R2.由逆关系定义和I A⊆R1,得I A⊆ R1-1;由I A⊆R1,I A⊆R2,得I A⊆ R1∪R2,I A⊆ R1∩R2.所以,R1-1、R1∪R2、R1∩R2是自反的.2.若偏序集<A,R>的哈斯图如右图所示,则集合A的最大元为a,最小元不存在.解:错误.集合A的最大元不存在,a是极大元.结论不成立.因为a与g、h没有关系,由关于最大元、最小元、极大元和极小元的定义 2.5.9知道,A的最大元应该大于等于A中其它各元素,而A的极大元应该大于等于A中的一些元素,可以与A中另一些元素无关系.所以集合A的最大元不存在,a应该是极大元.注意:题目修改为:若偏序集<A,R>的哈斯图如右图所示,则集合A的最大元为a,极小元不存在.3.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},判断下列关系f:A→B是否构成函数,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4,6>, <1, 8>};(2) f ={<1, 6>,<3, 4>, <2, 2>};(3) f={<1, 8>, <2, 6>, <3,4>, <4, 2,>}.解:(1) f不能构成函数.因为A中的元素3在f中没有出现.(2) f不能构成函数.因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.四、计算题1.设集合A={{1}, {2}, 1,2},B={1, 2, {1, 2}},试计算(1)A-B;(2)A∩B;(3)A×B.解:(1)A-B={{1}, {2}, 1,2}- {1, 2, {1, 2}}={{1}, {2}}(2)A∩B ={{1}, {2}, 1, 2}∩{1, 2, {1, 2}}={1, 2}(3)A⨯ B ={{1}, {2}, 1,2}⨯{1, 2, {1, 2}}={<{1}, 1>,<{1}, 2>, <{1}, {1, 2 }>, <{2},1>, <{2}, 2>, <{2}, {1, 2 }>, <1,1>, <1, 2>, <1, {1, 2 }>, < 2, 1>,< 2, 2>, < 2, {1, 2 }}2.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y <0},试求R,S,R∙S,S∙R,R-1,S-1,r(S),s(R).解:R={<1, 1>, <1, 2>, <1,3>, <2, 1>, <2, 2>, <3, 1>}, S=∅,R∙S=∅,S∙R=∅,R-1=R,S-1= ∅,r(S)=I A.s(R) ={<1, 1>, <1, 2>, <1,3>, <2, 1>, <2, 2>, <3, 1>}3.设A={1, 2, 3, 4, 5, 6, 7,8},R是A上的整除关系,B={2,4, 6}.(1)写出关系R的表示式;(2)画出关系R的哈斯图;(3)求出集合B的最大元、最小元.解:(1)R=I⋃{<1, 2>, <1,3>, <1, 4>, <1, 5>,<1, 6>, <1,7>, <1, 8>, <2, 4>,<2, 6>, <2,8>, <3, 6>, <4, 8>}(2)关系R的哈斯图如下图所示(3)集合B最小元是:2.五、证明题1.试证明集合等式:A⋃(B⋂C)=(A⋃B) ⋂ (A⋃C).证:若x∈A⋃ (B⋂C),则x∈A或x∈B⋂C,即x∈A或x∈B且x∈A或x∈C.即x∈A⋃B且x∈A⋃C,7关系R的哈斯图οοοab cd οοe fοοοab即x∈T=(A⋃B) ⋂ (A⋃C),所以A⋃ (B⋂C)⊆ (A⋃B) ⋂(A⋃C).反之,若x∈(A⋃B) ⋂ (A⋃C),则x∈A⋃B且x∈A⋃C,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈B⋂C,即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃(B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂(A⋃C).注意:第1题也是重点,我们要熟练掌握.想一想:等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C)如何证明?2.对任意三个集合A, B和C,试证明:若A⨯B = A⨯C,且A≠∅,则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得B = C.注意:这个题09秋学期的教学辅导活动重点强调了,但2010年1月份考卷中的证明题:设A,B是任意集合,试证明:若A⨯A=B⨯B,则A=B.许多同学不会做,是不应该的.我们看一看证明:设x∈A,则<x,x>∈A⨯A,因为A⨯A=B⨯B,故<x,x>∈B⨯B,则有x∈B,所以A⊆B.设x∈B,则<x,x>∈B⨯B,因为A⨯A=B⨯B,故<x,x>∈A⨯A,则有x∈A,所以B⊆A.故得A=B.大家可以看到,这两个题的证明方法是不仅类似,而且1月份考题更容易.3.试证明:若R与S是集合A 上的自反关系,则R∩S也是集合A上的自反关系.证明:设∀x∈A,因为R自反,所以xRx,即< x, x>∈R;又因为S自反,所以xSx,即< x, x >∈S.即< x, x>∈R∩S故R∩S自反.注意:如果把该题的“自反关系”改为“对称关系”,应该怎么证明呢?请大家想一想.。

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。

答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。

它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。

答案:图的连通分量是指图中最大的连通子图。

离散数学期末复习题

离散数学期末复习题

离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 )解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A2到A 的关系. ( 对 )解 A 2}},1{},0{,{A φ=, =⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 )(14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合 A 上的等价关系, 则 ( 错 )二、单项选择题(1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈ (4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A. {}><><><><=a b b a a c c a ,,,,,,,1ρB . {}><><=a c c a ,,,2ρC. {}><><><><=c b a b c c b a ,,,,,,,3ρD. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B )A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A⊆↔∈2 C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A2____________.填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .405.设 },{b a A =, ρ 是 A2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合 A 上的二元关系, 则=21ρρ .~1~2ρρ7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρ 则B ___________________. 填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。

答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。

答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。

A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。

A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。

A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。

A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。

A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。

答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,表示两个集合A和B的并集的符号是:A. ∩B. ∪C. ⊂D. ⊆2. 以下哪个命题逻辑表达式是真命题,当P为真,Q为假时?A. ¬PB. P ∧ QC. P ∨ QD. P → Q3. 如果函数f: A → B是一个单射,那么它不能是:A. 满射B. 双射C. 恒等函数D. 逆函数4. 在图论中,一个图G是连通的,当且仅当:A. G是无向图B. G是简单图C. G是完全图D. 对于任意两个顶点,都存在一条路径5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合二、简答题(每题10分,共30分)6. 解释什么是二元关系,并给出一个例子。

7. 描述什么是有向图和无向图的区别。

8. 什么是等价关系,它有哪些性质?三、计算题(每题15分,共30分)9. 给定集合A = {1, 2, 3, 4},B = {a, b, c},定义函数f: A → B,其中f(1) = a, f(2) = b, f(3) = c, f(4) = a。

判断f是否是单射、满射或双射,并给出理由。

10. 计算以下命题逻辑表达式的真值表:(P ∧ Q) → (¬P ∨ R),其中P、Q、R是命题变量。

四、证明题(每题20分,共20分)11. 证明:如果一个图G是连通的,那么它的任意子图也是连通的。

答案一、选择题1. B2. C3. A4. D5. D二、简答题6. 二元关系是定义在两个集合上的一个关系,它将第一个集合中的每个元素与第二个集合中的元素相关联。

例如,如果A是人名的集合,B是年龄的集合,关系R可以是“比...年长”,那么(Alice, 30) ∈ R表示Alice比30岁年长。

7. 有向图由顶点和有向边组成,每条边都有一个方向,表示从一个顶点指向另一个顶点。

无向图由顶点和无向边组成,边没有方向。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。

离散数学期末考试复习题.docx

离散数学期末考试复习题.docx

离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. (错)(2) {0}是空集. (错)(3){a}e {{a},a}(对)(4)设集合A = {1,2,{1,2}},则{{1,2}}匸2".(对)(5)如果Au B f则A或agB.(错)解Au B则= 即ae A且awB,所以A且aG B(6)如果AU B = B,则AuB. (对)(7)设集合A = {a]9a2,a3} f B = {b},b2.b3],贝!)AxB = {< a},h x >.< a2.b2 >.< a3.h3 >}(错)(8 )设集合A = {0,1},贝9 p = {< ^0 >,< ^,1 >,< {0},0 >,< {0},l >}是2A至U A 的关系. (对)解2—{0,{0},{1},小, 2A X A={< 0,0 >,< 0,1 >,<{0},0 >,<{0},1 >,<{1},0 >,<{1},1 >,< A,0 >,< A,1 >}(9)关系的复合运算满足交换律. (错)(10)pop = p是集合A上的关系p具有传递性的充分必要条件.(错)(11)设Q是集合A上的传递关系,则0也是人上的传递关系. (对)(12)集合A上的对称关系必不是反对称的.(错)(13)设卩,/?2为集合A上的等价关系,则p、cp?也是集合A上的等价关系(对)(14)设。

是集合A上的等价关系,则当<a,b>w p时,[a]p =[h]p(对)(15)设卩,°2为集合人上的等价关系,则Q】°Q2=Q I°Q2(错)二、单项选择题(1)设7?为实数集合,下列集合中哪一个不是空集(A )A. [x\x2 - I = 0,X XG R]B. {x|x2 + 9 = 0,M XG R]C. [x\x =兀 +1,且兀w R}D. [r| x2 = R](2)设A,B为集合,若A\B =(f),则一定有A. B =(/)B> B ^(/)C・ A c B D. Aq B(3)下列各式中不正确的是(C )A. 0 匸0B. 0w{©}C. 0 u 0D. 0w{0,{0}}(4)设A = {a y{a}},则下列各式中错误的是(B )A. {a}e 2AB. {a}^2AC. {{a}}e 2AD. {{«}}c2A(5)设A = {1,2}, B = {a, /?, c}, C = {c, d}f则Ax(BAC)为(B )A.{< c,l >, < 2, c >}B. {< l,c >, < 2,c >}C. {< 1, c >, v c2 >}D. {< c,l >, < c,2 >}(6)设A 二{0,b}, B = {1, ft, 3},则AU B 的恒等关系为(A )A.{< 0,0 >, < 1,1 >,< b.b >, < 3,3 >}B. {< 0,0 >, < 1,1 >,< 3,3 >}C. {< 0,0 >,</?,/?>,< 3,3 >}D. {< 0,1 >, < l.b >,</?,3 >, < 3,0 >}(7)设A二{a,b,c}上的二元关系如下,则具有传递性的为(D )A.p、= {< a.c >, < c.a >,< a.b >,<b.a >}B.p2二{v Q,C >, V C,d >}C.p y- {< a.b >, < c,c>,< b.a >,< b.c >}D.p4={< a, a >}(8)设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合论期末复习题
1. 求(())P P φ 答:(()){,{}}P P φφφ=
2. 设||A n =,求|()|P A 答:|()|2n P A =
3. {,{}}________φφφ-=,{,{}}{}________φφφ-= 答:{,{}}φφ,{{}}φ
4. 证明:()()()A B C A B A C ⋂⊕=⋂⊕⋂
证明:
()
[()()]
(~)(~)
(~)(~)
(~)(~)(~)(~)[()(~~)][()(~~)]
[()~()][()~()]
[()()][()()]
()()
A B C A B C C B A B C C B A B C A C B A B A A B C A C B A C A A B A C A C B A A B A C A C A B A B A C A C A B A B A C ⋂⊕=⋂-⋃-=⋂⋂⋃⋂=⋂⋂⋃⋂⋂=⋂⋂⋃⋂⋂⋃⋂⋂⋃⋂⋂=⋂⋂⋃⋃⋂⋂⋃=⋂⋂⋂⋃⋂⋂⋂=⋂-⋂⋃⋂-⋂=⋂⊕⋂
5. 200人中,有67人学数学,47人学物理,95人学生物,26人学数学和生物,28人学数学和物理,27人学生物和物理,50人三门都不学,问:三门都学的人数和单学一门的人数?
解:设三门都学的人数和单学数学、物理、生物的人数分别为x ,y1,y2,y3,则如下图:
(26)(28)167(27)(28)247(26)(27)395
(26)(27)(28)12350200
x x x y x x x y x x x y x x x x y y y +-+-+=⎧⎪+-+-+=⎪⎨+-+-+=⎪⎪-+-+-+++++=⎩ 求解得到:1132228135342214123269364
y x x y x y y x y y y y x y -==⎧⎧⎪⎪-=-=⎪⎪⇒⎨⎨-==⎪⎪⎪⎪++-==⎩⎩ 6. 集合S={0,1,2,3,4,5,6},R 为S 上的关系。

R={<x,y>|x<y 或x 是质数}
(1)写出R ,domR ,ranR ,fldR ;(2)写出关系矩阵M R
解:(1)
{0,1,0,2,0,3,0,4,0,5,0,6,1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,2,0,2,1,2,2,3,0,3,1,3,2,3,3,5,0,5,1,5,2,5,3,5,4R =<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>,5,5}
<> {0,1,2,3,4,5}domR =,{0,1,2,3,4,5,6}ranR =,{0,1,2,3,4,5,6}fldR =
(2)
0111111111111111110
00011111111000000R M ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
7. 设R 为自反关系,求证:R 对称和传递当且仅当若,,,a b a c R <><>∈,则,b c R <>∈
证明:
""⇒由于R 对称,
若,,,a b a c R <><>∈,则,,,b a a c R <><>∈,又由于R 传递,则,b c R <>∈,得证。

""⇐根据已知,设由,,,a b a a R <><>∈,则,b a R <>∈,可知R 对称。

又设,,,a b b c R <><>∈,根据对称性,有,,,b a b c R <><>∈,再根据已知,得到,b c R <>∈,传递性得证。

8. 设12,R R 为非空集合A 上的关系,且12R R ⊆,验证12()()t R t R ⊆ 证明:任给1,()x y t R ∈,由于21111()n t R R R R =⋃⋃⋃L ,则存在s n ≤,使得1,s x y R ∈,1,s x y R ∈⇔12111211,,,,,,,,,,,s s t t t x t t t t y R --∃∈L L 使得,又因为
12R R ⊆,则11212,,,,,,,s x t t t t y R -∈L ,而由于222222()s n R R R R t R ⊆⋃⋃⋃=L ,
故222222,()s n x y R R R R t R ∈⊆⋃⋃⋃=L ,即2,()x y t R ∈,得证。

9. 设集合S={1,2,3,4,5},划分d={{1,2},{3},{4,5}},求相应的等价关系R 。

解:
{1,2}{1,2}{3}{3}{4,5}{4,5}
{1,1,1,2,2,1,2,2,3,3,4,4,4,5,5,4,5,5}R =⨯⋃⨯⋃⨯=
10. 已知偏序关系的哈斯图如右图,写出最大元、最小元、
极大元、极小元。

解:最大元为x1,最小元不存在;极大元为x1,极小元为x4,x5。

相关文档
最新文档