通风管道设计计算实例

合集下载

通风除尘管道的设计计算

通风除尘管道的设计计算

• (1)密度和粘度的修正
R =R ( / 0)( / 0) m m0
0.91
• 式中:Rm--实际单位长度摩擦阻力 • Rm0--图上查出单位长度摩擦阻力 • ρ --实际的空气密度 • ν --实际的空气运动粘度
0.1
• (2)空气温度和大气压力的修正
R =kKB m0 R m t
• 式中:Kt--温度修正系数 • KB--大气压力修正系数 • Kt、KB可以直接由图6-1查出。
均匀送风管道的计算 要求送风管道从风管侧壁上的若干风口 (或短管), 以相同的出口速度, 均匀地把等量 的空气送入室内, 这种送风管道称为均匀送风 管道. 均匀送风管道的构造有两种形式, 一种 是均匀送风管道的断面变化(即断面逐渐缩小) 而侧风口(或短管)的面积相等; 另一种是送风 管道的断面不变化而侧风口(或短管)的面积都 不相等. 其计算的基本原理是保持各侧孔的静压 相等. 根据管道阻力的计算和能量方程即可求 得各侧孔静压相等的关系式.
• 管道摩擦阻力受多种因素的影响, 在设计 计算时应考虑这些因素. 主要影响因素有: 管壁的粗糙度和空气温度. 粗糙度越大, 摩擦阻力系数λ值越大, 摩擦阻力越大. 温度影响空气密度和粘度, 因而影响比摩 阻Rm. 温度上升, 比摩阻Rm下降. 线解图 上查得的Rm是20℃时的数值, 实际计算应 根据具体温度进行修正.
(2) 综合摩擦阻力系数法:
管内风速V=L/f, L为管内风量, f为管道断面积. 将V代入摩擦阻力计算式ΔPm=λ· e)· 2/2后, (L/D ρV 令 Km=λ· e)· (L/D ρ/2f2 则摩擦阻力计算式变换为下列表达式: ΔPm=Km·2 L 称Km为综合摩擦阻力系数, N·2/m8. S 采用 ΔPm=Km·2 计算式更便于管道系统的分析 L 及风机的选择, 因此在管网系统运行分析与调节计 算时, 多采用该计算式.

通风管道的设计计算

通风管道的设计计算

(2)流量当量直径:
设某一圆型风管中的空气流量与矩形风管的空气流量 相等,并且单位长度的摩擦阻力也相等,则该圆型风管的
直径就称为此矩形风管的流量当量直径,以 D L表示。
DL
1.3
ab0.625 ab 0.25
注意:

a3b3 DL 1.275 ab
查用表图时必须对应使用流量和流量当量直径或流速
K r ——管壁粗糙度修正系数;
K ——管壁粗糙度,mm;
v——管内空气流速,m/s。
4、 矩形风管的摩擦阻力计算
当量直径:与矩形风管有相同单位长度摩擦阻力的原型风 管的直径。
(1)流速当量直径:
vA
A
vA = vB RmA=RmB
vB
水力半径由必须Pm相等41Rs
(1)皮托管
(2)U形压力计 U形压力计(也称为U形水柱计),
有垂直和倾斜两种类型,它们都是 由一内径相同、装有蒸馏水或酒精 的U形玻璃管与刻度尺所构成它的 测压原理是:U形管两侧液面承受 相同压力时,液面处于同一水平; 当两侧液面压力不同时,压力大的 一侧液面下降,另一侧液面上升, 从中间的标尺即可读出压差。
解:矩形风管内空气流速 v 1 5m/s 0.50.4
矩形风管的流速当量直径 D va 2 abb25 50 0 4 04 000 00 44 m4
根据流速和直径,查附录9,得 Rm00.6P 2 a /m
粗糙度修正系数 K r K 0 .2v 53 5 0 .2 51 .96
R m K r R m 0 1 .9 0 6 .6 1 2 .2 P 2 /m a
Kt2277332t
00.825
KBB10 .30 1 .9
B ——实际的大气压力,kPa。

某地下车库通风设计通风管道课程设计计算说明书

某地下车库通风设计通风管道课程设计计算说明书

设计计算说明书课程名称:工业通风设计题目:某地下车库通风设计目录摘要 (3)第一章.设计概况 (4)1.1建筑概况 (7)1.2系统方案的划分确定 (8)1.3 规要求 (8)第二章.排风量与排烟量的计算 (10)2.1排风量的确定 (10)2.2排烟量的确定 (13)2.3送风量的确定 (13)2.4气流组织的分布 (13)2.5机械排烟系统的补风量的计算 (13)第三章.风管与风口的选择 (14)3.1风管材料的选择 (14)3.2风口尺寸及数量的计算送风量与排风量计算 (14)第四章.送风排演的水利计算 (15)4.1排烟排风管道的计算依据 (15)4.2送风管道的计算依据 (16)4.3车库的热负荷设计 (17)4.4防排烟系统设备选型及防火阀的设置 (18)4.5风机的选型 (19)4.6空调处理机组的选型 (26)4.7静压箱的选择 (28)结论 (30)致 (30)摘要本次课程设计是市某地下停车库的通风设计。

位于北纬113°17′;东经40°06′;海拔:1000m。

如何解决好地下车库的通风和防排烟问题是地下停车库设计中的一个重要问题。

要求设计既满足平时通风要求,排除汽车尾气和汽油蒸汽,送入新鲜空气;又要满足火灾时的排烟要求。

在本设计中,充分考虑排风,排烟,保暖等条件。

在保证满足设计要求的前提下,尽量使系统安装简单,造价低廉,性能可靠,维护方便。

关键字:,通风地下停车库4.4防排烟系统设备选型及防火阀的设置排烟风口的布置要符合有关的防火规的要求。

火灾发生时,严格按照消防控制程序,控制复合系统的排风功能与排烟功能的转换;控制防火阀、排烟阀、排烟防火伐等附件的开启与关闭;任何一个排烟阀或排烟防火阀的动作,可自动使风机高速运转或者使其余排烟风机启动。

考虑到风机的耐热程度与防止高于280°的帶火焰的煙氣蔓延,在風機入口附件設置280°关闭的排烟防火阀送风口(排烟口)送风口种类很多,但其功能基本相同。

通风管道工程量计算规则

通风管道工程量计算规则

一、通风管道工程量计算规则1、风管工程量计算,不分材质均以施工图示风管中心线长度为准,按风管不同断面形状(圆、方、矩)的展开面积计算,以平方米计量。

①、圆形风管展开面积,不扣除检查孔、测定孔、送风口、吸风口等所占面积,咬口重叠所占面积,咬口重叠部分也不增加。

②风管长度计算,一律以施工图所示中心线长度为准,包括弯头、三通、变径管、天圆地方管件长度。

支管长度以支管中心线与主管中心线交接点为分界点。

风管长度不包括部件所占长度,其部件长度值见下表:序号部件名称部件长度1 蝶阀 1502 止回阀 3003 密闭式对开多叶调节阀 2104 圆形风管防火阀 D+2405 矩形风管防火阀 B+240注:D为风管外径,B为方风管外边高。

③、风管制作与安装定额包括:弯头、三通、变径管、天圆地方等管件及法兰、加固框和吊架、托架、支架的制作与安装。

未计价材料计算了钣材料,而法兰和支架、吊架、托架按定额规定计算其价值后,还要计算其材料数量,并按规格、品种列入材料汇总表中。

风管制作与安装定额不包括:过跨风管的落地支架制作安装。

落地支架以“千克”计量,使用第九篇《通风空调工程》定额第七章设备支架子目。

④、净化通风管道及部件制作与安装,工程量计算方法与一般通风管道相同,用相应定额。

但是零部件安装要计算净化费,按相应部件子目安装基价的35%作为净化费,其中人工费占40%。

对净化管道与建筑物缝隙之间所作的精华密封处理,按实计算费用。

⑤、塑料风管、管件制作需要热煨,其木制胎具时,按一等枋材计价摊销。

当风管工程量在30平方米以上时,摊销0.06M3/10M2;30平方米以下的按0.09 M3/10M2。

⑥、当风管、管件、部件、非标准设备发生场外运输时,在场外生产的施工组织设计方案必须经过审批,其运输费按下方法计算:运费=车次数×车核定吨位×吨千米单价×里程车次数=加工件总质量/车次核定吨位×装载系数装载系数:非标准设备及通风部件为0.7;通风管及关件为0.5。

均匀送风管道的设计计算

均匀送风管道的设计计算
但三通的特征是它的流量前后有变化因此三通局部阻力系数不仅与几何形状有关而且与流量三通有两个支管所以有两个局部阻力系数除特别注明对应各自的动压头外一般都对应总压头
第七章 空调系统的风道 设计
第一节 风道内空气流动阻力; 第二节 风道内的压力分布; 第三节 风道的水力计算; 第四节 均匀送风管道的设计计算;
P219 例7-1
有一薄钢板风道断面尺寸为500mm×400mm, 风量L=3600m3/h,求单位长度摩擦阻力Rm.粗糙 度K=0.15mm.
解 矩形风道内空气流速为:
v L 3 6 0 0 5 m /s 3 6 0 0 F3 6 0 0 0 .5 0 .4
矩形风道的流速当量直径Dv:
式中的单位长度摩擦阻力可查线解图,局部 阻力系数可查附录7-1。
第二节 风道内的压力分布
风道内的压力是指风道内空气所具有的全压。全压包 括动压和静压两部分。即:
pq pd pj
式中pq,pd和pj分别为全压、动压和静压。空气在流动 过程中要损失能量,所以风道内的空气总是从全压高 的地方流向全压低的地方,即全压随着流动过程在变 化。同时,当风道的过流断面或流量发生变化时,会 引起动压和静压之间的相互转化。因此在整个风道系 统中,形成了压力分布。
若按水力粗糙管推导,得到:
DL=1.265
a3b3
0.2
ab
若按水力光滑管推导,得到:
a3b3
0.21
DL=1.31(ab)1.25
在运用当量直径时,有两点需要注意。
第一,当量直径概念用于紊流流动是合适的, 用于层流则会产生较大误差。条缝行风道运用 当量直径时也会产生较大误差。
第二,在利用线算图查摩擦阻力时,一定要注 意对应关系。如采用Dv时,必须用矩形风道中 流速去查,如采用Dl时,必须用矩形风道中流 量去查。但是,无论用哪种当量直径去查,其 单位长度摩擦阻力Rm都是相等的。

通风管道工程计算规则

通风管道工程计算规则

通风管道工程计算规则工程量计算说明(一)、薄钢板通风管道制作与安装的有关说明:1。

整个通风系统设计采用渐缩管均匀送风者,圆形风管按平均直径,矩形风管按平均周长执行相应规格项目,其人工乘以系数2。

5。

2。

镀锌薄钢板风管项目中的板材是按镀锌薄钢板编制的,如设计要求不用镀锌薄钢板者,板材可以换算,其他不变。

3。

风管导流叶片不分单叶片和香蕉形双叶片均执行同一项目.4.如制作空气幕送风管时,按矩形风管平均周长执行相应风管规格项目,其人工乘以系数3,其余不变。

5。

薄钢板通风管道制作安装项目中,包括弯头、三通、变径管、天圆地方等管件及法兰、加固框和吊托支架的制作用工,但不包括过跨风管落地支架。

落地支架执行设备支架项目.6.薄钢板风管项目中的板材,如设计要求厚度不同者可以换算,但人工、机械不变。

7。

项目中的法兰垫料如设计要求使用材料品种不同者可以换算,但人工不变.使用泡沫塑料者每千克橡胶板换算为泡沫塑料0。

125kg;使用闭孔乳胶海绵者每千克橡胶板换算为闭孔乳胶海绵0。

5kg。

(二)、净化通风管道制作安装的有关说明:1.净化通风管道制作安装子目中包括弯头、三通、变径管、天圆地方等管件及法兰、加固框和吊托支架,不包括过跨风管落地支架。

落地支架执行设备支架项目.2。

净化风管子目中的板材,如设计厚度不同者可以换算,人工、机械不变.3。

圆形风管执行矩形风管有关项目。

4.风管涂密封胶是按全部口缝外表面涂抹考虑的,如设计要求口缝不涂抹而只在法兰处涂抹者,每10m2风管应减去密封胶1.5kg和人工0。

37工日。

5.风管项目中,型钢未包括镀锌费,如设计要求镀锌时,另加镀锌费。

6.净化通风管道制作安装定额按空气洁净度100000级编制的。

(三)、不锈钢板通风管道制作安装的有关说明:1。

矩形风管执行圆形风管有关项目.2。

不锈钢吊托支架使用本章的项目。

3。

风管凡以电焊考虑的项目,如需使用手工氩弧焊者,其人工乘以系数1.238,材料乘以系数1.163,机械乘以系数1.673。

第6章 风管设计计算

第6章 风管设计计算

薄钢板或镀锌薄钢板 Kr — 管 壁 粗 糙 度 修 正 系 数 ;
K — 管壁粗糙度; v — 管内空气流速。
矿渣石膏板
矿渣混凝土板 胶合板 砖砌体 混凝土 木板
1.0
1.5 1.0 3~ 6 1~ 3 0.2~1.0
例:有一通风系统,采用薄钢板圆形风管(Δ=0.15mm),已 知风量L=3600m3/h(1m3/s)。管径D=300mm,空气温度t=30℃, 求风管管内空气流速和单位长度摩擦阻力。 解:查图,得v=14m/s,Rm0=7.7Pa/m。 查图6-2得,Kt=0.97。 Rm=KtRm0=0.97×7.7=7.47Pa/m
14 14 14 12 12 14
117.6 117.6 117.6 86.4 86.4 117.6
1.37 -0.05 0.61 0.47 0.6 0.61
161.1 -5.9 71.7 40.6 51.8 71.7
12.5 12 5.5 4.5 4.5 18

137.5 60 27.5 18 36 108
• 合流三通
v3F3
v3F3
F1+F2=F3 α=30°
v3F3
F1+F2>F3 F1=F3 α=30°
F1+F2>F3 F1=F3 α=30°
附录10 教材P244~249
如何查询局部阻力系数?
• 例1 有一合流三通,如图所示,已知 L1=1.17m3/s(4200m3/h),D1=500mm,v1=5.96m/s L2=0.78m3/s(2800m3/h),D2=250mm,v2=15.9m/s L3=1.94m3/s(7000m3/h),D3=560mm,v3=7.9m/s 分支管中心夹角α=30°。求此三通的局部阻力。

通风管道设计通风管道设计工程量计算规则

通风管道设计通风管道设计工程量计算规则

通风管道设计通风管道设计工程量计算规则一、工程量清单项目的工程量计算规则1.通风管道设计及空调设备及部件制作安装(1)空气加热器(冷却器)除尘设备安装依据不同的规格、重量,按设计图示数量计算,以台为计量单位。

(2)通风管道设计机安装依据不同的形式、规格,按设计图示数量计算,以台为计量单位。

(3)空调器安装依据不同形式、重量、安装位置,按设计图示数量计算,以台为计量单位;其中分段组装式空调器按设计图示所示重量以千克为计量单位。

(4)风机盘管安装依据不同形式、安装位置,按设计图示数量计算,以台为计量单位。

(5)密闭门制作安装依据不同型号、特征(带视孔或不带视孔),按设计图示数量计算,以个为计量单位。

(6)挡水板制作安装依据不同材质,按设计图示按空调器断面面积计算,以平方米为计量单位。

(7)金属空调器壳体、滤水器、溢水盘制作安装依据不同特征、用途,按设计图示数量计算,以千克为计量单位。

(8)过滤器安装依据不同型号、过滤功效,按设计图示数量计算,以台为计量单位。

(9)净化工作台安装依据不同类型,按设计图示数量计算,以台为计量单位。

(10)风淋室、洁净室安装依据不同重量,按设计图示数量计算,以台为计量单位。

(11)设备支架依据图示尺寸按重量计算,以千克为计量单位。

2.通风管道设计制作安装(1)各种通风管道设计制作安装依据材质、形状、周长或直径、板材厚度、接口形式,按设计图示以展开面积计算,不扣除检查孔、测定孔、送风口、吸风口等所占面积;风管长度一律以设计图示中心线长度为准(主管与支管以其中心线交点划分)。

包括弯头、三通、变径管、天圆地方等管件的长度。

风管展开面积不包括风管、管口重叠部分面积。

直径和周长按图注尺寸为准展开。

整个通风管道设计系统设计采用渐缩管均匀送风者,圆形风管按平均直径、矩形风管按平均周长计算,以平方米为计量单位。

(2)柔性软风管安装依据材质、规格和有无保温套管按设计图示中心线长度计算。

包括弯头、三通、变径管、天圆地方等管件的长度。

通风管道系统的设计计算

通风管道系统的设计计算
二、 风道设计的方法
风管水力计算方法有假定流速法、压损平均法和静压复得法 等几种,目前常用的是假定流速法。
假定流速法,先按照技术经济要求选定风管的流速,再根据 风管的风量的断面尺寸和阻力,然后对各之路的压力损失进行调34 整,使其平衡。
三、 风道设计的步骤 下面以假定流速法为例介绍风管水力计算的步骤。 (1)绘制通风或空调系统轴测图 (2)确定合理的空气流速 (3)根据各管段的风量和选择的流速确定各管段的断面尺寸,计 算最不利环路的摩擦阻力和局部阻力
流体经过这些管件时,由于边壁或流量的变化,均匀流在这一 局部地区遭到破坏,引起流速的大小,方向或分布的变化,或者气 流的合流与分流,使得气流中出现涡流区,由此产生了局部损失。 局部阻力一般按下面公式确定:
υ2ρ Zζ
2
局部阻力系数也不能从理论上求得,一般用实验方法确定。在
附录5中列出了部分常见管件的局部阻力系数。
L3 1.94m3 / s 7000 m3 / h ,D3 560 mm, v3 7.9m / s
分支管中心夹角 3,00求此三同的局部阻力。
28
[解] 按附录2列出的条件,计算以下各值
L2 0.78 2800 0.4 L3 1.94 7000
F2 F3
D2 D3
2
250 2 560
0.01 0.1
0.63
100
Rm(Pa/m)
19
2)用流量当量直径求矩形风管单位长度摩擦阻力。 矩形风道的流量当量直径
ab 0.625
0.5 0.32 0.625
DL 1.3 a b 0.25 1.3 0.5 0.32 0.25 m 0.434m
200
200
空气量 m3/s

同济大学课件:工业通风第三版第六章通风管道的设计计算

同济大学课件:工业通风第三版第六章通风管道的设计计算
确定管道的尺寸 为选择空气动力设备——通风机提供依据 在保证使用要求的前提下力求经济
设计计算的步骤:
在计算所需风量和选定处理设备的基础上,确定 设备位置和管道走向;计算最不利环路流动阻力; 平衡并联环路阻力
3
第一节 风管内空气流动的阻力
4
6.1风管内空气流动的阻力(P144)
6.1.1摩擦阻力
在断面形状不变的直管段中,由于流体内部及 流体与管壁的摩擦所造成的能量损失
第四节
通风管道设计中的有关问题
48
6.4通风管道设计中的有关问题(P164)
——与工程实际密切相关的问题,本节介绍的一
些原则,在工程中必须结合具体情况应用并不断 总结 参照标准及资料: 《通风与空调工程施工质量验收规范》 GB50234-2002 2002年4月1日实施 设计手册
49
6.4.1系统划分的原则
要求:
选择风机
43
风管内最小风速为,垂直风管12m/s,水平14m/s 考虑漏风,管道6,7计算风量=6300*1.05=6615 管段1,L1=1500m3/h,v1=14m/s,查图得管径 和比摩阻,D1=200mm,Rm1=12.5Pa/m 确定管段3、5、6、7的管径和比摩阻 确定2、4的管径和比摩阻
1)计算方法:
(1)局部阻力系数法
Z v2 (6 13)
2
(2)当量长度法
阻力系数由实验确定, 制成图表供查用
当量长度:与局部管件接口直径和流动阻力相同的
直管段的长度
Z Rm ld
当量长度由实验确定, 制成图表供查用
总阻力:P Rm l ld 14
局部阻力系数举例
15
合流三通
支管局部阻力系数 直管局部阻力系数

通风管道设计计算

通风管道设计计算

通风管道系统的设计计算在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。

设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。

进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。

在一般的通风系统中用得最普遍的是等压法和假定流速法。

等压损法是以单位长度风管有相等的压力损失为前提的。

在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。

对于大的通风系统,可利用等压损法进行支管的压力平衡。

假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。

这是目前最常用的计算方法。

一、通风管道系统的设计计算步骤800m /h1500m /h 1234000m /h4除尘器657图6-8 通风除尘系统图一般通风系统风倌管内的风速(m/s)表6-10除尘通风管道最低空气流速(m/s)表6-111、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。

以风量和风速不变的风管为一管段。

一般从距风机最远的一段开始。

由远而近顺序编号。

管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。

2、选择合理的空气流速。

风管内的风速对系统的经济性有较大影响。

流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消耗增加,有时还可能加速管道的磨损。

流速低,压力损失小,动力消耗少;但是风管断面大,材料和建造费用增加。

对除尘系统,流速多低会造成粉尘沉积,堵塞管道。

因此必须进行全面的技术经济比较,确定适当的经济流速。

根据经验,对于一般的通风系统,其风速可按表6-10确定。

对于除尘系统,防止粉尘在管道内的沉积所需的最低风速可按表6-11确定。

纤维布风管设计计算方法

纤维布风管设计计算方法

纤维布风管设计计算方法1.风管直径的选择风管直径的选择需要考虑风量和风压损失。

根据风量的大小,可以选择不同直径的风管。

通常使用风管直径选取公式:d=√(4Q/(πv)),其中d为风管直径,Q为风量,v为风速。

2.风管支撑距离的确定在风管布置过程中,需要确定风管的支撑距离。

支撑距离应根据实际情况和标准要求进行确定,通常考虑风管直径、风管材质、风压和综合力学承载能力等因素综合考虑。

3.风管阻力的计算风管阻力包括风管摩阻损失和局部阻力。

风管摩阻损失是指风管内空气的流动摩擦损失,可以通过计算公式进行计算。

局部阻力是指风管的弯头、分支、扩容等管道部件造成的附加阻力,需要根据具体情况进行计算。

风管摩阻损失的计算方法有多种,常用的方法有K法和行程法。

(1)K法K法即K值法,通过查表或计算得到风管的K值,然后根据公式ΔP=K×(L/D)×(v²/2)计算风管的压力损失,其中ΔP为压力损失,K为摩阻系数,L为风管长度,D为风管直径,v为风速。

(2)行程法行程法是一种简化的计算方法,根据经验公式通过一系列行程计算风管的摩阻损失。

根据风管的直径、长度和风速,通过查表或计算得到行程系数,然后根据公式ΔP=C×(L/D)×(v²/2)计算风管的压力损失,其中ΔP为压力损失,C为行程系数,L为风管长度,D为风管直径,v为风速。

风管局部阻力的计算方法也有多种,常用的方法有等效长度法和阻力系数法。

(1)等效长度法等效长度法是根据风管局部阻力与风管长度的关系进行计算,通过将局部阻力转化为等效长度,利用整体摩阻长对照表进行计算。

(2)阻力系数法阻力系数法是通过计算阻力系数与风速平方的乘积,再乘以风管长度获得阻力。

综上所述,纤维布风管设计计算方法主要包括风管直径的选择、风管支撑距离的确定以及风管阻力的计算。

以上介绍的计算方法是常用的方法,但实际设计过程中仍需根据具体情况进行调整和优化。

工业通风第六章 通风管道的设计计算精品PPT课件

工业通风第六章 通风管道的设计计算精品PPT课件

式中 Z5 风机进口处90°弯头的局部阻力。 点11(风管出口):
Pq11 =v112ρ/2+Z1´1= v112ρ/2+ ζ1´1 v112ρ/2=(1+ ζ1´1 ) v112ρ/2 = ζ11 v112ρ/2= Z11 式中 v11 风管出口处空气流速;
Z1´1 风管出口处局部阻力; ζ1´1 风管出口处局部阻力系数; Ζ11 包括动压损失在内的出口处局部阻力 系数, ζ11 =(1+ ζ1´1 ) 。 在实际设计时,手册中直接给出ζ值。
附录6是按圆形风管得出的,为利用该 图进行矩形风管计算,需先把矩形风管断 面尺寸折算成相当的圆形风管直径,即折 算成当量直径。再由此求得矩形风管的单 位长度摩擦阻力。
所谓当量直径 所谓流速当量直径 所谓流量当量直径 必须注意: 三、局部阻力 所谓局部阻力 计算公式 Z=ζv2ρ/2
把以上各点的全压标在图上,并根据摩 擦阻力与风管长度成直线关系,连接各个 全压点可得到全压分布曲线。以各点的全 压减去该点的动压,即为各点的静压,可 画出静压分布曲线。从图6-8可看出空气在
管内的流动规律为:
1、风机的风压Pf等于风机进、出口的全压 差,或者说等于风管的阻力及出口动压 损失之和,即等于风管总阻力。
管壁的粗糙度有关。在通风和空调系统中,
薄钢板风管的空气流动状态大多属于紊流光
滑区到粗糙区之间的过渡区。计算过渡区阻
力系数的公式很多,下面列出的公式适用范
围很大,在目前得到较广泛的采用:
1 -2lg K 2.51 Nhomakorabea6-4
3.7D Re
进行通风管道的设计时,为了避免繁琐的计
算,可根据公式(6-3)和(6-4)制成各种形
力确定风机的类型。例如输送清洁空气, 选用一般的风机,输送有爆炸危险的气体 和粉尘,选用防爆风机,输送腐蚀性气体 选用防腐风机。 (2)考虑到风管、设备的漏风及阻力计 算的不精确,应将计算的流量和阻力乘以 一个安全系数再选风机。 (3)当风机在非标准状态下工作,应将 上面的流量和阻力换算为标准状态,再从 产品样本上选择风机。 (4)选出风机的出口方向。

通风管道的设计计算

通风管道的设计计算
本节重点: 摩擦阻力与局部阻力的概念 比摩阻的概念与线算图的使用 局部阻力系数的查询
精选ppt
《工业通风》
第六章 管道的设计计算
一、摩擦阻力
摩擦阻力或沿程阻力是风管内空气流动时,由于空气本身的 粘性及其与管壁间的摩擦而引起的沿程能量损失。
• 空气在横断面形状不变的管道内流动时的摩擦阻力按下
式计算:




、为实际的空气动力粘度 。
精选ppt
《工业通风》
第六章 管道的设计计算
2、空气温度和大气压力修正
Rm K tK BRm0
K
t
273 273
20 t
0 .825
K B B 101 . 3 0 .9
K
为温度修正系数;
t
K
为大气压力修正系数;
B
为实际的空气密度;
B为实际的大气压力
D1
L
4v1
30..14421440.195m=195mm
所选管径按通风管道统一规格调整为:
D1=200mm;实际流速v1=13m/s; 由附录6的图得,Rm1=12.5Pa/m。 同理可查得管段3、5、6、7的管径及比摩阻,具体结果见 下表。
4、确定管段2、4的管径及单位长度摩擦阻力,见下表。
精选ppt
精选ppt
《工业通风》
第六章 管道的设计计算
解:按附录7(P245)列出的条件,计算下列各值 L2/L3=0.78/1.94=0.4 F2/F3=(D2/D3)2=(250/560)2=0.2
经计算 F1+F2≈F3 根据F1+F2=F3及L2/L3=0.4、F2/F3=0.2查得 支管局部阻力系数 ζ2=2.7 直管局部阻力系数 ζ1=-0.73

暖通风管风量计算方法与设计步骤【最新版】

暖通风管风量计算方法与设计步骤【最新版】

暖通风管风量计算方法与设计步骤风管:风管尺寸=风量/风速风量=房间面积*房间高*换气次数有个例子:风量4万,风速9m/s,得风管尺寸=40000/9/3600=1.23平方1.23=1.5*0.82所以风管尺寸为1500*800Q:1、例子中的3600是既定参数吗?2、这个风管尺寸计算公式,对排烟,排风管道尺寸计算通用吗?3、求风口和排烟口尺寸计算公式--或者求暖通基础知识学习文档,手里的设计规范对现在的我来说太太高深,还是从基础打起吧一小时有3600秒,除以3600是因为计算公式前后的单位要统一。

这个公式对所有风管计算都适用,但是9m/s这个风速值不是固定值,需要由你来设定。

排烟排风的公式都是一样的算法,这个9m/s的风速需要根据噪音要求调整的,楼主可参考下采暖通风设计规范消声部分,还有矩形风管的规格建议用标准的,施工规范里的是1600,没有1500。

管道直径设计计算步骤专业制作与安装--铁皮风管--不锈钢风管,通风工程以假定流速法为例,其计算步骤和方法如下:1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。

管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。

2.确定合理的空气流速风管内的空气流速对通风、空调系统的经济性有较大的影响。

流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。

对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。

流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。

对除尘系统流速过低会使粉尘沉积堵塞管道。

因此,一定要通过全面的技术经济比较选定合理的流速。

根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定。

除尘器后风管内的流速可比表6-2-3中的数值适当减小一小时有3600秒,除以3600是因为计算公式前后的单位要统一。

这个公式对所有风管计算都适用,但是9m/s这个风速值不是固定值,需要由你来设定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档