扫描隧道显微镜

合集下载

扫描隧道显微镜STM

扫描隧道显微镜STM
5)可在真空、大气、常温等不同环境下工作,样品甚 至可浸在水和其他溶液中 不需要特别的制样技术并且 探测过程对样品无损伤.这些特点特别适用于研究生 物样品和在不同实验条件下对样品表面的评价,例如 对于多相催化机理、超一身地创、电化学反应过程中 电极表面变化的监测等。
液体中观察原子图象 下图所示的是在电解液中得到的硫酸根离子吸附在铜单晶(111)表面的
2) 可实时得到实空间中样品表面的三维图像,可用 于具有周期性或不具备周期性的表面结构的研究,这 种可实时观察的性能可用于表面扩散等动态过程的研 究.
3) 可以观察单个原子层的局部表面结构,而不是对 体相或整个表面的平均性质,因而可直接观察到表面 缺陷。表面重构、表面吸附体的形态和位置,以及由 吸附体引起的表面重构等.
式中,I表示隧道电流,Ф表示有效局部功函数,d表示样品 与针尖间的距离,m为电子质量,h为普朗克常数。 在典型条件下,Ф近似为4eV,k=10 nm-1 如果d减小0.1 nm,隧道电流I将增加一个数量级
隧穿电流和金属间距成指数关系,由此在距离比较 远的时候,几乎不存在隧穿电流,而距离靠近时,电流 增长极快 ,隧道电流强度对针尖与样品表面之间距 非常敏感。
我们把三个分别代表X,Y,Z方向的压电陶瓷块组成三 角架的形状。通过控制X,Y方向伸缩达到驱动探针在样品 表面扫描的目的;通过控制 Z 方向压电陶瓷的伸缩达到控 制探针与样品之间距离的目的。
常用的压电材料是钛酸锆酸铅[Pb(Ti,Zr)O3](简称PZT), 它是一种多晶陶瓷材料。由于掺杂含量的改变,将得到不同 性质的PZT材料。可以使1mV~1000V的电压信号转换成十 几分之一纳米到几微米的位移。
隧道探针一般采用直径小于1mm的细金属丝, 如钨丝、铂-铱丝等,被观测样品应具有一定的导电 性才可以产生隧道电流。

扫描隧道显微镜STM

扫描隧道显微镜STM
单分子化学反应已经成为现实
单原子、单分子操纵在化学上一个极具诱惑力的潜在应用是可能实现 “选键化学”──对分子内的化学键进行选择性的加工。虽然这是一个 极具挑战性的目标,但现在已有一些激动人心的演示性的结果。在康奈 尔大学Lee和Ho的实验中,STM被用来控制单个的CO分子与Ag(110)表 面的单个Fe原子在13K的温度下成键,形成FeCO和Fe(CO)2分子。同 时,他们还通过利用STM研究C-O键的伸缩振动特性等方法来确认和研 究产物分子。他们发现CO以一定的倾角与Fe-Ag(110)系统成键(即CO分 子倾斜地立在Fe原子上),这被看成是Fe原子局域电子性质的体现。
5
2.STM的原理
图是STM的基本原理 图,其主要构成有:顶部 直径约为50—100nm的极 细金属针尖(通常是金属钨 制的针尖),用于三维扫描 的三个相互垂直的压电陶 瓷(Px,Py,Pz),以及用 于扫描和电流反馈的控制 器(Controller)等。
6
2.STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
16
溶液中固/液界面的原子和分子化学反应示意图
4.STM的工作环境
溶液条件
17
图是有机分子苯在Rh(111)—3x3(铑)表面 上的单层吸附结果。实验时,在0.01M(摩 尔)的HF(氢氟酸)溶液里含有0.25mM (毫 摩尔)浓度的有机分子苯。
图是另一种有机分子卟啉在I-Au(111)(碘-金) 表面上的单层吸附结果。实验时,在0.1M 的HClO4(高氯酸)溶液里含有0.57uM(微摩 尔)浓度的有机分子卟啉。

扫描隧道显微镜(STM)

扫描隧道显微镜(STM)
返回
图9-4
返回
图9-5
返回
二、原子力显微镜的微悬臂及其变形的检测 方法
(一)微悬臂(力传感器) (二)微悬臂变形的检测方法
返回
(一)微悬臂(力传感器)
原子力显微镜所研究的力其数值很小。要实现力的高灵敏度测量,首 先要求力的感知件——微悬臂对微小力的变化具有足够高的灵敏度。
(1)弹性系数k值应在10 -2~10 2 N/m范围。极低的弹性系数 可满足极其灵敏地检测出零点几个nN
品表面之间的作用力,一般针尖曲率半径为30 nm
下一页 返回
(二)微悬臂变形的检测方法
原子力显微镜的图像是通过扫描时测量微悬臂受力后弯曲形变的程度 获得的,并利用Hooke定律来确定操作时的样品与针尖的作用力。
1 2 3 4
上一页 返回
三、原子力显微镜的成像模式
(一)接触成像模式 (二)非接触成像模式 (三)轻敲成像模式
返回
一、扫描隧道显微镜的基本原理
与光学显微镜和电子显微镜不同,STM不采用任何光学或电子透镜 成像,而是当尖锐金属探针在样品表面扫描时,利用针尖〖CD*2〗 样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系, 获得原子级样品表面形貌特征图像,其基本原理如图9-1所示。
顶部有一直径约50~100 nm的极细金属探针(通常是金属钨制作 的针尖),功能是在其与样品互相作用时,可根据样品性质的不同 (如表面原子的几何结构和电子结构)产生变化的隧道电流。在扫描 隧道显微镜工作时,针尖与样品表面距离一般约为0.3~1.0 nm, 此时针尖和样品之间的电子云互相重叠。当在它们之间施加一偏压时, 电子就因量子隧道效应由针尖(或样品)转移到样品(或针尖);金 属探针安置在三个相互垂直的压电陶瓷〖WTBX〗(P x、P y、 P z)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷 器件产生变形,便可驱动针尖在样品表面实现三维扫描;控制器是用 STM

扫描隧道显微镜

扫描隧道显微镜

一、STM结构及工作原理
一、STM结构及工作原理
3、工作模式
根据针尖和样品的相对运动方式不同,工作模式分为恒电流
模式和恒高模式。
一、STM结构及工作原理
恒高模式是在扫描过程中切断反馈回路保持针尖的高度不变,
记录隧道电流的大小值。
恒高模式适于观察表面起伏较小的样品,一般不能用于观察
表面起伏大于1 nm的样品。在恒高模式下,STM可进行快速扫描,
测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显
微装置。
那么什么是隧道效应?根据量子力学原理,由于粒子存在波
动性,当一个粒子处在一个势垒之中时,粒子越过势垒出现在另
一边的几率不为零, 这种现象称为隧道效应。
一、STM结构及工作原理
由于隧道效应,金属中电子不完全局
限于金属表面之内,电子云密度并不在表
通过针尖与样品间的电学和力学作用,可以进行样品表面的
原子操纵或纳米加工,构造所需的纳米结构。
二、STM特点
配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到
有关表面局域电子结构的信息。
二、STM特点
STM技术局限性:
不能探测深层结构信息。
扫描范围小。
无氧化层覆盖。
一、STM结构及工作原理
一、STM结构及工作原理
电化学腐蚀法 机械成型法 制备方法 聚焦离子束铣削法 电子束诱导化学气相沉积法 场致蒸发法
一、STM结构及工作原理
电化学腐蚀法
多用钨丝作针尖,所得到针尖直径可
小于100Ȧ。
以不锈钢或铂为阴极,以钨丝为阳极,
安装在一个高度可调节测微仪上,两极
流,便可获得隧道电流随偏压(I-Vb或dI/dVb-Vb)变化曲线 ,即扫

扫描隧道显微镜

扫描隧道显微镜

图中针尖与样品间隔 占约lnm,针尖与在X、 Y和Z三个方向上互成 直角的三根压电陶瓷 相连。电压改变时, 压电陶瓷即伸长或收 缩,其灵敏度或分辨 率可达10-2nm。
改变加在X和Y方向压
电陶瓷的电压,针尖 即可在XY平面上扫描; 改变Z方向上的电压, 针 尖 即 可 在 纵 向 (Z 方 向)升降使针尖与样品 间距离改变。
恒流工作模式可用于 起伏较大的表面,是 最常用的模式。恒高 模式则是在扫描时保 持针尖的高度不变 (间距S在变),观测 隧道电流的变化与X 和Y位置的关系。
这也反映出表面形 貌的变化,这种模 式可以扫描较快, 但对起伏较大的表 面,扫描时针尖易 与表面相碰使针尖 损坏。
二、STM仪器
STM仪器为了实现原子级分辨率,需要解决 诸如隔绝振动、机械设计、电路及样品制备中 的一系列技术关键。
但根据量子力学,电子 具有波动性,电子能够以 一定几率穿过势垒,这就 是所谓的隧道效应。
例如,当一个金属针尖 和一个导电样品很接近时 (相距约lnm),尽管两者间 仍是一很薄的绝缘层,有 较高的势垒,但两者波函 数已有一定程度的交叠。
把针尖和样品作为两个 电极,加上微小的电压, 电子即可穿过其间的势垒 产生所谓隧道电流。
可使针尖被驱动,也可使样品被驱动,Z方向 的伸缩范围约μm,分辨率达10-3nm;X-Y方 向的扫描范围至少μm,精度达10-2nm。
为了能方便地换样品,换样品后能快速
使针尖和样品接近而又不相互碰撞,需要 粗调装置,粗调到Z压电陶瓷能用电压调 节的区域(一般几十纳米),然后通过Z压 电陶瓷细调到产生所需隧道电流的状态 (约 l nm)。
还可用高定向热解石墨(HOPG)及MoS2或单 晶金作为载体,它们表面平整度很好,可以载 负生物或有机分子进行研究。在空气中则多用 这类载体,载负某些分子进行研究。

扫描隧道显微镜(STM)PPT课件

扫描隧道显微镜(STM)PPT课件
扫描隧道显微镜 (STM)
Scanning Tunneling Microscope
一、简介 二、基本原理 三、STM的结构及关键技术 四、应用
1.表面形貌测量及分辨率 2.逸出功的测量 3. 扫描隧道谱 (STS)
1
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术
Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。 VPz(VPx,VPy)曲线为样品表面三维轮廓线。
9
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制
△ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μm) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构
△ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在 1-100Hz)
10
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R有 一定尺寸,针尖的轨迹将有一过渡区δ。δ与 R、 s 和 ko 有如下近似关系:
ΔI/Δs = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。
3.扫描隧道谱(STS)
在表面的某个位置作I-V 或dI/dV-V,得有特征峰
的STS。在特征峰电压处,保持平均电流不变,使
例: 微杠杆由25μm金箔作成,重量10-10kg fd = 2kHz k = 2×10-2 N/m
因 STM 测的Δz可小至10-3-10-5 nm 则有:F = kΔz

扫描隧道显微镜

扫描隧道显微镜

样品
隧道电流 i A
探针
U
d
B
样品
隧道电流 i A
探针
U
d
B
i Ue A d A — 常量
— 样品表面平均势
垒高度(~ eV)
。 d ~ 1nm( 10A )
d 变 i 变,反映表面情况
d 变 ~ 0.1nm i 变几十倍,非常灵 敏。竖直分辨本领可达约10 2 nm
横向分辨本领与探针、样品材料及 绝缘物有关,在真空中可达 0. 2 nm。
技术关键:
1. 消震:多级弹簧,底部铜盘涡流阻尼。 2. 探针尖加工:电化学腐蚀,强电场去污,
针尖只有1~2个原子! 3. 驱动和到位:利用压电效应的逆效应 —
电致伸缩,一步步扫描,扫描一步 0.04nm,扫描1(m)2 约0.7s。
4. 反馈:保持 i 不变 d 不变(不撞坏针尖)
显示器
1991年2月IBM的 “原子书法”小组又 创造出“分子绘画” 艺术 — “CO 小人”
图中每个白团是单个 CO分子竖在铂片表面 上的图象,上端为氧 原子 CO分子的间距: 0.5 nm “分子人”身 高:5 nm堪称世界上 最小的“小人图”
48个Fe原子形成“量子围栏”,围 栏中的电子形成驻波。 Fe原子间距: 0.95 nm,圆圈平均半径:7.13 nm
压电 控制
加电压 反馈传感器
隧道 电流
参考信号
扫描隧道显微镜示意图
中国科学院化学研究所研制的CST图象
用原子操纵写出的“100”和“中国”
1991年恩格勒等用STM在镍单晶表面逐个移动 氙原子,拼成了字母IBM,每个字母长5纳米
扫描隧道显微镜(STM)
(Scanning Tunneling Microscopy)

扫描隧道电子显微镜

扫描隧道电子显微镜

应用与展望
• 扫描隧道电子显微镜的出现为人类认识和改造微观世界提供了 一个极其重要的新型工具。随着实验技术的不断完善,STM 将在 单原子操纵和纳米技术等诸多研究领域中得到越来越广泛的应 用。STM和 SEM 的结合在纳米技术中的应用必将极大地促进纳 米技术不断发展。可预言,在未来科学的发展中,STM 和 SEM 的
STM的工作模式
• 尽管扫描隧道电子显微镜的构型各不相同, 但都包括有下 述三个主要部分:驱动探针相对于导电试样表面作三维运动的 机械系统(镜体),用于控制和监视探针与试样之间距离的电子 系统和把测得的数据转换成图像的显示系统。它有两种工作方 式:恒流模式、恒高模式。
STM的工作模式
恒电流模式
• 利用一套电子反馈线路控制隧道电流,使 其保持恒定。再通过计算机系统控制针尖 在样品表面扫描,即是使针尖沿 x、y 两个 方向作二维运动。由于要控制隧道电流不 变,针尖与样品表面之间的局域高度也会保 持不变,因而针尖就会随着样品表面的高 低起伏而作相同的起伏运动,高度的信息 也就由此反映出来。这就是说,扫描隧道 电子显微镜得到了样品表面的三维立体信 息。这种工作方式获取图像信息全面,显 微图象质量高,应用广泛。
?3扫描隧道显微镜可在真空常压空气甚至溶液中探测物质的结构它的优点是三态固态液态和气态物质均可进行观察而普通电镜只能观察制作好的固体标本由于没有高能电子束对表面没有破坏作用如辐射热损伤等所以能对生理状态下生物大分子和活细胞膜表面的结构进行研究样品不会受到损伤而保持完好
扫描隧道电子显微镜
SCANNING TUNNELING MICROSCOP 简 称 STM 发明者 格尔德· 宾宁
隧道针尖
三维扫描控制器
减震系统
电子学控制系统

扫描隧道显微镜ppt

扫描隧道显微镜ppt

扫描隧道显微镜的工作模式
1 2 3
恒高模式
在ห้องสมุดไป่ตู้模式下,针尖在固定的高度位置进行扫描 ,适用于表面高度变化较大的样品。
恒力模式
在此模式下,针尖根据表面形貌调整自身高度 ,以保持恒定的力,适用于表面高度变化较小 的样品。
交流模式
在此模式下,针尖与样品之间存在小幅度的振 动,以实现更精确的表面形貌扫描。
01
扫描隧道显微镜(STM)是一种基于量子力学隧道效应的测量技术,它能够直 接探测样品表面的原子结构,具有极高的分辨率和灵敏度。
02
STM技术自1981年被发明以来,已经广泛应用于物理、化学、生物学等各个领 域,成为研究物质表面结构和电子态的重要工具。
03
在过去的几十年中,STM技术不断发展和完善,不仅在实验上取得了许多重要 的成果,如原子操纵、单分子检测等,同时也促进了理论计算和模拟方法的发 展。
扫描隧道显微镜的应用范围
材料科学
用于研究材料表面的微观结构和物理性质,如表 面重构、吸附和脱附等。
生物学
用于研究生物分子和细胞膜的表面结构和功能, 如DNA和蛋白质的微观结构等。
环境科学
用于研究表面污染和环境变化对材料表面的影响 。
03
扫描隧道显微镜的优缺点
扫描隧道显微镜的优点
原子级分辨率
扫描隧道显微镜具有原子级的分辨 率,能够观察和解析材料表面的原 子结构。
分子构造研究
STM可以用于研究分子尺度的构造 和化学键信息,为理解分子性质提 供基础数据。
在生物领域的应用
细胞结构研究
STM可以用于观察细胞表面的结构、分子分布等,为生物医学 研究提供新的视角。
病毒构造研究
STM可以用于解析病毒的原子级别结构,为疫苗研发等提供关 键信息。

什么是扫描隧道显微镜

什么是扫描隧道显微镜

什么是扫描隧道显微镜
扫描隧道显微镜(Scanning Tunneling Microscope,缩写为STM)是一种扫描探针显微术工具,它可以让科学家观察和定位单个原子,具有比同类原子力显微镜更高的分辨率。

STM在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。

扫描隧道显微镜利用量子力学中的隧道效应,当扫描针尖在样品表面上方沿z轴来回扫描时,由于针尖和样品之间的距离非常近,使得针尖和样品之间产生隧道效应,从而获得表面形貌的微细结构信息。

扫描隧道显微镜具有原子级(埃级)的空间分辨率和优于500飞秒的时间分辨率,成为国内首套自主研制的太赫兹扫描隧道显微镜系统。

STM在原子级扫描、材料表面探伤及修补、引导微观化学反应、控制原子排列等领域广泛应用。

如需了解更多有关扫描隧道显微镜的信息,可以查阅相关的专业文献,或者咨询相关领域的专家学者。

扫描隧道显微镜

扫描隧道显微镜

实验八扫描隧道显微镜Scanning Tunneling Microscope(STM)引言上世纪八十年代初,IBM Zurich 实验室的Binnig 和Rohrer 发明了扫描隧道显微镜(scanning Tunneling Microscope,简称STM ),很快他们就因此获得了诺贝尔物理奖。

当初他们的动机仅仅是为了了解很薄的绝缘体的局域结构、电子特性以及生长性质,可是当他们想到用“电子隧穿”可以进行局域探测后,STM 这个局域探测手段便应用而生了。

STM 一出现,人们就为它的威力所震撼,随后他的家族成员如扫描力显微镜(Scanning ForceMicroscope, SFM), 磁力显微镜( Magnetic Force Microscope, MFM)及近光学场显微镜(Scanning Near-Field Optical Microscope, SNOM)等相继诞生,并在科学技术领域迅速地发挥越来越大的作用。

作为显微镜,STM 的优越性首先在于其高分辨率本领。

它平行于表面的(横向)分辨本领为一埃,而垂直于表面的(纵向)分辨本领优于一埃。

当然,STM 还有更多的优越之处。

例如电镜和扫描电镜(SEM))不能对表面原子成像;高分辨透射电镜(TEM)主要用于对体或界面的成像,并且只局限于很薄的样品;场发射显微镜(FEM)和场离子显微镜(FIM)只能探测半径小于1000埃的针尖表面的二维的原子几何结构,并且要求表面在强电场的作用下是稳定的。

而STM 却避开了这些困难,它与其它显微镜的的主要区别在于:它不需要粒子源,亦不需要透镜来聚焦。

和常规的原子级分辨仪器(如光衍射及低能电子衍射等)相比,其优越性则在于,第一,它能给出实空间的信息,而不是较难解释的K 空间的信息;第二,它可以对各种局域结构或非周期结构(如缺陷、生长中心等)进行研究,而不只限制于晶体或周期结构。

除此之外,STM 不仅能提供样品形貌的三维实空间信息、给出表面的局域电子态密度和局域功函数等信息,而且还能在介观尺度上对表面进行可控的局域加工并对加工产生的纳米结构进行各种研究。

扫描隧道显微镜(STM)单原子操纵技术

扫描隧道显微镜(STM)单原子操纵技术
STM原理被G.Binning和 H.Rohrer在IBM苏黎世实验室 发明。
1985年
STM被授予诺贝尔物理学奖。
2000年
单原子操纵技术取得突破。
STM技术的应用领域
01
02
03
04
材料科学
研究表面结构、化学组成、电 子态等。
物理
研究表面物理现象,如表面量 子现象、表面相变等。
纳米科技
制造和操纵纳米结构,如纳米 电路、量子点等。
05 结论
STM和单原子操纵技术的重要性和意义
揭示物质表面结构和性质
STM通过测量隧道电流能够精确地探测物质表面的原子结构,而单原子操纵技术则能够实现对单个原子的精确操控, 这对于深入理解物质表面结构和性质具有重要意义。
促进纳米科技和材料科学的发展
STM和单原子操纵技术为纳米科技和材料科学领域的研究提供了强有力的工具,有助于推动相关领域的技术创新和 进步。
生物医学
研究生物分子结构和功能,如 蛋白质、DNA等。
02 STM的组成和工作原理
STM的组成
针尖
通常由钨或铂-铱合金制成,针尖的形状和 尺寸对STM的分辨率和成像质量至关重要。
扫描隧道显微镜主体
包括扫描隧道显微镜的控制器、扫描隧道显微镜的 信号处理系统、扫描隧道显微镜的电源系统等。
计算机系统
用于控制STM的扫描、采集和显示图像。
扫描隧道显微镜(STM)单原子操纵 技术
contents
目录
• STM技术概述 • STM的组成和工作原理 • 单原子操纵技术 • STM在单原子操纵中的应用 • 结论
01 STM技术概述
STM技术的原理
隧道效应
当两个导电物体非常接近时,一 个带电粒子的隧道效应可以穿过 它们之间的势垒,从一导电体流 向另一导电体。

扫描隧道显微镜(CSTM)

扫描隧道显微镜(CSTM)
扫描隧道显微镜(CSTM)
1.概述


1982年,国际商业机器公司苏黎世实验室的Gerd Binnig博士和Heinrich Rohrer博士及其同事们, 共同研制成功了世界第一台新型表面分析仪器—扫 描隧道显微镜(ScanningTunneling Microscope, 以下简称STM ) 。它的出现,使人类第一次能够原 地观察物质表面单个原子的排列状态和与表面电子 行为有关的物理、化学性质,被国际科学界公 认为是80年代世界十大科技成就之一。

1. 2隧道电流 两种金属(即电极)靠得很近(通常小 于lnm)时,两种金属的电子云将互相 渗透,当加上适当的电位时,即使两 种金属并未真正接触,也会有电流由 一种金属流向另一种金属,这种电流 就称为隧道电流。
2. 2
STM工作原理
STM的工作原理是利用量子理论中 的隧道效应,将原子线度的极细探针和 被研究的物质表面作为两个电极。当样 品与针尖的距离非常接近时(通常小于 1nm),在外加电场的作用下,电子会 穿过两个电极之间的势垒流向另一电极。

3. 3计算机控制单元 计算机控制单元的任务主要是仪器控 制、数据采集、存储和图像显示与处理等。
4、实验方法




4. 1 STM的操作 4. 2 STM针尖的制备 目前制备针尖的方法主要有电化学腐蚀法、机械成 型法等。 4. 2.1 钨针尖的制备 钨针尖的电化学腐蚀方法通常涉及金属电极的阳极 溶解。有两种方法可以进行这一阳极溶解过程,依据 所加的电势而分成交流(AC)或直流(DC)腐蚀,这两种 方法产生的针尖形状是不同的。AC针尖呈圆锥体形状, 锥度角比DC方法制成的针尖大,DC方法制成的针尖 呈双曲线体形状,针尖比用AC法制成的更尖锐,更适 用于STM的高分辨成像。

扫描隧道显微镜

扫描隧道显微镜
表面改性
STMs可用于表面改性研究,通过控制表面的原子排列和电子结构 ,实现材料性能的优化。
表面化学反应
STMs可以实时监测表面化学反应过程,研究反应机理和动力学, 有助于开发新的化学反应路线。
纳米科技
纳米结构制备
STMs可以用于制备各种纳米 结构,如纳米线、纳米颗粒、 纳米管等,为开发新型纳米材
01
STMs与其他测量技术的 比较
原子力显微镜(AFM)
总结词
原子力显微镜(AFM)是一种常用于表面形貌测量的技 术,它利用原子之间的相互作用力来成像样本表面。
详细描述
AFM技术具有原子级分辨率,可以用于研究不同材料表 面的纳米级形貌和物理性质。与STMs相比,AFM的优 点在于其操作简单、适用范围广,对样本无损伤,缺点 在于其分辨率较低,对测量环境要求较高。
原子级分辨成像技术(ARP)
总结词
原子级分辨成像技术(ARP)是一种通过离子束或电子束轰 击样本表面来实现原子级分辨率成像的技术。
详细描述
ARP技术具有极高的分辨率,可以用于研究表面原子结构、 化学成分分布以及表面物理性质等。与STMs相比,ARP的优 点在于其分辨率高、测量速度快,缺点在于其对测量环境要 求较高,且容易对样本造成损伤。
感谢您的观看
THANKS
命过程的分子机制。
药物开发
STMs可以用来研究药物与生物 分子的相互作用,为新药开发提 供工具和手段,帮助开发出更有
效的药物。
生物医学应用
STMs在生物医学领域也有广泛 的应用,如细胞成像、组织结构 分析、生物材料表征等,有助于 深入了解生物组织和器官的结构
和功能。
01
STMs的发展趋势与挑战
提高空间分辨率与测量稳定性

扫描隧道显微镜讨论

扫描隧道显微镜讨论

能源与环境领域
利用STM研究催化剂表面反应、 环境污染物的微观结构等,为能 源转换与环境保护提供新思路。
信息技术领域
将STM应用于半导体器件、纳 米电子学等领域的研发,推动
信息技术的持续发展。
06 总结与展望
本次讨论内容回顾
扫描隧道显微镜(STM)的基本原理 和工作机制。
STM的优缺点分析,包括高分辨率、 实时成像、对样品无损伤等优点,以 及操作复杂、对样品要求高、易受环 境干扰等缺点。
电子结构分析
通过扫描隧道谱(STS)技术,STM可以测量金 属和半导体表面的局部电子态密度,进而分析其 能带结构和电子性质。
表面扩散和生长机制
STM可以实时观察金属和半导体表面原子或分子 的扩散、聚集和生长过程,为理解材料生长机制 提供直观手段。
纳米材料表征与性质探索
纳米结构成像
STM具有极高的空间分辨率,能 够直接观察纳米材料的形貌、尺 寸和分布,揭示其纳米尺度下的
02 扫描隧道显微镜技术特点
高分辨率成像能力
横向分辨率达到原子级别
实时成像
能够清晰地分辨出单个原子和分子, 揭示物质的微观结构。
扫描速度快,能够提供实时的表面形 貌图像,适用于动态过程的观察。
纵向分辨率高
可以探测到样品表面微小的高度变化, 提供三维ห้องสมุดไป่ตู้貌信息。
原子级表面形貌表征
01
02
03
揭示表面结构
这些研究有助于揭示神经突触 传递的机制,为神经系统疾病 的治疗和神经科学的发展提供 有力支持。
05 扫描隧道显微镜技术挑战 与发展趋势
技术挑战及限制因素
分辨率与探测深度
扫描隧道显微镜(STM)的分辨率受限于针尖大小和隧道电流 的稳定性,同时探测深度也受到限制。

第十二章扫描隧道显微镜

第十二章扫描隧道显微镜
材料分析与测试技术
扫描探针显微镜的关键部件——针尖
针尖材料:金属W丝、 Pt合金丝
W 高硬度 易氧化(WO3),只 适合于真空环境;
Pt 不易氧化,但需加入Ir (铱)进行强化→PtTr合金丝。
材料分析与测试技术
STM单原子操纵原理——纳米加工技术
材料分析与测试技术
STM单原子操纵原理——纳米加工技术
材料分析与测试技术
扫描隧道显微镜用途
对表面物理和化学、材料科学、生命科学以及微 电子技术等领域的研究具有重大意义和广阔应用 前景。
物理和化学:研究原子间微小结合能、制造人造分子; 生物学:研究细胞和染色体内的单个蛋白质和DNA分 子的结构,进行分子切割和组装手术; 材料学:分析材料晶格和原子结构,考察晶体中原子尺 度的缺陷; 微电子学:加工原子尺度新型量子器件。
扫描隧道显微镜概述
1982年IBM公司苏黎世研究所Gerd Binning和 Heinrich Rohrer研制第一台扫描隧道显微镜 (Scanning tunneling microscope, STM); 第一次直接观察到物质表面上单个原子及其排列 状态,并能研究其相关物理和化学特性; 1986年:诺贝尔物理奖—20世纪80年代十大科 技成就之一。
单原子操纵方法: 针尖下移,使针尖顶部原子和样品表面原子的电子云重 叠,有的电子为双方共享→产生与化学键相似的力(该 力足以操纵原子) 为更有效地操纵原子,通常在针尖和表面之间加上一定 的能量(e.g.电场蒸发、电流激励、光子激励)
单原子操纵的意义: 制作单原子、单分子和单电子器件,e.g.提高信息存储 量 生物工程中物种再造 材料科学中新原子结构的创制
材料分析与测试技术
扫描隧道显微镜特点:<1>

1 扫描隧道显微镜(STM)

1 扫描隧道显微镜(STM)

1 扫描隧道显微镜(STM)扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。

将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。

这种现象即是隧道效应。

隧道电流I 是电子波函数重叠的量度,与针尖和样品之间距离S 和平均功函数Φ 有关:V b是加在针尖和样品之间的偏置电压,平均功函数,分别为针尖和样品的功函数,A 为常数,在真空条件下约等于1。

扫描探针一般采用直径小于1mm的细金属丝,如钨丝、铂―铱丝等;被观测样品应具有一定导电性才可以产生隧道电流。

由上式可知,隧道电流强度对针尖与样品表面之间距非常敏感,如果距离S 减小0.1nm,隧道电流I 将增加一个数量级,因此,利用电子反馈线路控制隧道电流的恒定,并用压电陶瓷材料控制针尖在样品表面的扫描,则探针在垂直于样品方向上高低的变化就反映出了样品表面的起伏,见图1(a)。

将针尖在样品表面扫描时运动的轨迹直接在荧光屏或记录纸上显示出来,就得到了样品表面态密度的分布或原子排列的图象。

这种扫描方式可用于观察表面形貌起伏较大的样品,且可通过加在z 向驱动器上的电压值推算表面起伏高度的数值,这是一种常用的扫描模式。

对于起伏不大的样品表面,可以控制针尖高度守恒扫描,通过记录隧道电流的变化亦可得到表面态度的分布。

这种扫描方式的特点是扫描速度快,能够减少噪音和热漂移对信号的影响,但一般不能用于观察表面起伏大于1nm的样品。

(a)(b)从式可知,在V b和I 保持不变的扫描过程中,如果功函数随样品表面的位置而异,也同样会引起探针与样品表面间距S 的变化,因而也引起控制针尖高度的电压V z的变化。

如样品表面原子种类不同,或样品表面吸附有原子、分子时,由于不同种类的原子或分子团等具有不同的电子态密度和功函数,此时扫描隧道显微镜(STM)给出的等电子态密度轮廓不再对应于样品表面原子的起伏,而是表面原子起伏与不同原子和各自态密度组合后的综合效果。

17.5 扫描隧道显微镜

17.5 扫描隧道显微镜
仪器分析
扫描隧道显微镜
扫描隧道显微镜
主要内容:
• 扫描隧道显微镜的成像原理 • 扫描隧道显微镜的结构和工作原理 • 扫描隧道显微镜的工作模式 • 扫描隧道显微镜在材料研究中的应用
扫描隧道显微镜的成像原理
扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,
当样品与针尖的距离非常接近(<1.0 nm)时,当在它们之间施加一偏置电压Vb(Vb通常 为2 mV-2 V)时,电子就可以因量子隧道效应由针尖(或样品)转移到样品(或针尖)而形成
扫描方向 探针
样品
恒高模式
在扫描过程中保持 针尖的高度不变, 通过记录隧道电流 的变化来得到样品 的表面形貌信息。 此模式通常用来测 量表面形貌起伏不 大的样品。
扫描隧道显微镜在材料研究中的应用
测 试 环 境 : 大气、真空、液体状态;单晶、多晶及非晶样品;从液氦温度到上千度的高温。 应用:观察表面原子结构形貌图;实现了材料表面的探伤及修补;实现了单原子和单分子 操纵;在分子水平上构造电子学器件。 优点:分辨率极高;可得到实时、真实的样品表面的高分辨率图象;使用环境宽松;应用 领域宽广;价格相对电子显微镜等大型仪器较低。 局限:在恒电流工作模式下对样品表面微粒之间的某些沟槽不能够准确探测;只能用于观 察导体和半导体等导电材料的表面结构;工作条件受限制,如运行时要防振动,探针材料 在南方应选铂金:
I∝Vbexp(-kΦ1/2s) 式中:k为常数,在真空条件下约等于1; Φ为针尖与样品的平均功函数;s为针尖与样品
表面之间的距离,一般为0.3-1.0nm。
距离减小/增加0.1nm,隧道电流即增加/减少约一
个数量级。因此,根据隧道电流的变化,我们可
以得到样品表面微小的高低起伏变化的信息,如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描隧道显微镜
摘要:作为研究物质微观结构的有力工具,扫描隧道显微镜(Scanning Tunneling Microscopy)与其它种类的显微镜相比,它的分辨本领却可以达到10-10 米。

以量子力学为基础的扫描隧道显微镜,可以在大气、液体、真空状态下工作,可以在4.2 K 到1000 K之间的温度下工作;并且对样品也无特殊要求,可以测量单晶、多晶、非晶等样品表面;特别是扫描隧道显微镜可以与其他实验设备结合,应用更加有效、灵活.因此,扫描隧道显微镜在物理学、化学、生物学、纳米材料等领域中都得到了深入而广泛的应用,并取得了一系列重要的研究成果。

关键词:扫描隧道显微镜;隧道效应
1 扫描隧道显微镜(STM)简介
在探索微观世界的过程中,人类就通过不懈努力希望观测到物质的微观世界。

17世纪,世界上第一台光学显微镜发明成功,并且利用这台显微镜,人类首次观察到了细胞的结构,从而开始人类使用仪器研究微观世界的新时代[1]。

但是,由于受光波波长的限制,光学显微镜的分辨率只能达到10-6米—10-7米。

20 世纪初,利用电子透镜使电子束聚焦的原理,成功的发明了电子显微镜,它的分辨本领达到了10-8米。

有了电子显微镜,比细胞小的多的病毒也露出了原形.增强了人们观察微观世界的能力。

1982 年,格尔德·宾宁(G.Binning)及海因里希·罗雷尔
(H .Rohrer )在IBM 位于瑞士苏黎世的苏黎世实验室发明了,世界上第一台具有原子分辨率的扫描隧道显微镜(Scanning Tunneling Microscope )。

两位发明者因此与恩斯特·鲁斯卡分享了1986 年诺贝尔物理学奖[2]。

利用量子力学中隧道效应的扫描隧道显微镜, 它的分辨本领甚至达到了10-10米。

2 扫描隧道显微镜(STM )的原理
根据量子理论中的隧道效应,电子有几率穿过势垒,而形成隧道电流.扫描隧道显微镜(STM )就是利用这一原理制成的.将被研究的物质(必须是导体)表面和探针作为两个电极,当样品与针尖的距离介于1nm 左右时,在外加电压的作用下,电子会穿过这个因为距离形成的势垒而向另一端运动,形成隧道电流I.这个电流满足如下关系:
)exp(2/1S l KV I φ-=
其中,K ,l 是常数;V 是施加在探针和样品之间的电压;Φ是探针和样品的平均功函数, 它和探针、样品的材料功函数有关,Φ≈Φ1+Φ2;S 是探针和样品间的距离。

通过对上式的分析可以发现,对于确定的探针和样品, 它们的平均功函数Φ是一个定值,那么隧道电流I 是电压V 和距离S 的一个函数。

探针和样品表面的距离S 对隧道电流的影响是很明显的;因为它是一个指数函数,即使是距离S 的一个微小变化,电流却将变化一个甚至几个数量级。

因此, 保持电压V 的恒定;利用压电陶瓷材料,控制针尖在样品表面X-Y 方向的扫描;通过步进电机,控制探针和样品表面间距
离S(1nm左右),使探针位于样品表面某一个高度上;通过微机记录不同时刻的电流,并且按照电流的强弱,用不同的颜色加以区分(大电流用浅色表示,小电流用深色表示)。

如图1 所示,给压电陶瓷施加一个偏向电压,压电陶瓷将带动探针在样品表面沿X方向(或Y 方向)做微小定向移动。

当移动的探针遇到原子时,探针和样品间的距离S减小,电流I明显增加;当移动的探针位于相邻原子的间隙时,探针和样品间的距离S增加,电流I明显减小。

最后,随着探针在样品表面的逐行的扫描,微机会将探针在不同位置时的电流记录下来,并用不同的颜色加以区分。

这样,我们就得到了一张反映样品表面的不同位置,不同颜色的图像。

而这个图像恰恰反映了样品表面的微观结构。

如图2 所示,通过这个图像,我们可以得到样品表面原子状态的有关信息。

图1 原理示意图
图2 石墨样品表面微观结构
3 扫描隧道显微镜(STM)的应用
对于光学显微镜而言,光的衍射现象,导致小于光的波长的一半的细节在显微镜下很难分辨.而利用量子力学中隧道效应制成的扫描隧道显微镜(STM)却具有更强的分辨能力,扫描隧道显微镜的原理使它在观测物质表面微观结构方面成为非常有效的工具。

扫描隧道显微镜的优点是很显见的:(1)扫描隧道显微镜的分辨本领高,可以达到10-10米;(2)扫描隧道显微镜可以对物质微观结构进行无损探测,避免样品受到破坏或者样品性状发生变化;(3)可以利用扫描隧道显微镜实现单原子的移动和提取操纵。

通过扫描隧道显微镜,我们可以直观地看到样品表面的微观结构,进而分析样品表面的化学和物理性质。

例如:利用扫描隧道显微镜,生物学家们研究单个的蛋白质分子或DNA分子;材料学家考察晶体中原子尺度上的缺陷;微电子器件工程师们设计厚度仅为几十个原子的电路图等。

在扫描隧道显微镜问世之前,这些微观世界还只能用一些烦琐的、往往是破坏性的方法来进行观测。

在化学和生物学方面:通过放置在超高真空中扫描隧道显微镜,可以观测固体表面金属原子的吸附结构。

在化学各学科的研究方向中,扫描隧道显微镜在电化学领域也得到了广泛的应用,并且制成了适合研究电化学领域的扫描隧道显微镜。

在研究有机分子方面,利用扫描隧道显微镜在微机上形成的直观图像,可以观察到有机分子的3维结构。

基于此,在生物学领域中,观察DNA、重组DNA 及HPI- 蛋白质等在载体表面吸附后的外形结构均通过扫描隧道显微镜来观测。

在纳米材料加工领域的应用:纳米材料是指,材料基本结构单元至少有
一维处于纳米尺度范围(一般在11100nm),并由此具有某些新特性的材料。

对于纳米材料的制备,是当今社会研究的一个热点问题。

现今,纳米材料的制备方法主要有三种:(1)惰性气体下蒸发凝聚法;(2)化学方法;(3)物理气相法和化学沉积法的综合方法。

人们可以通过扫描隧道显微镜控制单个原子的行为。

使单原子在样品表面被随意的提取、移动和放置。

如果将适当的脉冲电压施加在针尖和样品表面之间,那么在探针和样品间产生交替变化的电场.强电场的蒸发电场的蒸发作用,使样品表面的原子可以被吸附到针尖上,并且使单原子可以随针尖移动,沉积。

通过对单原子的控制,人们可以制作大容量存储器.随着科学技术的不断发展,扫描隧道显微镜(STM)作为观测微观物质表面结构和操控单原子的有力工具,必将起到其重要的作用,并在此过程中得到长足的发展。

参考文献
[1] 程舒雯.扫描隧道显微镜性能优化及实用化研究[D].浙江大学,2003.
[2] 张振宇,李鸿琦.基于纳米压痕仪的薄膜力学性能纳米测试与表征研究[D].天津大学,2005.。

相关文档
最新文档