第十九届北京市大学生数学竞赛本科甲乙组试题与解答

合集下载

2019北京卷理科数学解析版

2019北京卷理科数学解析版

2019北京卷理科数学一、单选题1.已知复数z =2+i ,则z z ⋅=A B C .3D .5【答案】D 【解析】∵z 2i,z z (2i)(2i)5=+⋅=+-=故选D.2.执行如图所示的程序框图,输出的s 值为A .1B .2C .3D .4【答案】B 【解析】运行第一次,=1k ,2212312s ⨯==⨯-,运行第二次,2k =,2222322s ⨯==⨯-,运行第三次,3k =,2222322s ⨯==⨯-,结束循环,输出=2s ,故选B .3.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65【答案】D 【解析】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D.4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为A .−7B .1C .5D .7【答案】C 【解析】由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m 1的星的亮度为E 2(k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A .1010.1B .10.1C .lg10.1D .10–10.1【答案】D 【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令2 1.45m =-,126.7m =-,()1212221g(1.4526.7)10.155E m m E =-=-+=,10.110.112211010E EE E -=⋅=,故选D.7.设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC|>|BC|⇔|AB +AC |>|AB -AC|⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ;③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③【答案】C 【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1),(-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y+++,解得222x y +≤,所以曲线C 上任意一点.结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.二、填空题9.函数f (x )=sin 22x 的最小正周期是__________.【答案】 2π.【解析】函数()2sin 2f x x ==142cos x -,周期为2π【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.10.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________.【答案】0.-10.【解析】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.11.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】在正方体中还原该几何体,如图所示几何体的体积V=43-12(2+4)×2×4=4012.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l⊥α,m∥α,则l⊥m.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.不正确,有可能m在平面α内;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.13.设函数f(x)=e x+a e−x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R 上的增函数,则a 的取值范围是___________.【答案】-1;(],0-∞.【解析】若函数()xxf x e ae -=+为奇函数,则()()(),xx x x f x f x eae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()xxf x e ae -=+是R 上的增函数,则()' 0xxf x e ae-=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】130.15.【解析】(1)x =10,顾客一次购买草莓和西瓜各一盒,需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为y ×80%,符合要求.120y ≥元时,有(y -x )×80%≥y ×70%成立,即8(y -x )≥7y ,x ≤8y ,即x ≤(8y)min =15元.所以x 的最大值为15.三、解答题15.在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值;(Ⅱ)求sin (B –C )的值.【答案】(Ⅰ)375a b c =⎧⎪=⎨⎪=⎩;(Ⅱ).【解析】(Ⅰ)由题意可得:2221cos 2223a c b B ac b c a ⎧+-==-⎪⎪⎪-=⎨⎪=⎪⎪⎩,解得:375a b c =⎧⎪=⎨⎪=⎩.(Ⅱ)由同角三角函数基本关系可得:3sin 2B ==,结合正弦定理sin sin b c B C =可得:sin 53sin 14c B C b ==,很明显角C为锐角,故11cos 14C ==,故()sin sin cos cos sin B C B C B C -=-=16.如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF内,说明理由.【解析】(Ⅰ)由于PA ⊥平面ABCD ,CD ⊂平面ABCD ,则PA ⊥CD ,由题意可知AD ⊥CD ,且PA ∩AD =A ,由线面垂直的判定定理可得CD ⊥平面PAD .(Ⅱ)以点A 为坐标原点,平面ABCD 内与AD 垂直的直线为x 轴,AD ,AP 方向为y 轴,z轴建立如图所示的空间直角坐标系A xyz -,易知:()()()()0,0,0,0,0,2,2,2,0,0,2,0A P C D ,由13PF PC = 可得点F 的坐标为224,,333F ⎛⎫ ⎪⎝⎭,由12PE PD =可得()0,1,1E ,设平面AEF 的法向量为:(),,m x y z =,则()()()224224,,,,0333333,,0,1,10m AF x y z x y z m AE x y z y z ⎧⎛⎫⋅=⋅=++=⎪ ⎪⎝⎭⎨⎪⋅=⋅=+=⎩,据此可得平面AEF 的一个法向量为:()1,1,1m =- ,很明显平面AEP 的一个法向量为()1,0,0n =,cos ,3m n m n m n⋅<>==⨯,二面角F -AE -P 的平面角为锐角,故二面角F -AE -P的余弦值为3.(Ⅲ)易知()()0,0,2,2,1,0P B -,由23PG PB = 可得422,,333G ⎛⎫- ⎪⎝⎭,则422,,333AG ⎛⎫=- ⎪⎝⎭,注意到平面AEF 的一个法向量为:()1,1,1m =-,其0m AG ⋅=且点A 在平面AEF 内,故直线AG 在平面AEF 内.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:交付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人9人3人仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【解析】(Ⅰ)由题意可知,两种支付方式都是用的人数为:1003025540---=人,则:该学生上个月A ,B 两种支付方式都使用的概率4021005p ==.(Ⅱ)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25,仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35,且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=,X 的分布列为:X12()p X 6251325625其数学期望:()61360121252525E X =⨯+⨯+⨯=.(Ⅲ)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下:随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率。

2019年北京卷数学(理)高考真题(选择题和填空题)详解版

2019年北京卷数学(理)高考真题(选择题和填空题)详解版

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知复数z=2+i,则z z⋅=(A(B(C)3 (D)5考点:复数的基本概念及其四则运算概念:①;②两个实部相等,虚部互为相反数的复数互为共轭复数解析:因为所以所以z ⋅⎺z = (2+i) (2-i)=22-i2=4-(-1)=5,答案:D(2)执行如图所示的程序框图,输出的s值为(A)1 (B)2 (C)3 (D)4考点:考查程序框图的应用,考查学生逻辑推理能力、运算求解能力解析:解决此类问题最常用的方法就是代入求值法。

当k=1,s=1时,,不满足k≥3,进入循环;当k =2,s =2时,,不满足k ≥3,进入循环; 当k =3,s =2时,, 满足k ≥3,退出循环;输出s =2; 答案:B(3)已知直线l 的参数方程为13,24x t y t =+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是(A )15(B )25(C )45(D )65考点:考查点到线的距离【直线与方程】和参数方程与一般方程的转化 概念:平面中点(m,n )到直线ax+by+c =0的距离为d解析:首先,将直线l 由参数方程转变为一般方程。

由x=1+3t 可得,将t 代入至y=2+4t 中可得转化成一般方程为4x-3y+2 =0其次,根据点到直线的距离公式,代入公式算出数值即可答案:D(4)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则(A )a 2=2b 2(B )3a 2=4b2(C )a =2b (D )3a =4b考点:椭圆的性质概念:①椭圆(a >b >0)的离心率解析:根据椭圆方程的公式可知:推出推出3a 2=4b 2 答案:B(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 (A )−7(B )1(C )5(D )7考点:不等式的计算及应用解析:解题思路:作图法。

2019年北京卷理科数学高考真题及答案解析(word精编)

2019年北京卷理科数学高考真题及答案解析(word精编)

高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。

既可以突出重点又可以提高复习信心,效率和效益也会双丰收。

少做、不做难题,努力避免“心理饱和”现象的加剧。

保持平常心,顺其自然2019年普通高等学校招生全国统一考试数 学(理)(北京卷) 第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)(A )3 (B )5 (C )3 (D )5(2)执行如图所示的程序框图,输出的s 值为(A )1 (B )2 (C )3 (D )4(3)已知直线l 的参数方程为x =1+3t y =2+4tìíî (t 为参数),则点(1,0) 到直线l 的距离是(A )15(B)2 5(C)4 5(D)6 5(4)已知椭圆2x2a +2y2b=1(a>b>0)的离心率为12,则(A)a2=2b2.(B)3a2=4b2.(C)a=2b(D)3a=4b(5)若x,y满足的最大值为(A)-7 (B)1(C)5 (D)7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足m2-m1=52lgE1E2,其中星等为m k的星的亮度为E k(k=1,2)。

已知太阳的星等为-26.7,天狼星的星等为-1.45,则太阳与天狼星的亮度的比值为(A)1010.1(B)10.1(C)lg10.1(D)10-10.1(7)设点A,B,C不共线,则“与的夹角是锐角”是“的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+x y就是其中之一(如图)。

给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过2;③曲线C所围城的“心形”区域的面积小于3.其中,所有正确结论的序号是(A)①(B)②(C)①②(D)①②③第二部分(非选择题共10分)二、填空题共6小题,每小题5分,共30分。

第十九届华为杯全国研究生数学建模竞赛 题目解析

第十九届华为杯全国研究生数学建模竞赛 题目解析

第十九届华为杯全国研究生数学建模竞赛题目解析尊敬的读者,您好!欢迎您参加第十九届华为杯全国研究生数学建模竞赛。

本文将为您详细解析本届竞赛的题目,帮助您更好地理解题目要求,掌握解题思路,提高竞赛成绩。

一、竞赛背景及意义全国研究生数学建模竞赛自创办以来,已成为我国研究生科技创新的一项重要赛事。

本届竞赛吸引了众多高校和研究机构的研究生参加,旨在培养研究生的创新意识、团队协作精神和实际问题解决能力。

华为杯作为赞助商,一直致力于支持我国研究生教育事业,推动科技创新。

二、题目分析本届竞赛题目涉及多个领域,如数学、物理、计算机科学等。

题目具有较高的难度和实用性,要求参赛者具备扎实的理论基础和实际应用能力。

以下是本届竞赛题目的简要概述:1.题目一:XXX问题(1)问题背景及描述:XXX(2)数学模型建立:XXX(3)求解方法及算法:XXX(4)结果分析与讨论:XXX2.题目二:XXX问题(1)问题背景及描述:XXX(2)数学模型建立:XXX(3)求解方法及算法:XXX(4)结果分析与讨论:XXX三、解题思路与方法1.深入阅读题目,理解题意。

在参赛过程中,首先要仔细阅读题目,确保自己对题目的理解准确无误。

2.建立数学模型。

针对题目要求,结合自身专业知识,建立合适的数学模型。

3.选择合适的求解方法。

根据数学模型,选用相应的求解方法,如数值方法、优化方法等。

4.编程实现与结果分析。

利用编程工具(如MATLAB、Python等)实现算法,得到结果,并对结果进行分析。

5.撰写论文。

按照竞赛论文格式要求,撰写论文,包括问题背景、数学模型、求解方法、结果分析等。

四、优秀论文案例解析在本届竞赛中,部分优秀论文展示了参赛者在选题、建模、求解和论文撰写等方面的出色表现。

以下是对优秀论文案例的简要分析:1.选题方面:优秀论文选题具有较强的创新性和实际意义,既体现了参赛者的专业素养,也为解决实际问题提供了新思路。

2.建模方面:优秀论文建立了较为完善的数学模型,能够较好地反映问题的本质。

2019年全国数学竞赛试题详细参考答案

2019年全国数学竞赛试题详细参考答案

中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。

2019年北京卷 理科数学真题(解析版)

2019年北京卷 理科数学真题(解析版)

2019年北京卷 理科数学真题(解析版)一、选择题:每小题5分,共40分。

1.已知复数z =2+i ,则z z ⋅=( ) A.3B.5C. 3D. 5【答案】D 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D.2.执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4【答案】B【详解】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B .3.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是( )A.15B.25C.45D.65【答案】D【详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离226543d ==+,故选D.4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为( ) A. −7 B. 1C. 5D. 7【答案】C 【详解】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A. 1010.1 B. 10.1C. lg10.1D. 10–10.1【答案】D【详解】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=,10.110.112211010E EE E -=⋅= , 故选D.7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A. ① B. ②C. ①②D. ①②③【答案】C详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不2结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.二、填空题共6小题,每小题5分,共30分。

第15届北京市大学生(非数学专业)数学竞赛本科甲.乙组试题及解析

第15届北京市大学生(非数学专业)数学竞赛本科甲.乙组试题及解析

第十五届北京市大学生(非数学专业) 数学竞赛本科甲、乙组试题及解析(本试题共九道 、 甲组九题全做,乙组只做前七题) (2004年10月10日 上午9:00~11:00)一、填空题1.在0=x 的附近与函数x x f sec )(=的差为2x 的高阶无穷小的二次多项式为 .解 应填.2112x +因为,1)0(,0)0(,1)0(=''='=f f f 有泰勒公式知 ).(211)(22x x x f ++= 2.设曲线)(x f y =与x y sin =在原点相切,则极限=∞→)2(lim nnf n .解 应填.2因为,1|)(sin )0(,00sin )0(0='='===x x f f 由导数的定义知.2)0(22)0()2(lim2)2(lim ='=-=∞→∞→f nf n f nnf n n 3.设,)1sin(sin 1cos )1(2cos ),(-++--+==y x x y y sianxy y x f z 则=∂∂)1,0(|y z.解 应填.1-1)1sin(1)(1()1(lim 1)1,0(),0(lim)1,0(11-=-+---=--='→→y y y y f y f f y y y 4.设)(x f 有连续导数且,0)(lim≠=→a xx f x 又⎰-=x dt t f t x x F 02,)()()(当0→x 时)(x F '与nx 是同阶无穷小,则=n . 解 应填2. 因为⎰⎰-=xxdt t tf dt t f xx F 02)()()(,)(x f 与ax 是等价无穷小),0(→x.00)0()0(2)()(2lim)()(2lim)()(2lim00=='='==→→→⎰⎰af f x f x f x f dtt f x xf dtt f x x xx xx)()()(2)(20x xf x f x dt t f x x F x --=⎰与)(x xf -等价,因而与2ax -等价。

第十九届北京市大学生数学竞赛本科甲乙组试题与解答

第十九届北京市大学生数学竞赛本科甲乙组试题与解答

第十九届北京市大学生数学竞赛本科甲、乙组试题解答一、填空题(每小题3分,共30分)1. ⎥⎦⎤⎢⎣⎡+-+-+∞→1)2(lim 6123x e x x x x x = 1/6 . 2.设)(x f 连续,在1=x 处可导,且满足 ,0,)(8)sin 1(3)sin 1(→+=--+x x o x x f x f 则曲线)(x f y =在1=x 处的切线方程为 y =2x -2 . 3. 设243),(lim220=+-+→→yx yx y x f y x , 则 ='+')0,0()0,0(2y x f f -2 . 4.设函数()u ϕ可导且(0)1ϕ=,二元函数()xyz x y e ϕ=+满足0z z x y∂∂+=∂∂,则()u ϕ=24u e - . 5. 设D 是由曲线x y sin = )22(π≤≤π-x 和直线2π-=x , 1=y 所围成的区域, f 是连续函数, 则=++=⎰⎰Ddxdy y x f y x I )](1[223 -2 .6. 123ln 1ln 1ln 1ln 1lim 123n n n n n n n n n n n n n n n →+∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪++++= ⎪++++ ⎪⎝⎭L 2ln 21- .7. 数项级数∑∞=--1)!2()!2()1(n nn n n n 的和=S -1+cos1+ln2.8. 计算积分⎰⎰⎰++π=1021010)](6[cos dz z y x dy dx I = 1/2 . 9. 已知入射光线的路径为23141-=-=-z y x , 则此光线经过平面01752=+++z y x 反射后的反射线方程为41537-=+=+z y x . 10. 设曲线222:a y xy x C =++的长度为L , 则=++⎰C y x y x ds e e e b e a )sin()sin()sin()sin(L b a 2+ . 二、(10分) 设()f x 在[,)a +∞上二阶可导,且,0)(,0)(<'>a f a f 而当a x >时, ,0)(≤''x f 证明在(,)a +∞内,方程()0f x =有且仅有一个实根.证明 由于当x a >时,,0)(≤''x f 因此'()f x 单调减,从而'()'()0f x f a ≤<,于是又有()f x 严格单调减.再由()0f a >知,()f x 最多只有一个实根.下面证明()0f x =必有一实根.当x a >时,()()'()()'()()f x f a f x a f a x a ξ-=-≤-, 即 ()()'()()f x f a f a x a ≤+-,上式右端当x →+∞时,趋于-∞,因此当x 充分大时,()0f x <,于是存在b a >,使得()0f b <,由介值定理存在()a b ηη<<,使得()0f η=.综上所述,知()0f x =在(,)a +∞有而且只有一个实根. 三、(10分)设),(y x f 有二阶连续偏导数,),(),(22y x e f y x g xy +=, 且))1((1),(22y x o y x y x f +-+--=, 证明),(y x g 在)0,0(取得极值, 判断此极值是极大值还是极小值, 并求出此极值.解 ))1(()1(),(22y x o y x y x f +-+---=, 由全微分的定义知 0)0,1(=f 1)0,1()0,1(-='='y x f f .x f y e f g xy x 221⋅'+⋅'=' y f x e f g xy y 221⋅'+⋅'=' 0)0,0(='x g 0)0,0(='y g2222121121122)2()2(2f x x f y e f y e f y e x f y e f g xyxy xy xy x '+⋅''+⋅''+⋅'+⋅''+⋅''='' x y f x e f e xy e f y e y f x e f g xyxy xy xy xy xy 2)2()()2(222111211⋅''+⋅''++⋅'+⋅''+⋅''='' 2222121121122)2()2(2f y y f x e f x e f x e y f x e fg xyxy xy xy y '+⋅''+⋅''+⋅'+⋅''+⋅''='' A=2)0,1(2)0,0(22-='=''f g x , 1)0,1()0,0(1-='=''=f g B xy ,2)0,1(2)0,0(22-='=''=f g C y 032>=-B AC , 且0<A , 故0)0,1()0,0(==f g 是极大值.四、(10分) 设f (x )在 [0,1] 上连续, f (0)= f (1) , 求证: 对于任意正整数n,必存在]1,0[∈n x ,使)1()(nx f x f n n +=.证明 令.,]11,0[)(),1()()(m M nx n x f x f x 及最小值所以有最大值上连续在-+-=φφ 于是有 ,1,,1,0,)(-=≤≤n k M n k m Λφ 所以 .)(11M nknm n k ≤≤∑-=φ故存在],11,0[nx n -∈ 使 .0)]1()0([1)]1()1()2()1()1()0([1)]1()1()0([1)(1)(10=-=--++-+-=-+++==∑-=f f nf n n f n f n f n f f n n n n n n k n x n k n ΛΛφφφφφ)1()(nx f x f n n +=.五、(10分)是其中求且有连续的二阶导数设)(,)()(lim,0)(,0)0()0(,)(0)(00x u dtt f dtt f x f f f x f x x u x ⎰⎰+→>''='=.))(,()(轴上的截距处切线在在点曲线x x f x x f y =).(2)()()0()()()0(21)(.)]([)()()(,)()()(),)(()(222x o xx u x o x f x f x o x f x f x f x f x f x u x f x f x x u x x X x f x f Y +=+''='+''='''=''-=-'=-,知,由于是轴上的截距为它在切线方程:解.81)]()0([))](()()0(21)[(lim )]([)())((lim )()())((lim )()(lim 22202000)(00=+''+''''='''='=++++→→→→⎰⎰x o x f x u o x u f x f x f x f x u f x f x u x u f dtt f dtt f x x x x x u x 由洛必达法则有六、(10分) 设函数)(x f 具有连续导数,在围绕原点的任意光滑简单闭曲面S 上,积分⎰⎰--Sxzdxdy e dzdx x xyf dydz x xf 2)()( 的值恒为同一常数.(1)证明: 对空间区域0>x 内的任意光滑简单闭曲面∑,有0)()(2=--⎰⎰∑zdxdy e dzdx x xyf dydz x xf x; (2) 求函数)0)((>x x f 满足1)(lim 0=+→x f x 的表达式.(1)证明:如图,将∑分解为∑+=21S S,另做曲面3S 围绕原点且与∑相接, 则⎰⎰∑+-xdxdy z dzdx x yf dydz x f sin )()(-+-=⎰⎰+31sin )()(S S xdxdy z dzdx x yf dydz x f ⎰⎰+-+-32sin )()(S S xdxdy z dzdx x yf dydz x f =0.(2) 由(1)可知, 0)()()('2≡--+xe x xf x f x xf ,其通解为x Ce e x f x x +=2)(, 由1lim )(lim 200=+=++→→x Ce e x f x x x x , 得1-=C ,故)0()(2>-=x xe e xf xxO七、(10分) 如图, 一平面均匀薄片是由抛物线)1(2x a y -= )0(>a 及x 轴所围成的, 现要求当 此薄片以)0,1(为支点向右方倾斜时, 只要θ角不超过ο45, 则该薄片便不会向右翻倒,问参数a 最大不能超过多少? 解 0=x 522)1(010)1(01022adydx ydy dx dxdyydxdyy x a x a DD===⎰⎰⎰⎰⎰⎰⎰⎰-- 倾斜前薄片的质心在)52,0(aP , 点P 与点)0,1(的距离为 1)52(2+a, 薄片不翻倒的临界位置的质心在点 )1)52(,1(2+a M , 此时薄片底边中心在点)22,221(-N 处, 有 =MN k 145tan )221(1221)52(2==---+οa , 解得25=α, 故a 最大不能超过25. .八、(10分) 讨论是否存在 [0,2] 上满足下列条件的函数, 并阐述理由: f (x ) 在 [0,2] 上有连续导数, f (0) = f (2)=1, .1|)(|,1|)(|2≤≤'⎰dx x f x f解 不存在这样的函数.当)2,0(∈x 时, ).2,(),,0(),2)((1)(1)(2121x x x f x f x f ∈∈-'+='+=ξξξξ 由题设知1)(,1)(-≥-≥x x f x x f ,且21)1()(,21)1()(2121101=-≥=-≥⎰⎰⎰⎰dx x dx x f dx x dx x f . 下面证明上面的不等式不能同时取等. 否则,,1)(,]1,0[x x f x -=∈时当 时当]2,1[∈x ,,1)(-=x x f 此时函数不满足连续可导的条件.于是 ,1)()()(2112>+=⎰⎰⎰dx x f dx x f dx x f 故不存在满足所给条件的函数.贸大数学竞赛选拔题目(一大一小) 1.函数ln(u x =在点A ( 1 , 0 , 1) 处沿点A 指向 B ( 3, -2 , 2) 方向的方向导数是 .提示:(2,2,1),AB =-其单位向量为ABl AB=221,,333⎛⎫=- ⎪⎝⎭(cos ,cos ,cos )αβγ=Au x∂=∂ d 1d ln(1)x x x =+1,2= Auy ∂=∂d 0d ln(1y y =0,=12Auz∂=∂ cos cos cos u u u u l x y z αβγ∂∂∂∂∴=++∂∂∂∂12= 2. 求函数(,)sin(2)f x y x y =+在点(0,)4π的一阶泰勒公式解: (,)2cos(2),(,)cos(2)x y f x y x y f x y x y =+=+(,)4sin(2)xx f x y x y =-+ ,(,)2sin(2)xy f x y x y =-+, (,)sin(2)yy f x y x y =-+(0,)42f π=,(0,)4x f π= (0,)42y f π=,(,)4sin(2)xx f ξηξη=-+,(,)2sin(2)xy f ξηξη=-+,(,)sin(2)yy f ξηξη=-+所以(,)sin(2)f x y x y =+=2+[ 2(0)2x -+ )24y π-]+ 12[24sin(2)(0)x ξη-+-+2(2sin(2)(0)()4x y πξη-+--)2sin(2)()4y πξη-+-] )sin(2)4y πξη--+221[22()()]424x x y y ππ+-+- 其中,()44x y ππξθηθ==+-, (01)θ<<3. 求函数(,)ln(1)f x y x y =++在点(0,0)的三阶泰勒公式. 解: 1(,)(,)1x y f x y f x y x y ==++ 21(,)(,)(,)(1)xx xy yy f x y f x y f x y x y -===++3332!(1)p p f x y x y -∂=∂∂++(0,1,2,3)p = 4443!(1)p p f x y x y -∂-=∂∂++(0,1,2,3,4)p =因此,()(0,0)x y h k f ∂∂∂∂+(0,0)(0,0)x y h f k f =+h k =+2()(0,0)x y h k f ∂∂∂∂+22(0,0)2(0,0)(0,0)xx xy yy h f hk f k f =++2()h k =-+3()(0,0)x y h k f ∂∂∂∂+333330C (0,0)p ppp p p fh kx y --=∂=∂∂∑32()h k =+(0,0)0,f =又将,h x k y ==代入三阶泰勒公式得 ln(1)x y ++=x y +21()2x y -+331()3x y R +++其中43()(,)x y R h k f h k θθ∂∂∂∂=+h x k y==441()4(1)x y x y θθ+=-⋅++(01)θ<<4. 在曲面z =xy 上求一点, 使这点处的法线垂直于平面x +3y +z +9=0, 并写出这法线的方程. 解 已知平面的法线向量为n 0=(1, 3, 1).设所求的点为(x 0, y 0, z 0), 则曲面在该点的法向量为n =(y 0, x 0, -1). 由题意知n //n 0, 即113100-==x y , 于是x 0=-3, y 0=-1, z 0=x 0y 0=3, 即所求点为(-3, -1, 3), 法线方程为133113-=+=+z y x .5. 设e l =(cos θ , sin θ), 求函数f (x , y )=x 2-xy -y 2在点(1, 1)沿方向l 的方向导数, 并分别确定角θ, 使这导数有(1)最大值, (2)最小值, (3)等于0.解 由题意知l 方向的单位向量为(cos α, cos β)=(cos θ , sin θ), 即方向余弦为 cos α=cos θ , cos β=sin θ . 因为f x (1, 1)=(2x -y )|(1, 1)=1, f y (1, 1)=(-x +2y )|(1, 1)=1,所以在点(1, 1)沿方向l 的方向导数为 )4sin(2sin cos cos )1 ,1(cos )1 ,1()1,1(πθθθβα+=+=+=∂∂y x f f lf .因此 (1)当4πϕ=时, 方向导数最大, 其最大值为2;(2)当45πϕ=时, 方向导数最小, 其最小值为2-;(3)当43πϕ=及47π时, 方向导数为0.6. 求函数u =x 2+y 2+z 2在椭球面1222222=++c z b y a x 上点M 0(x 0, y 0, z 0)处沿外法线方向的方向导数.解 椭球面1222222=++c z b y a x 上点M 0(x 0, y 0, z 0)处有外法向量为),,(202020c z b y a x =n , 其单位向量为),,(1)cos ,cos ,(cos 202020424242c z b y a x c zb y a x n ++==γβαe .因为u x (x 0, y 0, z 0)=2x 0, u y (x 0, y 0, z 0)=2y 0, u z (x 0, y 0, z 0)=2z 0,所以, 所求方向导数为γβαcos ),,(cos ),,(cos ),,(000000000),,(000z y x u z y x u z y x u n u z y x z y x ++=∂∂4242422002002004242422)222(1c z b y a x c z z b y y a x x c z b y a x ++=⋅+⋅+⋅++=.7. 求平面1543=++z y x 和柱面x 2+y 2=1的交线上与xOy 平面距离最短的点.解 设M (x , y , z )为平面和柱面的交线上的一点, 则M 到xOy 平面的距离为d (x , y , z )=|z |.问题在于求函数f (x , y , z )=|z |2=z 2在约束条件1543=++z y x 和x 2+y 2=1下的最不值. 作辅助函数:)1()1543(),,(222-++-+++=y x zy x z z y x F μλ.令 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+=++=+=∂∂=+=∂∂=+=∂∂1154305202402322y x z y x z zF y y F x x F λμλμλ, 解方程组得54=x , 53=y , 1235=z . 因为可能的极值点只有)1235 ,53 ,54(这一个, 所以这个点就是所求之点.8. 在第一卦限内作椭球面1222222=++c z b y a x 的切平面, 使该切平面与三坐标面所围成的四面体的体积最小, 求这切平面的切点, 并求此最小体积.解 令1),,(222222-++=c z b y a x z y x F , 则22a x F x =, 22b y F y =, 22c z F z =.椭球面上点M (x , y , z )处的切平面方程为0)()()(222=-+-+-z Z c z y Y b y x X a x , 即1222=++c zZ b yY a xX . 切平面在三个坐标轴上的截距分别为x a X 20=, y b Y 20=, z c Z 20=. 切平面与三个坐标面所围的四面体的体积为xyz c b a V 22261⋅=. 现将问题化为求函数xyz cb a V 22261⋅=在条件1222222=++c z b y a x 下的最小值的问题, 或求函数f (x , y , z )=xyz 在1222222=++c z b y a x 下的最大值的问题.作辅助函数)1(),,(222222-+++=c z b y a x xyz z y x F λ.令 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=+=∂∂=+=∂∂=+=∂∂1020202222222222c z b y a x c z xy z F b yxz y F a x yz x F λλλ, 解方程组得3a x =, 3b y =, 3cz =. 于是, 所求切点为)3 ,3 ,3(c ya , 此时最小体积为abcV 23=.。

第十八届北京市大学生数学竞赛本科甲、乙组试题解答

第十八届北京市大学生数学竞赛本科甲、乙组试题解答
2
,
.
| x | ( x ,0 ) |x| (0,0), lim x 0 x ( ) (0,0) 0, f x (0,0) f ( x, y ) f (0,0) f x (0,0) x f y (0,0) y
x
lim
0
(0,0) |x x
2
0. |x| | y| y
2
lim
x y
|x
x y y | ( x, y ) x2 y2
2
2
y
2
,
y| y .
2
x
2
x2
y2
2,
0 0
0.
f ( x, y )
(0,0)
(10
)
f ( x) [ 1, 1] f ( ) f (1) f ( 1) 6 2
f (0) f (0)
, f (0) .
( 1,1),
f (0) f ( 1 ) , 2! 3! f (0) f ( 2 ) f ( 1) f (0) f (0) , 2! 3! 1 f (1) f ( 1) 2 f (0) [ f ( 1 ) f ( 2 )]. 6 f (1) ( 1, f ( ) 6
f ( x ) 0,
f (0) 0,
, sin(arctan ) sin x 1. 2 2
2
tan (arctan ) 2 1 tan (arctan ) 2 1 tan(sin x) , f ( x ) 0.
2
1
4
2
4
,
4
4
tan 1.
, tan(sin x ) sin(tan x).
This document was created with Win2PDF available at . The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

普通高等学校招生全国统一考试数学卷北京.理含答案

普通高等学校招生全国统一考试数学卷北京.理含答案

2019年一般高等学校招生全国一致考试数学(理工农医类)(北京卷)本试卷分第I卷(选择题)和第II(非选择题)两部分,第I卷1至2页,第II卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I卷(选择题共40分)注意事项:1.答第I卷前,考生务势必自己的姓名、准考据号、考试科目涂写在答题卡上.2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案.不可以答在试卷上.一、本大题共8小题,每题5分,共40分.在每题列出的四个选项中,选出切合题目要求的一项.1.已知costan0,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角2.函数f(x)3x(0x≤2)的反函数的定义域为()A.(0,)B.(19],C.(0,1)D.[9,) 3.平面∥平面的一个充足条件是()A.存在一条直线,a∥,a∥B.存在一条直线a,a,a∥C.存在两条平行直线D.存在两条异面直线a,b,a,b,a∥,b∥a,b,a,a∥,b∥4.已知O是△ABC所在平面内一点,D为BC边中点,且2OA OB OC0,那么()A.AO ODB.AO2ODC.AO3ODD.2AO OD5.记者要为5名志愿都和他们帮助的2位老人摄影,要求排成一排,2位老人相邻但不排在两头,不一样的排法共有()A.1440种B.960种C.720种D.480种x y ≥,2x y ≤2, a 的取值范围是(6.若不等式组表示的平面地区是一个三角形,则)y ≥0,x y ≤aA.a ≥4B.0a ≤1C.1≤a ≤4D.0a ≤1或a ≥43 3 37.假如正数a ,b ,c ,d 知足abcd 4,那么( )A. B.C.D.ab ≤cd ,且等号成即刻a ,b ,c ,d 的取值独一ab ≥cd ,且等号成即刻a ,b ,c ,d 的取值独一ab ≤cd ,且等号成即刻a ,b ,c ,d 的取值不独一ab ≥cd ,且等号成即刻a ,b ,c ,d 的取值不独一8.关于函数① f(x) lg(x 2 1),②f(x) (x 2)2,③f(x)cos(x2) ,判断以下三个命题的真假:命题甲: f(x 2)是偶函数;命题乙: f(x)在( ,)上是减函数,在(2, )上是增函数;命题丙: f(x2)f(x)在(,)上是增函数.能使命题甲、乙、丙均为真的全部函数的序号是( ) A.①③B.①② C.③D.②2019年一般高等学校招生全国一致考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共 6小题,每题 5分,共30分.把答案填在题中横线上.29..(1i)210.若数列a n的前n 项和S nn 210n(n1,2,3,),则此数列的通项公式为;数列na n 中数值最小的项是第项.11.在△ABC 中,若tanA1 150,BC1,则AB.,C312.已知会合A x|xa ≤1,Bxx 25x 4≥0.若AB,则实数a 的取值范围是.13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).假如小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,那么cos2的值等于.14.已知函数f(x),g(x)分别由下表给出x123 f(x)131x123 g(x)321则f[g(1)]的值为;知足f[g(x)]g[f(x)]的x的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)数列 a n中,a12,a n1a n cn(c是常数,n1,2,3,),且a1,a2,a3成公比不为1的等比数列.(I)求c的值;A(II)求a n的通项公式.16.(本小题共14分)如图,在Rt△AOB中,OAB π4.Rt△AOC可,斜边AB6以经过Rt△AOB以直线AO为轴旋转获得,且二面角BAOC是直二面角.动点D的斜边AB上.(I)求证:平面COD平面AOB;(II)当D为AB的中点时,求异面直线AO与CD所成角的大小;(III)求CD与平面AOB所成角的最大值.DOB C17.(本小题共14分)矩形ABCD的两条对角线订交于点M(2,0),AB边所在直线的方程为x3y60,点T(11),在AD边所在直线上.I)求AD边所在直线的方程;II)求矩形ABCD外接圆的方程;(III)若动圆P过点N(2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.18.(本小题共13分)某中学呼吁学生在今年春节时期起码参加一次社会公益活动参加人数(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计以下图.50(I)求合唱团学生参加活动的人均次数;40(II)从合唱团中随意选两名学生,求他们参加活动次数恰巧30相等的概率.(III)从合唱团中任选两名学生,用表示这两人参加活动次20数之差的绝对值,求随机变量的散布列及数学希望E.10活动次数12319.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将C此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的D端点在椭圆上,记CD2x,梯形面积为S.4r (I)求面积S以x为自变量的函数式,并写出其定义域;(II)求面积S的最大值.A2r B20.已知会合A a1,a2,,a k(k≥2),此中a i Z(i1,2,,k),由A中的元素构成两个相应的会合:S (a,b)a A,b A,a b A,T(a,b)a A,b A,a b A.此中(a,b)是有序数对,会合S和T中的元素个数分别为m和n.若关于随意的a A,总有a A,则称会合A拥有性质P.(I)查验会合01,,2,3与1,2,3能否拥有性质P并对此中拥有性质P的会合,写出相应的会合S和T;(II)对任何拥有性质P的会合A,证明:n≤k(k1);2(III)判断m和n的大小关系,并证明你的结论.2019年一般高等学校招生全国一致考试数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每题5分,共40分)1.C2.B3.D4.A5.B6.D7.A8.D二、填空题(本大题共6小题,每题5分,共30分)9.13.i10.2n11311.1012.(2,3)2714.1225三、解答题(本大题共6小题,共80分)15.(共13分)解:(I)a12,a22c,a323c,因为a1,a2,a3成等比数列,所以(2c)22(23c),解得c0或c2.当c0时,a1a2a3,不切合题意舍去,故c2.(II)当n≥2时,因为a2a1c,a3a22c,a n a n1(n1)c,所以a n a1[12(n1)]c n(n1)c.2又a12,c2,故a n2n(n1)n2n2(n2,3,).当n1时,上式也成立,所以a n n2n2(n1,2,).16.(共14分)解法一:(I)由题意,CO AO,BO AO,BOC是二面角B AO C是直二面角,又二面角B AO C是直二面角,CO BO ,又AO BO O , CO 平面AOB , 又CO平面COD .平面COD 平面AOB .(II )作DEOB ,垂足为E ,连接CE (如图),则DE ∥AO , CDE 是异面直线AO 与CD 所成的角. A在Rt △COE 中,COBO 2,OE1BO 1,2CECO 2 OE 2 5.又DE1 3.DAO2CE 5 15在Rt △CDE 中,tanCDE33DE异面直线AO 与CD 所成角的大小为arctan153(III )由(I )知,CO 平面AOB ,..EOBCOC2CDO 是CD 与平面AOB 所成的角,且tanCDO.OD OD当OD 最小时, CDO 最大,这时,ODOAOB 32 3 AB ,垂足为D ,OD,tanCDO,AB3CD 与平面AOB 所成角的最大值为arctan23.3解法二:(I )同解法一.(II )成立空间直角坐标系 O xyz ,如图,则 O(0,0,0),A(0,0,23),C(2,0,0),zD(0,1,3),OA(0,0,23),CD (2,1,3),AcosOA ,CDOACDDOACD66232 2.46 .OBy异面直线AO 与CD 所成角的大小为arccos4xC(III)同解法一17.(共14分)解:(I)因为AB边所在直线的方程为x 3y 60,且AD与AB垂直,所以直线AD的斜率为3.又因为点T(11),在直线AD上,所以AD边所在直线的方程为y13(x1).3xy20.x3y6,(II)由解得点A的坐标为(0,2),3xy2=0因为矩形ABCD两条对角线的交点为M(2,0).所以M为矩形ABCD外接圆的圆心.又AM(20)2(02)222.进而矩形ABCD外接圆的方程为(x2)2y28.(III)因为动圆P过点N,所以PN是该圆的半径,又因为动圆P与圆M外切,所以PM PN22,即PMPN22.故点P的轨迹是以M,N为焦点,实轴长为22的双曲线的左支.因为实半轴长a2,半焦距c2.所以虚半轴长b c2a22.进而动圆P的圆心的轨迹方程为x2y22).21(x≤218.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.(I)该合唱团学生参加活动的人均次数为110250340230100.100(II)从合唱团中任选两名学生,他们参加活动次数恰巧相等的概率为C102C502C40241P0C2.99100(III )从合唱团中任选两名学生,记“这两人中一人参加 1次活动,另一人参加 2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知P( 1) P(A) P(B)C 101 C 501 C 501C 40150 C 1002C 1004;99P(2)P(C)C 1 C 181040;C 100299的散布列:1 2P4199的数学希望:E0 4115028 2 .99 9999 319.(共13分)解:(I )依题意,以 AB 的中点O 为原点成立直角坐标系为x .点C 的纵坐标y 知足方程x 2y 2 1(y ≥0),r 24r 2解得y2r 2x 2(0xr)S1(2x2r)2r 2x 222(x r)r 2 x 2 ,其定义域为x0x r .(II )记f(x)4(x r)2(r 2x 2),0 xr ,则f(x) 8(xr)2(r2x).令f(x)0,得x1 r .2508 9999xy (如图),则点C 的横坐标yDCAO Bx因为当0x r r时,f(x)0,所以f1是f(x)的最时,f(x)0;当xr r222大值.所以,当x1r时,S也获得最大值,最大值为f1r33r2.222即梯形面积S的最大值为33r2.2。

北京市大学生数学竞赛试题

北京市大学生数学竞赛试题
y 0
| y| x2 y2
2,
三、 (10分 ) 设 f ( x ) 在区间 [ 1, 1] 上三次可微 , 证明 存在实数 ( 1,1), 使得 f ( ) f (1) f ( 1) f (0) . 6 2
证 f (0) f (1 ) , 2! 3! f (0) f ( 2 ) f (1) f (0) f (0) , 2! 3! 1 f (1) f (1) 2 f (0) [ f (1 ) f ( 2 )]. 6 f (1) f (0) f (0)
第十八届北京市大学生数学竞赛本科甲、乙组试题解答
(2007 年 10 月 14 日 下午 2:30--5:00)
注意:本考卷共九题. 甲组九题全做, 乙组只做前七题
一、 填空题(每小题 2 分,共 20 分) m 1. 设当 x 1时, 1 是 x 1的等价无穷小 , 则 m ______ . 1 x x m 1 解 m 3.
, B g , 根据题意知 A 0. 于是有 1 AB 1 AB arctan(
分离变量得
dv dt , 积分得 Av 2 B
代入初始条件 t 0, v v 0 , 得 C t 1 AB arctan( 1 AB A v0 ) B arctan( 1 AB


0

五、 (10分) 计算

D 2π


( sin 2 sin cos ) d π,
L : x 2 y 2 1, 正向.
z2 1( y 1), 取外侧. 4


x 2 dydz y 2 dzdx z 2 dxdy , 其中 : ( x 1) 2 ( y 1) 2

2019年高考理数北京卷(附答案与解析)

2019年高考理数北京卷(附答案与解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2019年普通高等学校招生全国统一考试·北京卷数 学(理)本试卷满分150分,考试时长120分钟.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知复数2z i =+,则z z ⋅= ( ) ABC .3D .5 2.执行如图所示的程序框图,输出的s 值为( )A .1B .2C .3D .43.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点()1,0到直线l 的距离是( )A .15B .25C .45D .654.已知椭圆22221x y a b+=(0a b >>)( )A .222a b =B .2234a b =C .2a b =D .34a b =5.若x ,y 满足||1x y -≤,且1y -≥,则3x y +的最大值为( )A .7-B .1C .5D .76.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg 2Em m E -=,其中星等为k m 的星的亮度为1,2k E k =().已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为下列说法中,正确的是( ) A .10.110 B .10.1 C .lg10.1 D .10.110- 7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市大学生数学竞赛本科甲、乙组试题解答

北京市大学生数学竞赛本科甲、乙组试题解答

北京市大学生数学竞赛本科甲、乙组试题解答注意:本考卷共九题. 甲组九题全做, 乙组只做前七题一、 填空题(每小题2分,共20分).3.______,111,1.11==-+++-→-m m x x x mx m 解则的等价无穷小是时设当 .)1()1()1(.________)1(,)()2)(1()()2)(1()(.21+-='='+++---=-n n f f n x x x n x x x x f n 解则设 .)]11(1[lim ._____)]11(1[lim ,1)0,1()(.3e nf nf y x f y n n n n =++=++-=∞→∞→解则轴上的截距为处的切线在在点已知曲线.1.______lim .411-==∑=∞→+e e nk nkn kn 原式解π.4._________d )cos 1(sin .52π2π22-==++⎰-原式解x x xx .0232___.__________为处的切平面 (0,1) 在点 ),( 则曲面其中),(321)1,(且 ,微的某邻)1,0( 在点),(设函数6.22=--+=+=+++=+=z y x y x f z y x o y x y x f y x f z 切平面方程为解方程,域内可ρρ.1旋转转曲面方程._____________为轴旋转的旋转曲面方程绕111101线.7222=-+-=-=-z y x z z y x 解直.0.____d )cos(d 1||||.822==+-=++⎰原式解的正向一周,则为封闭曲线设Ly y x x y x y x x L .322.______|)div (}1,2,2{)2,1,1(div ,2.922223==∂∂-=--=原式解的方向导数方向处沿在点则其散度设向量场M M z y x z y x z y x A ll A k j i A.14._______,)1(.102222222=++=++=+'+''++=γβαγβαγβα解则的一个特解方程是二阶常系数线性微分设x x x e y y y e x e y.0)0,0()0,0(),(.)0,0(),(),,(||),()10(=-=ϕϕϕ件是点处可微的充分必要条在试证明函数的一个邻域内连续在点其中设二元函数分、二y x f y x y x y x y x f .)0,0(),(.0),(||lim ,2||||||,),(||)0,0()0,0()0,0(),(.0)0,0(,0)0,0(,0)0,0()(.0)0,0(),0,0()0,(||lim ),0,0()0,(||lim ,)0,(||lim )0,0()0,(lim )0,0(.)0,0(),0,0(,)0,0(),()(220022222222220000点处可微在由定义所以又因为则可知若充分性故有且由于存在则点处可微在设必要性证y x f y x y x y x yx y y x x y x y x y x y x y x y x y f x f f y x f f f xx x x x x xx x x f x f f f f y x f y x y x y x x x x x x y x =+-≤+++≤+-+-=+'-'--='='==-===-='''→→→→→→-+ϕϕϕϕϕϕϕϕϕ.)0(2)1()1(6)(),1,1(,]1,1[)()10(f f f f x f '---='''-∈-ξξ使得存在实数证明上三次可微在区间设分三、.)0(2)1()1(6)()].()([21)(),,()].()([61)0(2)1()1(,!3)(!2)0()0()0()1(,!3)(!2)0()0()0()1(21212121f f f f f f f f f f f f f f f f f f f f f f '---=''''''+'''='''∈'''+'''+'=--'''-''+'-=-'''+''+'+=ξξξξξξξξξξξ于是使得实数由导数的介值性知存在证.d ,),(,1),(,),(,),(),(),(,1:),(),,()10(22⎰⎰•≡≡⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+=≤+Dy y x v y x u D y v x v y u x u y x y x u y x v y x y x D y x v y x u σg fj i g j i f 求的边界上有且在又上有一阶连续偏导数在闭区域设函数分四、.,1:π,d )cos sin sin (d d d d d )()(d ,)()(22π202正向解=+-=+-=+=+=⎪⎪⎭⎫⎝⎛∂∂-∂∂=∴∂∂-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⎰⎰⎰⎰⎰⎰⎰••y x L yy x y y uv x uv y uv x uv y uv x uv y v u y u v x v u x u v y v x v u y u x u v L L D Dθθθθσσg f g f .),1(14)1()1(:,d d d d d d )10(222222取外侧其中计算分五、≥=+-+-∑++⎰⎰∑y z y x y x z x z y z y x π.325π2π319π,319d )sin 32sin sin 41sin cos 41(d 4d sin )2sin sin sin cos 2(d d 2d )(2d )(2π,2d d .,14)1(:,,1:π022π0102π0π0220000=+=∴=++=++=+=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式则原式左侧设解ϕϕϕθϕθθϕϕθϕθϕθrr r r v y x v z y x x z z x D y VVDπ.325π2π311π38,24)1(:π,611d )2(2πd d d d ,1,24)1(:π,34d )2(πd d d d π.2d )(2,d )(2π,2d d .,14)1(:,,1:2222221222202202200=++=∴-≤+-=-⋅⋅==≥-≤+-=-==+++=++=-=-=-=≤+-=∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑+∑∑∑∑+∑原式故原式则原式左侧设另解y y z x D y y y y x z x y v y y x x zy D x x x x z y xx v x v z y x v z y x x z z x D y y D Vx D V V VDyx.)1(2)2(;2lim )1(.,)10(121211∑∑∞=→∞∞=+++++++n nnn n nn n na a a nna a a S a试求:且和为收敛设正项级数分六、.1)1(22122)1(2)2(;02lim ,112)1(1121212121212112112112121++→∞---+++++++-+++=++++-+++=++++=-=+++∴-⋅-+++-=+++-=-++-+-+=+++n n n n n n n n n n n n n n n n n n n a n a n na a a n na a a n na a a n na a a n n na a a S S nna a a nn n S S S S n S S S S nS S S S S S S n na a a 解.)1(2)1(2,21111121112121S a a b n n na a a a b b n n na a a n na a a b n n n n n nn n n nn n ==+=++++∴+-=+++++++=∑∑∑∞=∞=+∞=++ 则记.,./,/,,./,.)10(22220需的时间求飞机从着陆到停止所千克机的质量为设飞米秒千克为在垂直方向的比例系数米秒千克平方向的比例系数为在水正比的阻力与速度的平方成且飞机运动时所受空气为飞机与地面的摩擦系数秒米水平速度为速度在着陆时刻已失去垂直陆飞机在机场开始滑行着分七、m k k v y x ⋅⋅μ).(arctan )()arctan(10).arctan(1)arctan(1).arctan(1,,0.)arctan(1,d d .0d d ,0)d d (d d .0,,.0)d d (d d ).(,,000002222222222秒时,当得代入初始条件积分得分离变量得即于是有根据题意知记由牛顿第二定律,有摩擦力垂直方向的阻力水平方向的阻力解v gm k k g k k mv BAABt v v BA ABv B AABt v BA ABC v v t C t v BAAB t BAv vB Av t vB t s A ts A g B mk k A g t s m k k t s R mg W v k R v k R y x y x yx y x y y x y x μμ-μμ-===-=∴===+-=-=+=++=++>μ=μ-==μ+μ-+-μ===以下两题乙组考生不做.1sin )10(是无理数证明分八、.1sin .,)12(2cos )1(,12,1|cos |).(cos )12(2)1(cos )12(2)1(])!12()1(!71!51!311[)!12()!12().12(cos )!12()1()!12()1(!71!51!311sin .,,1sin 1sin 11是无理数所以矛盾不可能是整数故然而两个整数之差仍是整数是整数知,由的展开式有根据是互素的正整数是有理数,则设证+->≤+-+-+--++-+--=->-+-+--++-+-==--n n n n n n n n n q p n q n n n q p x q p qpn n nn nn ξξξξξ.)sin(tan )tan(sin ,)2π,0()10(论的大小,并证明你的结与试比较函数内在区间分九、x x ).sin(tan )tan(sin ,)2π,0,.0)(,)2π,2π[arctan .1tan )tan(sin 1.1sin 4π,4ππ4π4π12π)2π(arctan tan 1)2π(arctan tan )2πsin(arctan .1sin )2πsin(arctan ,)2π,2π[arctan .0)(,0)0(,0)()2πarctan ,0(.cos )(sin cos )cos(tan ,cos 3sin 2tan cos,3sin 2tan .02sin 4tan 3cos 2sec )(3sin 2tan )(.3sin 2tan cos )]cos(sin 2)[cos(tan 31)(sin cos )cos(tan 2π0.2πsin 0,2πtan 02πarctan 0.cos )(sin cos )(sin cos )cos(tan cos sec )cos(tan cos )(sin sec )(则),sin(tan )tan(sin )( 设 解2223222232222322x x x x f x x x x x x f f x f x x x x x xx x x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x f x x x f >∈>∈∴<<<<>+=+=+=<<∈>=>'∈<<+>+>-=-+='-+=+≤+≤<<<<<<-=-='-=时(当综上可得时当于是故由于时当所以又时,于是当即所以于是,设)上的凸性有,由余弦函数在(时,当ϕϕ。

2019年全国高中数学联赛A+B卷(含答案)

2019年全国高中数学联赛A+B卷(含答案)

2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e =.由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有一处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 . 答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24yx =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故 222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分。

第十六届北京市大学生数学竞赛甲乙组试题与解答

第十六届北京市大学生数学竞赛甲乙组试题与解答

第十六届北京市大学生数学竞赛甲乙组试题与解答第十六届北京市数学竞赛试题答案(甲、乙组)一、 填空(20分)1.1)0(,)1(2='=+'-+''y e y x y x y x ,且a xx x y x =-→20)(lim ,则__________=a . 解 由a xx x y x =-→20)(lim ,得0)0(=y ,利用方程,得2)0(=''y ,得1=a . 2.))(()(b x a x b e x f x ---=,e x =为无穷间断点,1=x 为可去间断点,则__________=b .e解 ))(1()(b x x b e x f x ---= 3.,),0(,)0,(,),,(22y y f x x f y x yx z y x f z ==+=∂∂∂= 则 __________),(=y x f .解 __________),(=y x f y x xy y x +++2222. 4.,)2()2()2(222dz xy z dy xz y dx yz x du -+-+-= 则__________),,(=z y x u .解 C xyz z y x z y x u +-++=23__________),,(333 5.,)(13)(1022⎰--=dx x f x x x f 则__________)(=x f .解 ,13)(2x k x x f --=其中⎰--=1022)13(dx x k x k ,得 k k k dx x kx x k dx x k x k 2329)16)9(()13(22102221022-+=+---=--=⎰⎰,得,2992k k +=得23,3439472819=±=-±=k .()()03212,033>-+-=''<x x y x ,()(),0321233>-++=''x x y()()1,03111,3111,2022==-++-='-++=<<x x x y x x y x , ()(),03212,2033>-++=''<<x x y x ()()002,00>-'<+'y y ,极小值=()1.1=y()(),01111,1111,,222<--+-='-++=≥x x y x x y x y 单调减少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九届北京市大学生数学竞赛本科甲、乙组试题解答一、填空题(每小题3分,共30分)1. ⎥⎦⎤⎢⎣⎡+-+-+∞→1)2(lim 6123x e x x x x x = 1/6 . 2.设)(x f 连续,在1=x 处可导,且满足 ,0,)(8)sin 1(3)sin 1(→+=--+x x o x x f x f 则曲线)(x f y =在1=x 处的切线方程为 y =2x -2 . 3. 设243),(lim220=+-+→→yx yx y x f y x , 则 ='+')0,0()0,0(2y x f f -2 . 4.设函数()u ϕ可导且(0)1ϕ=,二元函数()xyz x y e ϕ=+满足0z z x y∂∂+=∂∂,则()u ϕ=24u e - . 5. 设D 是由曲线x y sin = )22(π≤≤π-x 和直线2π-=x , 1=y 所围成的区域, f 是连续函数, 则=++=⎰⎰Ddxdy y x f y x I )](1[223 -2 .6. 123ln 1ln 1ln 1ln 1lim 123n n n n n n n n n n n n n n n →+∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪++++= ⎪++++ ⎪⎝⎭L 2ln 21- .7. 数项级数∑∞=--1)!2()!2()1(n nn n n n 的和=S -1+cos1+ln2.8. 计算积分⎰⎰⎰++π=1021010)](6[cos dz z y x dy dx I = 1/2 . 9. 已知入射光线的路径为23141-=-=-z y x , 则此光线经过平面01752=+++z y x 反射后的反射线方程为41537-=+=+z y x . 10. 设曲线222:a y xy x C =++的长度为L , 则=++⎰C y x y x ds e e e b e a )sin()sin()sin()sin(L b a 2+ . 二、(10分) 设()f x 在[,)a +∞上二阶可导,且,0)(,0)(<'>a f a f 而当a x >时, ,0)(≤''x f 证明在(,)a +∞内,方程()0f x =有且仅有一个实根.证明 由于当x a >时,,0)(≤''x f 因此'()f x 单调减,从而'()'()0f x f a ≤<,于是又有()f x 严格单调减.再由()0f a >知,()f x 最多只有一个实根.下面证明()0f x =必有一实根.当x a >时,()()'()()'()()f x f a f x a f a x a ξ-=-≤-, 即 ()()'()()f x f a f a x a ≤+-,上式右端当x →+∞时,趋于-∞,因此当x 充分大时,()0f x <,于是存在b a >,使得()0f b <,由介值定理存在()a b ηη<<,使得()0f η=.综上所述,知()0f x =在(,)a +∞有而且只有一个实根. 三、(10分)设),(y x f 有二阶连续偏导数,),(),(22y x e f y x g xy +=, 且))1((1),(22y x o y x y x f +-+--=, 证明),(y x g 在)0,0(取得极值, 判断此极值是极大值还是极小值, 并求出此极值.解 ))1(()1(),(22y x o y x y x f +-+---=, 由全微分的定义知 0)0,1(=f 1)0,1()0,1(-='='y x f f .x f y e f g xy x 221⋅'+⋅'=' y f x e f g xyy 221⋅'+⋅'=' 0)0,0(='x g 0)0,0(='y g 2222121121122)2()2(2f x x f y e f y e f y e x f y e f g xyxy xy xy x '+⋅''+⋅''+⋅'+⋅''+⋅''='' x y f x e f e xy e f y e y f x e f g xyxy xy xy xy xy 2)2()()2(222111211⋅''+⋅''++⋅'+⋅''+⋅''=''2222121121122)2()2(2f y y f x e f x e f x e y f x e f g xyxy xy xy y'+⋅''+⋅''+⋅'+⋅''+⋅''='' A=2)0,1(2)0,0(22-='=''f g x , 1)0,1()0,0(1-='=''=f g B xy ,2)0,1(2)0,0(22-='=''=f g C y 032>=-B AC , 且0<A , 故0)0,1()0,0(==f g 是极大值.四、(10分) 设f (x )在 [0,1] 上连续, f (0)= f (1) , 求证: 对于任意正整数n,必存在]1,0[∈n x ,使)1()(nx f x f n n +=.证明 令.,]11,0[)(),1()()(m M nx n x f x f x 及最小值所以有最大值上连续在-+-=φφ 于是有 ,1,,1,0,)(-=≤≤n k M n k m Λφ 所以 .)(11M nknm n k ≤≤∑-=φ故存在],11,0[nx n -∈ 使 .0)]1()0([1)]1()1()2()1()1()0([1)]1()1()0([1)(1)(10=-=--++-+-=-+++==∑-=f f nf n n f n f n f n f f n n n n n n k n x n k n ΛΛφφφφφ)1()(nx f x f n n +=.五、(10分)是其中求且有连续的二阶导数设)(,)()(lim,0)(,0)0()0(,)(0)(00x u dtt f dtt f x f f f x f x x u x ⎰⎰+→>''='=.))(,()(轴上的截距处切线在在点曲线x x f x x f y =).(2)()()0()()()0(21)(.)]([)()()(,)()()(),)(()(222x o xx u x o x f x f x o x f x f x f x f x f x u x f x f x x u x x X x f x f Y +=+''='+''='''=''-=-'=-,知,由于是轴上的截距为它在切线方程:解.81)]()0([))](()()0(21)[(lim )]([)())((lim )()())((lim )()(lim 22202000)(00=+''+''''='''='=++++→→→→⎰⎰x o x f x u o x u f x f x f x f x u f x f x u x u f dtt f dtt f x x x x x u x 由洛必达法则有六、(10分) 设函数)(x f 具有连续导数,在围绕原点的任意光滑简单闭曲面S 上,积分⎰⎰--Sxzdxdy edzdx x xyf dydz x xf 2)()(的值恒为同一常数.(1)证明: 对空间区域0>x 内的任意光滑简单闭曲面∑,有0)()(2=--⎰⎰∑zdxdy e dzdx x xyf dydz x xf x; (2) 求函数)0)((>x x f 满足1)(lim 0=+→x f x 的表达式.(1)证明:如图,将∑分解为∑+=21S S,另做曲面3S 围绕原点且与∑相接, 则⎰⎰∑+-xdxdy z dzdx x yf dydz x f sin )()(-+-=⎰⎰+31sin )()(S S xdxdy z dzdx x yf dydz x f ⎰⎰+-+-32sin )()(S S xdxdy z dzdx x yf dydz x f =0.(2) 由(1)可知, 0)()()('2≡--+xe x xf x f x xf ,其通解为x Ce e x f x x +=2)(, 由1lim )(lim 200=+=++→→x Ce e x f x x x x , 得1-=C ,故)0()(2>-=x xe e xf xx七、(10分) 如图, 一平面均匀薄片是由抛物线)1(2x a y -= )0(>a 及x 轴所围成的, 现要求当O此薄片以)0,1(为支点向右方倾斜时, 只要θ角不超过ο45, 则该薄片便不会向右翻倒,问参数a 最大不能超过多少? 解 0=x 522)1(010)1(01022adydx ydy dx dxdyydxdyy x a x a DD===⎰⎰⎰⎰⎰⎰⎰⎰-- 倾斜前薄片的质心在)52,0(aP , 点P 与点)0,1(的距离为 1)52(2+a, 薄片不翻倒的临界位置的质心在点 )1)52(,1(2+a M , 此时薄片底边中心在点)22,221(-N 处, 有 =MN k 145tan )221(1221)52(2==---+οa , 解得25=α, 故a 最大不能超过25. .八、(10分) 讨论是否存在 [0,2] 上满足下列条件的函数, 并阐述理由: f (x ) 在 [0,2] 上有连续导数, f (0) = f (2)=1, .1|)(|,1|)(|2≤≤'⎰dx x f x f解 不存在这样的函数.当)2,0(∈x 时, ).2,(),,0(),2)((1)(1)(2121x x x f x f x f ∈∈-'+='+=ξξξξ 由题设知1)(,1)(-≥-≥x x f x x f ,且21)1()(,21)1()(212111=-≥=-≥⎰⎰⎰⎰dx x dx x f dx x dx x f . 下面证明上面的不等式不能同时取等. 否则,,1)(,]1,0[x x f x -=∈时当 时当]2,1[∈x ,,1)(-=x x f 此时函数不满足连续可导的条件.于是,1)()()(2112>+=⎰⎰⎰dx x f dx x f dx x f 故不存在满足所给条件的函数.贸大数学竞赛选拔题目(一大一小) 1.函数ln(u x =在点A ( 1 , 0 , 1) 处沿点A 指向 B ( 3, -2 , 2) 方向的方向导数是 .提示:(2,2,1),AB =-其单位向量为ABl AB=221,,333⎛⎫=- ⎪⎝⎭(cos ,cos ,cos )αβγ=A u x∂=∂ d 1d ln(1)x x x =+1,2= Au y ∂=∂d 0d ln(1y y =0,=12Auz∂=∂ cos cos cos u u u u l x y z αβγ∂∂∂∂∴=++∂∂∂∂12= 2. 求函数(,)sin(2)f x y x y =+在点(0,)4π的一阶泰勒公式解: (,)2cos(2),(,)cos(2)x y f x y x y f x y x y =+=+(,)4sin(2)xx f x y x y =-+ ,(,)2sin(2)xy f x y x y =-+, (,)sin(2)yy f x y x y =-+(0,)4f π=(0,)4x f π=(0,)4y f π=(,)4sin(2)xx f ξηξη=-+,(,)2sin(2)xy f ξηξη=-+,(,)sin(2)yy f ξηξη=-+所以(,)sin(2)f x y x y =+=0)x -+ )4y π-]+ 12[24sin(2)(0)x ξη-+-+2(2sin(2)(0)()4x y πξη-+--)2sin(2)()4y πξη-+-] )sin(2)4y πξη--+221[22()()]424x x y y ππ+-+- 其中,()44x y ππξθηθ==+-, (01)θ<<3. 求函数(,)ln(1)f x y x y =++在点(0,0)的三阶泰勒公式. 解: 1(,)(,)1x y f x y f x y x y ==++ 21(,)(,)(,)(1)xx xy yy f x y f x y f x y x y -===++3332!(1)p pf x y x y -∂=∂∂++(0,1,2,3)p = 4443!(1)p pf x y x y -∂-=∂∂++(0,1,2,3,4)p =因此,()(0,0)x y h k f ∂∂∂∂+(0,0)(0,0)x y h f k f =+h k =+2()(0,0)x y h k f ∂∂∂∂+22(0,0)2(0,0)(0,0)xx xy yy h f hk f k f =++2()h k =-+ 3()(0,0)x y h k f ∂∂∂∂+333330C (0,0)p p pp p p fh k x y --=∂=∂∂∑32()h k =+(0,0)0,f =又将,h x k y ==代入三阶泰勒公式得 ln(1)x y ++=x y +21()2x y -+331()3x y R +++其中43()(,)x y R h k f h k θθ∂∂∂∂=+h x k y==441()4(1)x y x y θθ+=-⋅++(01)θ<<4. 在曲面z =xy 上求一点, 使这点处的法线垂直于平面x +3y +z +9=0, 并写出这法线的方程. 解 已知平面的法线向量为n 0=(1, 3, 1).设所求的点为(x 0, y 0, z 0), 则曲面在该点的法向量为n =(y 0, x 0, -1). 由题意知n //n 0, 即113100-==x y , 于是x 0=-3, y 0=-1, z 0=x 0y 0=3, 即所求点为(-3, -1, 3), 法线方程为133113-=+=+z y x .5. 设e l =(cos θ , sin θ), 求函数f (x , y )=x 2-xy -y 2在点(1, 1)沿方向l 的方向导数, 并分别确定角θ, 使这导数有(1)最大值, (2)最小值, (3)等于0.解 由题意知l 方向的单位向量为(cos α, cos β)=(cos θ , sin θ), 即方向余弦为 cos α=cos θ , cos β=sin θ . 因为f x (1, 1)=(2x -y )|(1, 1)=1, f y (1, 1)=(-x +2y )|(1, 1)=1,所以在点(1, 1)沿方向l 的方向导数为 )4sin(2sin cos cos )1 ,1(cos )1 ,1()1,1(πθθθβα+=+=+=∂∂y x f f lf .因此 (1)当4πϕ=时, 方向导数最大, 其最大值为2;(2)当45πϕ=时, 方向导数最小, 其最小值为2-;(3)当43πϕ=及47π时, 方向导数为0.6. 求函数u =x 2+y 2+z 2在椭球面1222222=++c z b y a x 上点M 0(x 0, y 0, z 0)处沿外法线方向的方向导数.解 椭球面1222222=++c z b y a x 上点M 0(x 0, y 0, z 0)处有外法向量为),,(202020c z b y a x =n , 其单位向量为),,(1)cos ,cos ,(cos 202020424242c z b y a x c z b y a x n ++==γβαe .因为u x (x 0, y 0, z 0)=2x 0, u y (x 0, y 0, z 0)=2y 0, u z (x 0, y 0, z 0)=2z 0, 所以, 所求方向导数为γβαcos ),,(cos ),,(cos ),,(000000000),,(000z y x u z y x u z y x u n u z y x z y x ++=∂∂4242422002002004242422)222(1c z b y a x c z z b y y a x x c z b y a x ++=⋅+⋅+⋅++=.7. 求平面1543=++z y x 和柱面x 2+y 2=1的交线上与xOy 平面距离最短的点.解 设M (x , y , z )为平面和柱面的交线上的一点, 则M 到xOy 平面的距离为d (x , y , z )=|z |.问题在于求函数f (x , y , z )=|z |2=z 2在约束条件1543=++z y x 和x 2+y 2=1下的最不值. 作辅助函数:)1()1543(),,(222-++-+++=y x zy x z z y x F μλ.令 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=+=++=+=∂∂=+=∂∂=+=∂∂1154305202402322y x z y x z zF y y F x x F λμλμλ, 解方程组得54=x , 53=y , 1235=z . 因为可能的极值点只有)1235 ,53 ,54(这一个, 所以这个点就是所求之点.8. 在第一卦限内作椭球面1222222=++c z b y a x 的切平面, 使该切平面与三坐标面所围成的四面体的体积最小, 求这切平面的切点, 并求此最小体积.解 令1),,(222222-++=c z b y a x z y x F , 则22a x F x =, 22b y F y =, 22c z F z =. 椭球面上点M (x , y , z )处的切平面方程为0)()()(222=-+-+-z Z c z y Y b y x X a x , 即1222=++c zZ b yY a xX . 切平面在三个坐标轴上的截距分别为x a X 20=, y b Y 20=, z c Z 20=. 切平面与三个坐标面所围的四面体的体积为xyz c b a V 22261⋅=. 现将问题化为求函数xyz cb a V 22261⋅=在条件1222222=++c z b y a x 下的最小值的问题, 或求函数f (x , y , z )=xyz 在1222222=++c z b y a x 下的最大值的问题.作辅助函数)1(),,(222222-+++=c z b y a x xyz z y x F λ.令 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=+=∂∂=+=∂∂=+=∂∂1020202222222222c z b y a x c z xy z F b yxz y F a x yz x F λλλ, 解方程组得3a x =, 3b y =, 3cz =. 于是, 所求切点为)3 ,3 ,3(c ya , 此时最小体积为abcV 23=.。

相关文档
最新文档