《新编基础物理学》第1章习题解答和分析
新编基础物理学上册1-2单元课后答案
新编物理基础学(上、下册)课后习题详细答案王少杰,顾牡主编第一章1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++r r r r其中a ,b ,ω均为正常数,求质点速度和加速度与时间的关系式。
分析:由速度、加速度的定义,将运动方程()r t r对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。
解:/sin()cos()==-++r r r r rv dr dt a t i a t j bk ωωωω2/cos()sin()a dv dt a t i t j ωωω⎡⎤==-+⎣⎦r r r r1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。
其中0v 是发动机关闭时的速度。
分析:要求()v v x =可通过积分变量替换dxdvvdt dv a ==,积分即可求得。
证:2d d d d d d d d v x vv t x x v t v K -==⋅= d Kdx v =-v⎰⎰-=x x K 0d d 10v v v v , Kx -=0ln v v0Kx v v e -=1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。
(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。
写出质点的运动学方程)(t r ρ表达式。
对运动学方程求一阶导、二阶导得()v t r 和()a t r ,把时间代入可得某时刻质点的位置、速度、加速度。
解:(1)由2,x t =得:,2x t =代入248y t =-可得:28y x =-,即轨道曲线。
新编基础物理学(王少杰、顾牡)版本)上册
1、质点作曲线运动[ D ](3)v dtds =;(D )只有(3)是对的。
2、质点沿半径为R [ B ](B) 0,t R π2 3、一运动质点在[ D ](D) 22)()(dt dy dt dx +4、一小球沿斜面[ B](B )t=2s ;5、一质点在平面(B )变速直线运动;6.质量为m 的小球在向心力作用下j mv B 2)(-7.一质点作匀速率圆周运动(C)它的动量不断改变,对圆心的角动量不变;8、质点在外力作用下运动时(B )外力的冲量为零,外力的功一定为零;9.选择正确答案(A)物体的动量不变,则动能也不变;10.人造卫星绕地球作圆运动(D)角动量守恒,动能不守恒;11.质点系内力可以改变 (C )系统的总动能;12.一力学系统由两个质点组成(C 动量守恒、但机械能和角动量守恒与否不能断定;13.对功的概念说法正确的是(C) 质点沿闭合路径运动,保守力对质点做的功等于零;14.用绳子系着一物体;(D )重力、张力都没对物体做功;15.狭义相对论中的相对性原理;(C) (3),(4);16.狭义相对论中的光速不变原理;(C) (3),(4);17.边长为a 的正方形薄板静止于惯性系S ;(B)0.62a ;18.有一直尺固定在系中; 45)(等于C ;19.电场强度qF E =;(D )任何电场。
; 20.下面列出的真空中静电场的场强公式[ D ] 半径为R ..r rR E 302εσ=; 21.一个带负电荷的质点22.如图所示,闭合面S 内有一点电荷q(B) S 面的电通量不变, P 点场强改变 23.若匀强电场的电场强度为E ;(B )E a 221π;24.下列说法正确的是(C)通过闭合曲面S 的总电通量,仅仅由S 面内所包围的电荷提供;24.静电场的环路定理⎰=∙0l d E 说明静电场的性质是;(D )静电场是保守场.25.下列叙述中正确的是(D) 场强方向总是从电势高处,指向电势低处。
新编物理学基础课后习题答案
i AB CD
0 I vl 1 1 ( ) 2 a vt a b vt
I
aA b D l
方向为顺时针方向。 (2) 选面积元dS = ldr a b 0 I 0 l I a b Φ a l dr ln 2 r 2 a
r v
B
C
dr
I aA b D l B C
v
解:(1) 任意时刻 t,AB、CD边到导线的距离分别 为 a +v t 和 a +b + v t 0 I 0 I BAB BCD 2 (a vt ) 2 (a b vt )
AB l vBAB (A B)
CD l vBCD (D C)
0 0 0
3-7 如图所示,长直导线AB中的电流 I沿导线向上, 并以 dI/dt=2A/s的变化率均匀增长。导线附近放一个 与之共面的直角三角形线框,其一边与导线平行,位 置及线框尺寸如图(设a =10cm, b=20cm, c = 5.0cm) 所示。求此线框中产生的感应电动势的大小和方向。 A Y 0 I 解: dx 处 的B 2 x I 0.15 0 I Φ s B dS 0.05 y dx b 2 x y 0.15 x y y 2(0.15 x ) O x dx X 0.1 0.2 a B c
k
R rk 2eR (2k 1) 2 rk2 1 12 1 k 50.5 50 (条) 4 R 2 0.5 10 400 2
2
4-15 波长范围在450~650nm之间的复色平行光垂直 照射在每厘米有5000条刻线的光栅上,屏幕放在透镜 的焦平面处,屏上第二级光谱各色光在屏上所占范围 的宽度为35.1cm,求透镜的焦距f 。 1 cm 解: a b (a b)sin k 2 5000 21 2 450 0 sin 1 0.45 26.74 1 a b 2 103
大学物理习题答案解析第一章
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);tsd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗? 1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 42=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin=', t T R y π2cos -='坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t vi j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==ttt t 0)d 46(d d j i a vvj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值. 解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程 222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到. 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hlαarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin ,则船到达正对岸所需时间为。
《新编大学物理》(上、下册)教材习题答案
答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
新编基础物理学(王少杰、顾牡)版本)答案
1.已知质点的运动方程为; a = 4i j -+。
2.说明质点做何种运动时; 变速率曲线运动;变速率直线运动 3.一质点运动方程为26x t t =-; 8m;10m 4.飞轮作加速转动时; 26m s ; 24m s ;5.一个力F 作用在质量为kg 0.1的质点上;16N S ; 176J ;6.如图为一圆锥摆; 0 ;2m g πω ;2m gπω;7.一质量为m 的物体;0m v ;竖直向下; 8.一质量为m 小球;竖直向上;mgt;9.一颗子弹在枪筒里前进时; 0.003s; 0.6N*S; 2g ; 10.一质点在几个力同时作用下; 38J ; 11.一人把质量为10kg 的物体; 196 ; 216; 12.二质点的质量各为; 1211()G m m ab--;13.狭义相对论是建立在; 伽利略 ; 14.一光子以速度c 运动; c; 15.在测量物体长度中; 最长 ; 最短 ; 16.一观察者测量得沿尺长;32c ;17.静止时边长为a 的立方体;3221a u c -;18.一点电荷q 位于一立方体中心;6Oq ε; 0 ;24Oq ε;19.描述静电场性质的两个物理量是;E ;u ;F E q=;0u Pu E dl ==⎰;20.如图,真空中两个点电荷;O Q ε;0;201094QR πε;21.如图示,两个平行的无限大;2Oσε;32O σε;2Oσε; 方向向右; 方向向右; 方向向左;22.图中曲线表示一种球对称性静电场;均匀带电实心球; 23.真空中有一半径为R 的半圆细环;4O Q Rπε;4O qQ Rπε-;24.如图示,在带电量为q 的点电荷;11()4O abqq r r πε-;25.如图所示,负电荷Q 的电场中有b a ,两点;b; a ; 增加; 26.在点电荷q 的电场中;7210C --⨯;27一带电量为Q 的导体环;Q - ; Q ;28.一孤立金属球带电量Q +;径向方向向外;0;电荷均匀分布于金属球的外表面;29.在带电量为Q +的金属球外面;24Q rπ; Q ;204r Q rπεε;0rQεε;30.一平行板电容器,充电后与电源保持连接;r ε; 1; r ε; 31.半径为0.5cm 的无限长的直圆柱形导体上; 0 ;32.在安培环路定理;_环路所包围的所有稳恒电流的代数和;环路上的磁感应强度;环路内外全部电流所产生的磁场的叠加;33.在均匀磁场中放置两个面积相等;相等;34.一平面实验线圈的磁矩大小为;0.5T ;沿y 轴正向;35.如右图,无限长直导线中流有的电流分别为;不相等;0123()I I I μ--;01()I μ-;36.无限长直圆筒入在相对磁导率为;2Irπ;02r Irμμπ;37.三根无限长载流直导线;5I; 38.一自感线圈中;0.4H;39.产生动生电动势的非静电场力;洛伦兹 ; 涡旋电场;。
(完整版)大学物理学(课后答案)第1章
(完整版)⼤学物理学(课后答案)第1章第1章质点运动学习题⼀选择题1-1 对质点的运动,有以下⼏种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的⽅向相同(B)在某⼀过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的⼤⼩和⽅向不变,其速度的⼤⼩和⽅向可不断变化 (D)在直线运动中,加速度不断减⼩,则速度也不断减⼩解析:速度是描述质点运动的⽅向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动⽅程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 ⼀质点在平⾯上作⼀般曲线运动,其瞬时速度为v ,瞬时速率为v ,某⼀段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的⼤⼩即瞬时速率,故v =v ;平均速率sv t=,⽽平均速度trv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度⽅向⼀定指向切向,所以法向加速度也⼀定为零 (B)法向分速度为零,所以法向加速度也⼀定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度⼀定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度⼀定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为⼤于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-?,得到20112kt v v =+,故答案选B 。
大学物理第一章课后习题答案
1.1 一质点在Oxy 平面内运动,运动方程为)SI (53+=t x ,)SI (432/2-+=t t y 。
(1)以时间t 为变量,写出质点位矢的表达式;(2)求出质点速度分量的表达式,并计算s 4=t 时,质点速度的大小和方向;(3)求出质点加速度分量的表达式,并计算出s 4=t 时,质点加速度的大小和方向。
解:(1))SI (53+=t x ,)SI (432/2-+=t t y 质点位矢的表达式为:j t t i t j y i x r )432/()53(2-+++=+=; (2)m/s 3)53(=+==t dt d dt dx v x ,m/s )3()432/(2+=-+==t t t dt d dt dy v ys 4=t ,m/s 3=x v ,m/s 7=y v ,m/s 6.7m/s 5822==+=y x v v v设θ是v 和x v 的夹角,则37tan ==x y v v θ,8.66=θ°; (3)2m/s 0)3(===dt d dt dv a x x ,2m/s 1)3(=+==t dt ddt dv a y ys 4=t ,2m/s 0=x a ,2m/s 1=y a ,222m/s 1=+=y x a a a方向沿y 轴方向。
1.2 质点在Oxy 平面内运动,运动方程为)SI (3t x =,)SI (22t y -=。
(1)写出质点运动的轨道方程;(2)s 2=t 时,质点的位矢、速度和加速度。
解:(1)质点运动方程)SI (3t x =,)SI (22t y -=,质点运动的轨道方程为:9/2)3(222x xy -=-=或2189x y -=;(2)j t i t j y i x r )2()3(2-+=+=,s 2=t 时: j i r 26-=j t i v 23-=,s 2=t 时:j i v43-=j a 2-=,s 2=t 时:j a2-=1.3质点沿直线运动,其坐标x 与时间t 有如下关系:)SI (cos t Ae x tωβ-=(A 和β皆为常量)。
《新编大学物理》(上、下册)教材习题答案#优选.
第1章 质点运动学一、选择题题1.1 :答案:[B]提示:明确∆r 与r ∆的区别题1.2:答案:[A]题1.3:答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4:答案:[C]提示: 21r r r ∆=-,12,R R r j r i ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5:答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6:答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项 题1.7:答案:[D] 北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6提示: 2915dx v t t dt ==-,t=0.6时,v=0题1.10:答案:(1)21192y x =- (2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-v a j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j , r 和v 垂直,即0•=r v ,得t=3s题1.11:答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt =====题1.12:答案:1/m sπ 提示: 200t dv v v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t gt =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14:答案:8, 264t 提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题题1.15: 解:(1)3t dv a t dt == 003v t dv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032s t ds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S t R θ==∴ (3)当a 与半径成45角时,n a a τ= 2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 00v t dv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0kt v v e-= 0kt dx v e dt -=∴,000x t kt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题题2.1:答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同D .后半句错误,如:匀速圆周运动题2.2:答案:[B]提示:y 方向上做匀速运动:2y y S v t t ==x 方向上做匀加速运动(初速度为0),F a m= 202t x v adt t ==⎰,2023tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3:答案:[B]提示:受力如图MgF 杆'F 猫mg 设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m g a M M+==题2.4 :答案:[D]提示:a a A22A B A B mg T ma T ma a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S ) 2A B a a =∴题2.5:答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos60)()1010m m v m v =+共 0=22v v 共题2.6:答案:[C]提示:R θθRh-R 由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7:答案:[B]提示: 运用动量守恒与能量转化题2.8:答案:[D]提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin G y P mgv mg ==∴题2.9:答案: [C]题2.10:答案: [B]提示: 受力如图f TF由功能关系可知,设位移为x (以原长时为原点)02()xF mg Fx mgx kxdx x kμμ--=⇒=⎰ 弹性势能 2212()2p F mg E kx kμ-== 二、填空题题2.11:答案:2mb提示: '2v x bt == '2a v b ==2F ma mb ==∴题2.12:答案:2kg 4m/s 2提示: 4N 8Nxy由题意,22/x a m s = 4x F N =8y F N = 2F m kg a== 24/y y F a m s m ==题2.13:答案: 75,1110提示: 由题意,32()105F a t m ==+ 207/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14:答案:180kg 提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15:答案: 11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W mgR -外题2.17:答案:-12提示:3112w Fdx J -==⎰题2.18: 答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19:答案: 02mg k ,2mg,题2.20:答案:+=0A ∑∑外力非保守力三、计算题题2.21: 解:(1)=m F xg L 重 ()m f L x g Lμ=- (2)1()(1)g a F f x g m Lμμ=-=+-重 (3)dv a v dx =,03(1)v L L g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。
新编基础物理学第二版习题解答
习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。
若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象,有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小MmmFF m M=+发生变化。
2-2.在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m与M 2之间的作用力是否发生变化?解:受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有111T M g M a -=又12T T =,则2M m F =1122M mgM M m++当124M M m ==时 当125,3M m M m ==时2109M m mg F =,发生变化。
2-3.质量为M 的气球以加速度a v匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。
若气球仍能向上加速,求气球的加速度减少了多少?题图2-2题图2-1解图2-1解图2-2解:设f r为空气对气球的浮力,取向上为正。
分别由解图2-3(a )、(b)可得 由此解得2-4.如题图2-4所示,人的质量为60kg ,底板的质量为40kg 。
人若想站在底板上静止不动,则必须以多大的力拉住绳子? 解:设底板和人的质量分别为M ,m ,以向上为正方向,受力图如解图2-4(a )、(b)所示,分别以底板、人为研究对象,则有3'0T F mg +-=F 为人对底板的压力,'F 为底板对人的弹力。
新编基础物理学(王少杰版)章末测验及答案汇总.
专业班级 学号 姓名机械振动本章知识点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,简谐运动的合成,阻尼振动,受迫振动,共振本章重点:简谐振动的特征及其运动方程,简谐振动的旋转矢量表示法,振动的能量,同方向同频率简谐运动的合成 一、填空题1.一个给定系统做简谐振动时,其振幅和初相位决定于 、 和 ;弹簧振子做简谐振动时,其频率决定于 和 .2.一弹簧振子,弹簧的劲度系数为0.32 N/m ,重物的质量为0.02 kg ,则这个系统的固有角频率为 rad/s ,相应的振动周期为 s .3.在两个相同的弹簧下各悬挂一物体,两物体的质量比为4:1,则两者做简谐运动的周期之比为 . 4.质点做简谐运动的位移和时间关系如图1所示,则其运动方程为 . 5.两个同频率的简谐运动曲线如图2所示,则2x 的相位比1x 的相位落后 .6.两个简谐振动曲线如图3所示,两个简谐振动的频率之比12:νν= ,加速度最大值之比a 1m :a 2m = ,初始速率之比1020:=v v .7.简谐振动的方程为)cos(ϕω+=t A x ,势能最大时位移x= ,此时动能E k = .8.已知一质点做简谐运动曲线如图4所示,由图可确定振子在t= s 时速度为零;在t= s 时弹性势能最小;在(__________)s 时加速度取正的最大值.9.两个同方向同频率的简谐振动,其合振动的振幅为0.20m ,合振动与第一分振动的相位差为60度,已知第一分振动的振幅为0.10m ,则第二分振动的振幅为 m ,第二分振动与第一分振动的相位差为 .10.某谐振子同时参与两个同方向的简谐运动,其运动方程分别为))(3/4cos(10321m t x ππ+⨯=-;))(4cos(10422m t x ϕπ+⨯=-当ϕ= 时合振动的振幅最大,其值max A = ;当ϕ= 时合振动的振幅最小,其值min A = .11.图5中所示为两个简谐振动的振动曲线,若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=11x x xt/s7x/m0.050.10 图1x 1xx 2to图32 1xt/s图4图5x 2x 1 xt图2(____________________)。
大学物理第1章习题解答(全)ppt课件
23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为
新编基础物理学第1章习题解答和分析
第1章质点运动学1-1. 一质点沿x 轴运动,坐标与时间的变化关系为 x = 8t 3— 6t ( m ),试计算质点(1)在最初2s 内的平均速度,2s 末的瞬时速度;⑵ 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度 分析:平均速度和瞬时速度的物理含义不同,分别用V ―和v dx 求得;平均加速度和瞬时 tdt加速度的物理含义也不同,分别用 a v 和ta 史求得. dt 解:(1)在最初2s 内的平均速度为2s 末质点的瞬时速度为21-2.一质点在xOy 平面内运动,运动方程为x 2t(m), y 4t 8(m).(1 )求质点的轨道方程并画出轨道曲线; (2 )求t = 1 s 禾口 t= 2 s 时质点的位置、速度和加速度• 分析:将运动方程 x 和y 的两个分量式消去参数 t ,便可得到质点的轨道方程•写出质点的运动 学方程r(t)表达式•对运动学方程求一阶导、 二阶导得v(t)和a(t),把时间代入可得某时刻质点 的位置、速度、加速度.解:(1) 由 x 2t,得:t —, 代入 y 4t 282 2 可得:y x 8,即轨道方程.画图略 (2)质点的位置矢量可表示为v 2 v (4t 8)jv2ti 则速度\/v dr v v v 2i 8t j 加速度dt \/v dv v 8ja 当t=1s 时,有dt r r r r r r 1 r r 4 j (m), v 2i 8j (m s ), a 8j m s r 2ix x(2) x(0) t t (8 23 6 2) 0 2 26(m s 1)V 2等 24t 2 6 190(m s ) (2) 1s 末到3s 末的平均加速度为v(3) v(1) (24 32 6) (24 6) 96(m s 2)3s 末的瞬时加速度a 3dv dt48t 2 144 (m s )r r r r r r 1 r r 2 r 4i 8j(m), v 2i 16j(m s 1), a 8j m s 21-3.一质点的运动学方程为x t 2, y (t 1)2 , x 和y 均以m 为单位,t 以s 为单位.求: (1) 质点的轨迹方程;(2) 在t 2s 时质点的速度和加速度•分析: 同1-2.解:(1)由题意可知:x X), y 由x t 2,可得t , x ,代入y (t 1)2 整理得:一 y x 1即轨迹方程(2)质点的运动方程可表小为 1)2[ r r t 2i r i (t 则v d v r rv 2ti 2(t 1)jdtv dv r ra 2i 2jdt 因此 ,当t 2s 时,有r r r 1 r r r 2v 4i 2j(m s ), a 2i 2j(m s ) 1-4. 一枚从地面发射的火箭以 20m s 2的加速度竖直上升后,燃料用完,于是像一个自由质点一样运动•略去空气阻力并设 g 为常量,试求:(1 )火箭达到的最大高度;(2 )它从离开地面到再回到地面所经过的总时间 分析:分段求解:0 t 30s 时,a 20m s 2,可求出v 1,x 1 ;t > 30s 时,a g .可求出v 2(t),v x 2894 9.8t 当t =2s 时,有 X 2(t) •当V 2 0时,火箭达到的最大高度解:(1)以地面为坐标原点,竖直向上为 求出t 、x .再根据x 0,求出总时间 x 轴正方向建立一维坐标系,设火箭在坐标原点时,t=0s ,且=30s.则当 0wt < 30,由 a xdv x dt ,得 300 20dt V x0 dv x , 解得v x 20t当W 由V x 则当火箭未落地 解得30s 时v 1 600m sdxdt , 得3020tdt 0 为 9000m且t > 30s,又有t30 9.8dtx 1 dx ,同理由v x dt 得t30(894 9.8t)dtxdxx1解得x 4.9t2 894t13410…①由v x20,得t91.2s, 代入①得x max27.4km(2)由①式可知, 当x0时,解得t1166st216s<30s (舍去)2 21-5•质点沿直线运动,加速度a 4 t ,式中a的单位为m s , t的单位为s,如果当t=3s 时,x=9m,v 2m s 1,求质点的运动方程.分析本题属于第二类运动学问题,可通过积分方法求解解由分析可知v dv v0t0atdt 0(4t2)dt积分得v v°4t It33由x t t 1 3x dx x0°vdt0(v°4t t )dt3得2 1 4x X o + V o t 2t t12将t=3s时,x=9m,v 2m s1代入上两式中得v01m s 1,x o=O.75m所以质点的运动方程为2 1 4x 0.75 t 2t2t4(m) 121-6. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度大小平方成正比,即dv/dt kv2,式中k为常量•试证明电艇在关闭发动机后又行驶xkx距离时的速度大小为v v°e .其中v o是发动机关闭时的速度大小.分析:要证明v〜x关系,可通过积分变量替换将时间变量替换掉,即 a 史v包,积分即dt dx '常量•求:(1) t 时刻质点的加速度大小及方向;(2) 在何时加速度大小等于 、、2b ;可证明•证:分离变量得 两边积分证得dv dv dx dv — --- ----- v - dt dx dt dxdv kdxvv 1 xdv kdx V o v 0 v v 0e kxln — v o 1-7.—质点沿半径为 R 做圆周运动,运动学方程为kxs v o t -bt 2,其中v o ,b 都是大于零的 2 分析:由质点在自然坐标系下的运动学方程s s t ,求导可求出质点的运动速率v 兰,而 dt切向加速度a t 牛,法向加速度a n 2 __________________________________ —,总加速度a .. a 2 a 2,当a 2b 时,即可求解:(1 )质点的运动速率五 v 0 bta t法向加速度 a n加速度大小a方向 业b dtvt (v 。
新编大学物理课后习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别 题1.2: 答案:[A] 题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R rj r i==-,21v v v ∆=-,12,v v vi v j=-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返 题1.6: 答案:[D] 提示:a=2t=d dtv ,2224tv tdt t==-⎰,02tx xvdt -=⎰,即可得D 项题1.7: 答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+vv v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率 题1.9:答案:2915t t -,0.6提示: 2915dx v t tdt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dtdt=+v i j(2) t=1s 时,24t =-v i j ,4d dt==-v a j(3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r ∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s提示:2(2)2412(/)dv d x a v x m s dtdt=====题1.12: 答案:1/m s 22π提示:200tdvv v dt tdt=+=⎰,11/t vm s==,201332tvdt t R θπ===⎰,222r R π∆==题1.13: 答案:215()2t v t gt-+-i j提示: 先对2(/2)vt g t =-r j求导得,0()yv gt =-vj与5=v i 合成得05()v g t =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQv R R t dt τ==,88a R τ==,2264n dQ a R tdt ⎛⎫== ⎪⎝⎭三、计算题 题1.15: 解:(1)3tdv atdt == 003v tdv tdt =∴⎰⎰ 232v t∴=又232ds v tdt==232stds tdt=∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434nva tR==4334tt=∴ 34t S=∴题1.16: 解:(1)dv a kvdt ==- 0vtdv kdt v=-∴⎰⎰, 0lnv ktv =-(*)当012v v =时,1ln 2kt=-,ln 2t k=∴(2)由(*)式:0kt v v e -=0kt dx v e dt -=∴,000x tkt dx v e dt -=⎰⎰(1)kt v x e k-=-∴ 第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2yy Sv t t==x 方向上做匀加速运动(初速度为0),F a m=22tx v a d t t ==⎰,223txxt S vdt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg ='F F = 杆受力1()F M g F M m g=+=+1()F M m ga MM+==题2.4 : 答案:[D] 提示:Ba BTTa A Tmg22AB A B m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aag=(2A Ba a=,通过分析滑轮,由于A 向下走过S ,B 走过2S )2A Ba a=∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos 60)()1010m m v m v =+共0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)2200112()22m v m v m gh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化 题2.8: 答案:[D] 提示:θv 0v x vy由机械能守恒得20122m gh m vv gh=⇒=0sin y v v θ=sin 2Gy Pmgv mg ghθ==∴题2.9: 答案: [C] 题2.10: 答案: [B] 提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF m g Fx m gx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题 题2.11: 答案:2mb 提示: '2v x bt =='2a v b== 2Fm a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/xam s= 4x F N=8y F N=2F m k ga==24/y y F a m sm==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+27/5v adt m s⇒==⎰当t=2时,1110a =题2.14: 答案:180kg 提示:由动量守恒,=m S -S m人人人船相对S ()=180kgm ⇒船题2.15: 答案:11544+i j提示:各方向动量守恒题2.16: 答案:()mv +i j ,0,-mgR提示:由冲量定义得 ==()(m v m v m v --=+I P P i j ij末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W m gR-外题2.17: 答案:-12 提示:3112w F dx J -==⎰题2.18:答案: mgh ,212kx ,M m G r- h=0,x=0,r =∞ 相对值题2.19: 答案: 02m g k ,2mg ,0m gk题2.20: 答案: +=0A ∑∑外力非保守力三、计算题 题2.21: 解:(1)=m Fxg L 重()m f L x gLμ=-(2)1()(1)g a F f x gmLμμ=-=+-重(3)dv a v dx=,03(1)vLL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v L g μ=-题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。
新编物理学基础课后习题答案
简答题:简述热力学第一定律和第二定律的内容,并指出它们在物理学中的意义。
热力学基础习题答案
简答题
简述分子动理论的基本内容,并说明气体分子平均自由程与哪些因素有关。
答案
分子动理论的基本内容包括分子在永不停息地做无规则运动,分子之间存在着引力和斥力,分子之间存在着空隙。气体分子平均自由程与气体压强、温度和分子的平均碰撞频率有关。
总结词
能够运用动量和角动量的知识解决实际问题。
总结词
理解动量守恒和角动量守恒的条件和意义。
动量与角动量习题答案
动量与角动量习题答案
01
02
03
详细描述
动量是描述物体运动状态的物理量,计算公式为 $p = mv$,其中 $m$ 是物体的质量,$v$ 是物体的速度。
角动量是描述物体旋转运动的物理量,计算公式为 $L = mr^2omega$,其中 $m$ 是物体的质量,$r$ 是物体到旋转轴的距离,$omega$ 是物体的角速度。
法拉第电磁感应定律描述了当磁场发生变化时会在导体中产生感应电动势的现象。楞次定律指出感应电流的方向总是阻碍引起感应电流的磁通量的变化。
磁场
安培环路定律
法拉第电磁感应定律
磁场与电磁感应习题答案
光学部分习题答案
04
在此添加您的文本17字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
康普顿散射证明了光的粒子性,并为量子力学的发展奠定了基础。
光的量子性习题答案
量子力学部分习题答案
05
不确定性原理
由海森堡提出,指在量子力学中无法同时精确测量某些物理量,如位置和动量。
测量
在量子力学中,测量是一个重要的概念,它会影响到量子态的塌缩和结果的不确定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《新编基础物理学》第1章习题解答和分析第1章 质点运动学1-1. 一质点沿x 轴运动,坐标与时间的变化关系为x =8t 3-6t (m ),试计算质点(1) 在最初2s 内的平均速度,2s 末的瞬时速度;(2) 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度. 分析:平均速度和瞬时速度的物理含义不同,分别用x t ∆=∆v 和d d x t =v 求得;平均加速度和瞬时加速度的物理含义也不同,分别用a t∆=∆v 和d d a t =v 求得. 解:(1) 在最初2s 内的平均速度为31(2)(0)(8262)026(m s )2x x x t t -∆-⨯-⨯-====⋅∆∆v2s 末质点的瞬时速度为 212d 24690(m s )d x t t-==-=⋅v (2) 1s 末到3s 末的平均加速度为22(3)(1)(2436)(246)96(m s )2a t t -∆-⨯---====⋅∆∆v v v3s 末的瞬时加速度 23d 48144(m s )d a t t-===⋅v1-2.一质点在xOy 平面内运动,运动方程为22(m),48(m)x t y t ==-.(1)求质点的轨道方程并画出轨道曲线;(2)求=1 s =2 s t t 和时质点的位置、速度和加速度. 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程.写出质点的运动学方程)(t r ρ表达式.对运动学方程求一阶导、二阶导得()t r v 和()a t r ,把时间代入可得某时刻质点的位置、速度、加速度.解:(1) 由2,x t = 得:,2xt = 代入248y t=-可得:28y x =-,即轨道方程. 画图略(2)质点的位置矢量可表示为22(48)r ti t j =+-v v v则速度d 28d r i t j t==+v v v v v 加速度d 8d a jt==v v v v当t =1s 时,有1224(m),28(m s ),8m s r i j i j a j --=-=+⋅=⋅v r r r r r r r r当t =2s 时,有1248(m),216(m s ),8m s r i j i j a j --=+=+⋅=⋅v r r r r r r r r1-3.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位. 求:(1)质点的轨迹方程;(2)在2s t =时质点的速度和加速度. 分析: 同1-2.解:(1)由题意可知:x ≥ 0,y ≥ 0,由2x t =,可得t =,代入2(1)y t =- 整理得:1=即轨迹方程(2)质点的运动方程可表示为22(1)r t i t j =+-r r r则d 22(1)d rti t j t ==+-v r r v vd 22d a i jt==+v r r v v因此, 当2s t =时,有1242(m s ),22(m s )i j a i j --=+⋅=+⋅r r r r r r v1-4.一枚从地面发射的火箭以220m s -⋅的加速度竖直上升0.5min 后,燃料用完,于是像一个自由质点一样运动. 略去空气阻力并设g 为常量,试求: (1)火箭达到的最大高度; (2)它从离开地面到再回到地面所经过的总时间. 分析:分段求解:030s t ≤≤时,220m s a -=⋅,可求出11,x v ;t >30s 时,g a -=.可求出2()t v ,2()x t .当20=v 时,火箭达到的最大高度, 求出t 、x . 再根据0x =,求出总时间. 解:(1)以地面为坐标原点,竖直向上为x 轴正方向建立一维坐标系,设火箭在坐标原点时,t =0s ,且0.5min=30s.则当0≤ t ≤30s ,由d d xxa t =v ,得3020d d xxt =⎰⎰v v , 解得20x t=v 当130s=v时11600m s -=⋅v 由d d xx t=v, 得130020d d x t t x=⎰⎰,则19000m x =当火箭未落地, 且t >30s, 又有221309.8d d x tx t -=⎰⎰v v v解得28949.8x t=-v同理由d d xxt=v 得 130(8949.8)d d txx t t x-=⎰⎰解得24.989413410x t t =-+- …①由20x =v ,得91.2s t =,代入①得max 27.4kmx ≈(2)由①式可知,当0x=时,解得 1166s t ≈216s<30s t ≈(舍去)1-5.质点沿直线运动,加速度24a t =-,式中a 的单位为2m s -⋅,t 的单位为s ,如果当t =3s 时,x =9m ,12m s -=⋅v ,求质点的运动方程.分析 本题属于第二类运动学问题,可通过积分方法求解.解 由分析可知0200d d (4)d tta t t t ==-⎰⎰⎰vv v 积分得30143t t =+-v v由030001d d (4)d 3xt tx x t t t t ==+-⎰⎰⎰v v得24001212x x t t t =+-+v将t =3s 时,x =9m ,12m s -=⋅v 代入上两式中得101m s -=-⋅v ,x 0=0.75m所以质点的运动方程为2410.752(m)12x t t t =-+-1-6. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度大小平方成正比,即2d /d t k =-v v , 式中k 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度大小为 0kx e -=v v . 其中0v 是发动机关闭时的速度大小.分析:要证明~x v 关系,可通过积分变量替换将时间变量替换掉,即d d d d a t x==v vv ,积分即可证明. 证: 2d d d d d d d d k =⋅==-v v v v v x t x t x分离变量得d d k x =-vv两边积分001d d x k x =-⎰⎰vv v v ,ln kx =-vv证得kx e -=v v1-7.一质点沿半径为R 做圆周运动,运动学方程为212s t bt =+v ,其中v 0,b 都是大于零的常量.求: (1)t 时刻质点的加速度大小及方向; (2;分析:由质点在自然坐标系下的运动学方程()t s s =,求导可求出质点的运动速率d d st =v ,而切向加速度dd t a t=v ,法向加速度2naρ=v ,总加速度22na a a +=τ,当a =时,即可求出t . 解:(1)质点的运动速率0d d sbt t==+v v切向加速度d d t a b t ==v法向加速度220()n bt a Rρ+==v v加速度大小a ==方向()211tan tan n t bt aa bRθ--+==v(2)当a =时,可得22220()2bt b b R ⎡⎤++=⎢⎥⎣⎦v解出t b=v1-8. 物体以初速度120m s -⋅被抛出,抛射仰角60°,略去空气阻力,问:(1)物体开始运动后的1.5s 末,运动方向与水平方向的夹角是多少? 2.5s 末的夹角又是多少? (2)物体抛出后经过多少时间,运动方向才与水平成45°角?这时物体的高度是多少?(3)在物体轨迹最高点处的曲率半径有多大? (4)在物体落地点处,轨迹的曲率半径有多大?分析:(1)建立坐标系,写出初速度0v v ,求出()t vv、θtan ,代入t 求解.(2)由(1)中的θtan 关系,求出时间t ;再根据y 方向的运动特征写出()t y ,代入t 求y .(3)根据物体在轨迹最高点处,0y=v,且加速度2na a g ρ===v,可求出ρ. (4)由对称性,落地点与抛射点的曲率相同2cos na g θρ==v,求出ρ. 解:以水平向右为x 轴正向,竖直向上为y 轴正向建立二维坐标系 (1) 初速度001020cos6020sin6010(m s )i j i -=+=+⋅v r r r v,加速度29.8(m s ),a j -=-⋅r r则任一时刻109.8)at i t j =+=+v v r r v v v………………① 与水平方向夹角有9.8tan 10t θ=……………………………② 当t =1.5s 时tan 0.262,1441'θθ==︒当t =2.5s 时tan 0.718,3541'θθ=-=-︒ (2) 此时tan 1θ=, 由②得t =0.75s物体的高度22110.759.80.7510.23(m)22yoy t gt =-=-⨯⨯=v(3)在最高处2110m s ,n a gρ-=⋅==v v得210.2mgρ==v(4)由对称性可知,落地点的曲率与抛射点的曲率相同. 由解图1-8得210cos cos 4.9(m s )20x n a a g gg θθ-=====⋅v v240082(m)4.9n a ρ===v1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为110m s -⋅,切向加速度的大小为20.2m s -⋅.求汽车的法向加速度和总加速度的大小和方向. 分析:由某一位置的ρ、v 求出法向加速度na ,再根据已知切向加速度τa 求出总加速度a v的大小和方向. 解:法向加速度的大小222100.25(m s ),400na ρ-===⋅v 方向指向圆心 总加速度的大小222220.20.250.32(m s )n a a a τ-=+=+=⋅由解图1-9得tan 0.8,3840'na a ταα===︒解图1-8解图1-9则总加速度与速度夹角9012840'θα=︒+=︒1-10. 质点在重力场中作斜上抛运动,初速度的大小为0v ,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度、法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空气阻力).已知法向加速度与轨迹曲率半径之间的关系为2n a ρ=v . 分析:在运动过程中,质点的总加速度 a g =.由于无阻力作用,所以回落到抛出点高度时,质点的速度大小0=v v ,其方向与水平线夹角也是α.可求出n a ,如解图1-10所示.再根据法向加速度与轨迹曲率半径之间的关系2n a ρ=v ,解出曲率半径. 解:切向加速度tsin a g a =法向加速度a g a ncos =因为2na ρ=v ,所以220cos n a g ρα==v v1-11.在生物物理实验中用来分离不同种类的分子的超级离心机的转速为313.1410rad s -⨯⋅.在这种离心机的转子内,离轴10cm 远的一个大分子的向心加速度解图1-10是重力加速度的几倍?分析 根据定义可得向心加速度的大小2na r ω=.解 所求倍数2222425244(610)0.1=410609.8r n r g g ωππ⨯⨯==⨯⨯1-12. 一质点在半径为0.10m 的圆周上运动,其角位置变化关系为324(rad)t θ=+.试求:(1) 在t =2s 时,质点的法向加速度和切向加速度大小各为多少?;(2) 当切向加速度大小恰等于总加速度大小的一半时,θ值为多少?(3) 在什么时刻,切向加速度和法向加速度恰好大小相等?分析 本题为物体作圆周运动的角坐标表示下的第一类运动学问题,求导可得到角速度和角加速度,再由角量与线量的关系求得切向加速度ta 和法向加速度na .解 (1) 角速度和角加速度分别为2d 12d t t θω==d 24d t tωβ==法向加速度22222n 0.1(12) 2.3010(m s )a r t ω-==⨯=⨯⋅切向加速度2t d 2.4 4.8(m s )d a r t tβ-====⋅v(2) 由t /2a a =,2222t n t 4aa a a =+= 得 22t n3a a =22243(24)(12)r t r t =33t =332424 3.15(rad)t θ=+=+⨯=(3) 由 nta a =,即22(12)24r t rt=,解得0.55s t =1-13.离水面高度为h 的岸上有人用绳索拉船靠岸,人以恒定速率0v 拉绳子,求当船离岸的距离为s 时,船的速度和加速度的大小. 分析:收绳子速度和船速是两个不同的概念.小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为0v .可以由0v 求出船速v 和垂直绳的分量1v .再根据21naρ=v 关系,以及na 与a 关系来求解a .解: 如解图1-13,小船速度沿绳的分量2=v v ,船速2sec θ=v v解图1-13当船离岸的距离为s 时,船速220s h s+=v v船速垂直绳的分量012tan h sθ==v v v则船的法向加速度2211n 2222cos a a as hs hθρ====++v解得2203h a s=v1-14. A 船以130km h -⋅的速度向东航行,B 船以145km h-⋅的速度向正北航行,求A 船上的人观察到的B 船的速度和航向.分析:关于相对运动,必须明确研究对象和参考系.同时要明确速度是相对哪个参照系而言.画出速度矢量关系图求解. 解:如解图1-14所示11A B 30km h ,45km h i j --=⋅=⋅v v r r v vB 船相对于A 船的速度解图1-141BA B A 4530(km h )j i -=-=-⋅v v v r r v v v则速度大小221BA B A 54.1(km h )-=+=⋅v v v方向BAarctan56.3θ==︒v v ,既西偏北56.3︒1-15. 一个人骑车以118km h -⋅的速率自东向西行进时,看见雨滴垂直落下,当他的速率增加至136km h -⋅时,看见雨滴与他前进的方向成120°角下落,求雨滴对地的速度.分析:这是一个相对运动的问题,雨对地的速度不变,画出速度矢量图,就可根据几何关系求解.解:如解图1-15所示,rv v 为雨对地的速度,12,p p v v v v分别为第一次,第二次人对地的速度,12,rp rp v v v v 分别为第一次,第二次雨对人的速度,120θ=︒由三角形全等的知识,可知18012060αβ==︒-︒=︒三角形ABC 为正三角形,则解图1-152136km h r p -==⋅v v ,方向竖直向下偏西30︒.1-16如题图1-16所示,一汽车在雨中以速率1v 沿直线行驶,下落雨滴的速度方向偏于竖直方向向车后方θ角,速率为2v ,若车后有一长方形物体,问车速为多大时,此物体刚好不会被雨水淋湿?分析:相对运动问题,画矢量关系图,由几何关系求解.解:如解图1-16(a ),车中物体与车蓬之间的夹角arctan lh α=若θ>α,无论车速多大,物体均不会被雨水淋湿 若θ<α,如解图1-16(b )则有||||||BC AC AB ==-v 车=sin sin cos tan sin αθθαθ-=-vv v v 雨雨雨雨对车又2=v v 雨则2cos (sin )l hθθ=-v v 车题图1-16解图1-161-17 人能在静水中以11.10m s -⋅的速度划船前进.今欲横渡一宽为m 10.0013⨯、水流速度10.55m s -⋅的大河.他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向?到达正对岸需多少时间? 分析 船到达对岸所需时间由船相对于岸的速度v v 决定,而v v 由水流速度u v 和船在静水中划行速度'v v 确定.画出矢量图由几何关系求解.解 根据解图1-17,有'v =u+v v v v,解得 0.551sin 1.102u α==='v 030α=即应沿与正对岸方向向上游偏300方向划行.船到达正对岸所需时间为31.0510s cos d dt α===⨯'v v1-18.一升降机以2g 的加速度从静止开始上升,在2.0s 末时有一小钉从顶板下落,若升降机顶板到底板的距离h=2.0m ,求钉子从顶板落到底板的时间t , 它与参考系的选取有关吗?分析:选地面为参考系,分别列出螺钉与底板的运动方程,当螺丝落到地板上时,两物件的位置坐标相同,由此可求解.v解图1-17解:如解图1-18建立坐标系,y 轴的原点取在钉子开始脱落时升降机的底板处,此时,升降机、钉子速度为0v ,钉子脱落后对地的运动方程为21012y h t gt =+-v升降机底板对地的运动方程为220122y t gt =+⨯v且钉子落到底板时,有12=y y , 即2012h t gt +-=v20t gt +v解出0.37s t = t 与参考系的选取无关.解图1-18。