相似三角形复习课件公开课
合集下载
相似三角形完整版PPT课件
相似三角形在几何变换中的应用 在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
相似三角形的判定
两角分别相等的两个三角 形相似;两边成比例且夹 角相等的两个三角形相似; 三边成比例的两个三角形
相似。
易错点提示与纠正
忽视相似三角形的定义中对应角 相等和对应边成比例两个条件, 只满足其中一个条件不能判定两
个三角形相似。
在应用相似三角形的性质时,要 注意找准对应边和对应角,避免
出现错误。
利用相似三角形研究电磁学问题
在电磁学中,利用相似三角形原理研究电场、磁场和电磁波的传播规律,如电磁感应、电磁 波辐射等。
06
总结回顾与拓展延伸
知识点总结回顾
相似三角形的定义
对应角相等,对应边成比 例的两个三角形相似。
相似三角形的性质
相似三角形的对应角相等, 对应边成比例,面积比等
于相似比的平方。
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
利用比例中项的性质, 可以简化等比数列的 求和过程,提高计算 效率。
通过相似三角形的比 例中项,可以推导出 等比数列的求和公式。
黄金分割点及其性质应用
黄金分割点是指将一条线段分割为两部分,使得较长部分与较短部分之比等于整条 线段与较长部分之比,其比值为黄金比。
谢谢您的聆听
THANKS
相似三角形的判定
两角分别相等的两个三角 形相似;两边成比例且夹 角相等的两个三角形相似; 三边成比例的两个三角形
相似。
易错点提示与纠正
忽视相似三角形的定义中对应角 相等和对应边成比例两个条件, 只满足其中一个条件不能判定两
个三角形相似。
在应用相似三角形的性质时,要 注意找准对应边和对应角,避免
出现错误。
利用相似三角形研究电磁学问题
在电磁学中,利用相似三角形原理研究电场、磁场和电磁波的传播规律,如电磁感应、电磁 波辐射等。
06
总结回顾与拓展延伸
知识点总结回顾
相似三角形的定义
对应角相等,对应边成比 例的两个三角形相似。
相似三角形的性质
相似三角形的对应角相等, 对应边成比例,面积比等
于相似比的平方。
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
利用比例中项的性质, 可以简化等比数列的 求和过程,提高计算 效率。
通过相似三角形的比 例中项,可以推导出 等比数列的求和公式。
黄金分割点及其性质应用
黄金分割点是指将一条线段分割为两部分,使得较长部分与较短部分之比等于整条 线段与较长部分之比,其比值为黄金比。
公开课相似三角形专题复习 ppt课件
B
D
C
ppt课件
15
A
D
A
B
E
C
D
A
B
E
C
D
B
E
C
AD
α
αα
B
E
C
A
α
B
F D
α
E
α
C
C
B
D
ppt课件α α
OP
α
A
16
思考题:已知:等边△ABC 中,P为直线AC上
一动点,连结BP,作∠BPQ=60°,交直线BC于点
N.
(1)当P在线段AC上时,证明PA·PC=AB ·CN
(2)若P在AC的延长线上,上述关系是否成立?
A
D
A
D
F
F
B
E
C
ppt课件 B
E
C
10
A
△ABE∽ △ECF((21))点点EE为为BBCC上上任任意意一一点点,
若若∠∠BB==∠∠CC==α6,0∠°A, EF= F ∠∠CA,E则F△= A∠BCE,则与△AEBCEF与
的△关E系C还F的成关立系吗还?成立吗?
B
E
C 说A 明理由
A
A
FF F
A
2.若△ABC∽△ADE, 你可以得出什么结论?
D B
“A”型
角: ∠ADE= ∠ B ∠ AED= ∠C
E 边:DE ∥ BC
AD AE DE .
C AB AC BC
AD AE . DB EC
DB EC
.
AB AC
面积: SADE ppt课件
DE 2.
第12讲相似三角形的判定复习课件(共46张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图
大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图
相似三角形ppt课件免费
构造相似三角形解决函数图像问题
在某些情况下,可以通过构造相似三角形来解决与函数图像相关的问题,如求函数的值域、判断函数的单调性等 。
2024/1/27
18
05
相似三角形在生活中的实际应用
2024/1/27
19
建筑设计中视觉效果优化
利用相似三角形原理,建筑师 可以在设计过程中调整建筑物 的比例和角度,使其在视觉上 更加和谐、美观。
的对应边之间的比值相等。
这一性质可以用来解决一些与比 例有关的问题,例如通过已知的 两边长度来求解第三边的长度。
在实际应用中,相似三角形的对 应边成比例这一性质也经常被用
来进行长度或距离的测量。
2024/1/27
9
面积比与相似比关系
相似三角形的面积比等于相似比的平 方,即如果两个三角形相似且相似比 为k,那么它们的面积之比为k^2。
。
14
04
相似三角形在代数中的应用
2024/1/27
15
方程求解问题
2024/1/27
利用相似三角形性质建立方程
通过相似三角形的边长比例关系,可以建立与未知数相关的 方程,进而求解未知数。
构造相似三角形解方程
在某些情况下,可以通过构造相似三角形来简化方程求解过 程,使问题更加直观易懂。
16
不等式证明问题
相似三角形还可以用于解决测量中的视线问题。当测量点与目标点之间 存在障碍物时,可以通过相似三角形原理确定视线与障碍物的交点,进 而计算出目标点的位置。
2024/1/27
在地形测量中,相似三角形可以帮助测量人员根据地形起伏调整测量方 案,提高测量精度。
21
艺术创作中透视原理应用
艺术家在创作过程中经常运用相似三角 形原理来实现透视效果。通过绘制不同 比例的相似三角形,可以在平面上呈现
相似三角形单元复习课件(浙教版)
C
B
D
A
二.知识应用:
1.找一找:
(1) 如图1,已知:DE∥BC,EF ∥AB,则图中共有 ___3__对三角形类似.
(2) 如图2,已知:△ABC中, ∠ACB=Rt∠ ,CD⊥ AB于 D,DE⊥BC于E,则图中共有___4__个三角形和△ABC
类似.
A
D
E
A
D
B
C
F
如图(1)
CE
B
如图(2)
问:在DB上是否存在P点,使以C、D、P为顶点 的三角形与以P、B、A为顶点的三角形类似?如 果存在,计算出点P的位置;如果不存在,请说 明理由。
A
C
6 4
D
14
B
A
C
6
4
D xP
14―x
B
解(1)假设存在这样的点P,使△ABP∽△CDP
则有AB:CD=PB:PD 设PD=x,则PB=14―x, ∴6:4=(14―x):x
对应角相等、对应边成比例的三角形叫做类似三角形。
2.类似比:
类似三角形的对应边的比,叫做类似三角形的类似比。
△ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那么△A/B/C/与 △ABC的类似比为_________.
直角三角形类似的判定. 已知:∠ACB=Rt∠,CD⊥AB于D 求证:△ACD∽△ABC∽△CBD.
两个多边形不仅类似,而且对应顶点的 连线相交于一点,这样的类似小
1. 成比例的项:
若 a = c 或a : b = c : d , 那么 a ,b, c , d bd
叫做成比例的项。
若 四条线段 a、b、c、d 中,如果 a
b
c
B
D
A
二.知识应用:
1.找一找:
(1) 如图1,已知:DE∥BC,EF ∥AB,则图中共有 ___3__对三角形类似.
(2) 如图2,已知:△ABC中, ∠ACB=Rt∠ ,CD⊥ AB于 D,DE⊥BC于E,则图中共有___4__个三角形和△ABC
类似.
A
D
E
A
D
B
C
F
如图(1)
CE
B
如图(2)
问:在DB上是否存在P点,使以C、D、P为顶点 的三角形与以P、B、A为顶点的三角形类似?如 果存在,计算出点P的位置;如果不存在,请说 明理由。
A
C
6 4
D
14
B
A
C
6
4
D xP
14―x
B
解(1)假设存在这样的点P,使△ABP∽△CDP
则有AB:CD=PB:PD 设PD=x,则PB=14―x, ∴6:4=(14―x):x
对应角相等、对应边成比例的三角形叫做类似三角形。
2.类似比:
类似三角形的对应边的比,叫做类似三角形的类似比。
△ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那么△A/B/C/与 △ABC的类似比为_________.
直角三角形类似的判定. 已知:∠ACB=Rt∠,CD⊥AB于D 求证:△ACD∽△ABC∽△CBD.
两个多边形不仅类似,而且对应顶点的 连线相交于一点,这样的类似小
1. 成比例的项:
若 a = c 或a : b = c : d , 那么 a ,b, c , d bd
叫做成比例的项。
若 四条线段 a、b、c、d 中,如果 a
b
c
《相似三角形》PPT课件 (公开课获奖)2022年华师大版 (1)
解:AO=4 cm
18.(12分)如图 ,梯形ABCD中 ,AB∥CD ,点F在BC上 ,DF与AB的延长线 交于点G.
(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时 ,过F作EF∥CD交AD于点E ,假设AB=6 cm ,EF= 4 cm ,求CD的长.
解:(1)证明:∵梯形ABCD中 ,AB∥CD ,即 CD∥BG ,∴△CDF∽△BGF
△ABC相似的三角形共有(
A.1个
B.2个
)C C.3个
D.4个
14.如图是由边长为1的小正方形组成的网格 ,△ABC与△A1B1C1都是
格点三角形(顶点在网格交点处) ,并且△ABC∽△A1B1C1 ,那么△ABC
与△A1B1C1的相似比是___2∶__1_______.
第13题图
第14题图
15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD 6
(2)由(1)得△CDF∽△BGF,且F是BC中点,∴DF=FG,CD=BG. 又∵EF∥CD,AB∥CD,∴EF∥AG.∴△DEF∽△DAG. ∴AEGF =DDGF=12. ∴AG=8 cm.∴CD=BG=AG-AB=2 cm
如图 ,在△ABC中 ,AB>AC ,D为AC边上异于A、C 的一点 ,过D点作一直线与AB相交于点E ,使所得 到的新三角形与原△ABC相似.
D.k1·k2=1
12.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则
下列结论错误的是( C )
A.EEDA =DABF C.DBCE=BBFE
B.DBCE=EFFB D.BBFE=BACE
13.如图 ,△ABC中 ,EF∥BC ,DG∥AB ,EF和DG相交于点H ,那么图中与
18.(12分)如图 ,梯形ABCD中 ,AB∥CD ,点F在BC上 ,DF与AB的延长线 交于点G.
(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时 ,过F作EF∥CD交AD于点E ,假设AB=6 cm ,EF= 4 cm ,求CD的长.
解:(1)证明:∵梯形ABCD中 ,AB∥CD ,即 CD∥BG ,∴△CDF∽△BGF
△ABC相似的三角形共有(
A.1个
B.2个
)C C.3个
D.4个
14.如图是由边长为1的小正方形组成的网格 ,△ABC与△A1B1C1都是
格点三角形(顶点在网格交点处) ,并且△ABC∽△A1B1C1 ,那么△ABC
与△A1B1C1的相似比是___2∶__1_______.
第13题图
第14题图
15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD 6
(2)由(1)得△CDF∽△BGF,且F是BC中点,∴DF=FG,CD=BG. 又∵EF∥CD,AB∥CD,∴EF∥AG.∴△DEF∽△DAG. ∴AEGF =DDGF=12. ∴AG=8 cm.∴CD=BG=AG-AB=2 cm
如图 ,在△ABC中 ,AB>AC ,D为AC边上异于A、C 的一点 ,过D点作一直线与AB相交于点E ,使所得 到的新三角形与原△ABC相似.
D.k1·k2=1
12.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则
下列结论错误的是( C )
A.EEDA =DABF C.DBCE=BBFE
B.DBCE=EFFB D.BBFE=BACE
13.如图 ,△ABC中 ,EF∥BC ,DG∥AB ,EF和DG相交于点H ,那么图中与
相似三角形的判定课件公开课获奖课件省赛课一等奖课件
AB AC DB EC
AD AE , DB EC , (上比下,下比上)
DB EC AD AE
回忆并思索
斜边与直角边 角角边 角边角 边角边 边边边
三角、三边相 应相等旳两个
三角形全等
S S A AH S A S AL S SAS
三角相应相等, 三 边相应成百分比旳
两个三角形相同
鉴定三角形相同,是不是也有这么多种措施呢?
C1
知识要点
H
√ 鉴定三角形相同旳定理之四 L
假如一种直角三角形旳斜边和一条直角 边与另一种直角三角形旳斜边和一条直角边 相应成百分比, 那么这两个直角三角形相同。
A
B
C
B1
A1 即:Rt△ABC 和 Rt△A1B1C1. 假如 AB BC k,
A1B1 B1C1
C1 那么 △ABC∽△A1B1C1.
符号:∽ 相同比
A
读作:相同于
A1
B
C B1
C1
如果△ABC与△A1B1C1的相似比为k,
则△
A1
B1C1与△
ABC的相似比为
1 k
探究
如图,任意画两条直线l1、l2,再画三条与l1、
l2相交旳平行线l3、l4 、l5.分别度量l3、l4 、l5 在
l1上截得旳两条线段AB,BC和在l2上截得旳两条
∴△ ADB∽△ A1D1B1(角角)
∴ AD AB k
A1D1 A1B1
相同三角形相应角平分线旳比等于相同比 A1
A
B D C B1 证明:∵ △ ABC∽ △ A1B1C1
D1
C1
∴ ∠B = ∠B1,∠BAC = ∠B1A1C1 ∵ AD,A1D1分别是∠BAC和∠B1A1C1旳角平分线 ∴ ∠BAD = ∠B1A1D1 ∴ △ ADB∽△ A1D1B1(角角)
AD AE , DB EC , (上比下,下比上)
DB EC AD AE
回忆并思索
斜边与直角边 角角边 角边角 边角边 边边边
三角、三边相 应相等旳两个
三角形全等
S S A AH S A S AL S SAS
三角相应相等, 三 边相应成百分比旳
两个三角形相同
鉴定三角形相同,是不是也有这么多种措施呢?
C1
知识要点
H
√ 鉴定三角形相同旳定理之四 L
假如一种直角三角形旳斜边和一条直角 边与另一种直角三角形旳斜边和一条直角边 相应成百分比, 那么这两个直角三角形相同。
A
B
C
B1
A1 即:Rt△ABC 和 Rt△A1B1C1. 假如 AB BC k,
A1B1 B1C1
C1 那么 △ABC∽△A1B1C1.
符号:∽ 相同比
A
读作:相同于
A1
B
C B1
C1
如果△ABC与△A1B1C1的相似比为k,
则△
A1
B1C1与△
ABC的相似比为
1 k
探究
如图,任意画两条直线l1、l2,再画三条与l1、
l2相交旳平行线l3、l4 、l5.分别度量l3、l4 、l5 在
l1上截得旳两条线段AB,BC和在l2上截得旳两条
∴△ ADB∽△ A1D1B1(角角)
∴ AD AB k
A1D1 A1B1
相同三角形相应角平分线旳比等于相同比 A1
A
B D C B1 证明:∵ △ ABC∽ △ A1B1C1
D1
C1
∴ ∠B = ∠B1,∠BAC = ∠B1A1C1 ∵ AD,A1D1分别是∠BAC和∠B1A1C1旳角平分线 ∴ ∠BAD = ∠B1A1D1 ∴ △ ADB∽△ A1D1B1(角角)
相似三角形的判定复习课(共23张ppt)
AC=AN•cos∠BAO= t;
∴OC=OA-AC=6-t,∴N(6-t, t).
∴NM=
=
;
又:AM=6-t,AN= t(0<t≤6);
①当MN=AN时,
= t,即:t2-8t+12=0,t1=2,t2=6(舍去);
②当MN=MA时,
=6-t,即: t2-12t=0,t1=0(舍去),t2= ;
解:(1)由题意,A(6,0)、B(0,8), 则OA=6,OB=8,AB=10; 当t=3时,AN= t=5= AB,即N是线段AB的中点; ∴N(3,4). 设抛物线的解析式为:y=ax(x-6),则: 4=3a(3-6),a=- ; ∴抛物线的解析式:y=- x(x-6)=- x2+ x.
(2)在此运动的过程中,△MNA的面积是否存在最大值?若 存在,请求出最大值;若不存在,请说明理由;
解得DM= ;
②DM与BE是对应边时,DM=
∴DM2+DN2=MN2=1, 即DM2+4DM2=1,
DN,
解得DM= .
∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似. 故选C.
2、如图,已知在△ABC中,AD是BC边上的中线,以AB为 直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长 线于点N,过点B作BG⊥MN于G. (1)求证:△BGD∽△DMA; (2)求证:直线MN是⊙O的切线
证明:(1)∵MN⊥AC于点M,BG⊥MN于G, ∴∠BGD=∠DMA=90°. ∵以AB为直径的⊙O交BC于点D, ∴AD⊥BC,∠ADC=90°, ∴∠ADM+∠CDM=90°, ∵∠DBG+∠BDG=90°,∠CDM=∠BDG, ∴∠DBG=∠ADM. 在△BGD与△DMA中,∠BGD=∠DMA=90°, ∠DBG=∠ADM. ∴△BGD∽△DMA;
最新相似三角形复习精选课件课件PPT
BC=b,当BD与a、b之间满足怎样的关系式时,
两三角形相似
A
a
C
解:⑴∵ ∠1=∠D=90°
∴当
AC BC
BC BD
时,即当
a b
△ABC∽ △CDB,∴ BD
b2 a
b BD
时,
1b B
D
⑵∵ ∠1=∠D=90°
∴当
AC BC
AB BD
时,即当
a b
a2 b2 BD
时,
△ABC∽ △BDC, ∴BDb
(2)当Rt△ACB∽Rt△CDA时,有
AC AB CD AC
AB AC2 3 2 CD
故当AB的长为3或 3 2 B
时,这两个直角三角形相似。
∟
A
D C
如图:∠ABC=∠CDB=90°, AC=a, BC=b,
当BD=
时,
△ABC与△CDB相似.
C A
BD
如图:已知∠ABC=∠CDB=90°,AC=a,
点D的直线(不与AB重合),交AC于E,使所得
三角形与原三角形相似,这样的直线最多能
画出多少条? A
A
D
E
D
E
B
CB
C
在△ABC中,AB>AC,过AB上一点D作
直线DE (不与AB重合),交另一
边于E,使所得三角形与原三角形相
似,这样的直线最多能画出多少条?
画出满足条件的图形.
A
A
A
A
D
ED
B
CB
∠A= ∠B=
∠A' ∠B'
△ABC∽△A'B'C'
B
《相似三角形的性质》PPT课件
《相似三角形的性质》PPT 课件
目录
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何证明中应用 • 相似三角形在解决实际问题中应用 • 拓展:全等三角形与相似三角形联系
与区别
01
相似三角形基本概念
定义及判定方法
定义
两个三角形如果它们的对应角相等,那 么这两个三角形相似。
AAA相似
01
利用相似三角形对应角相等 的性质,可以证明两个角相
等。
02
通过构造相似三角形,将待 证相等的两个角作为对应角 ,从而证明角度相等关系。
03
相似三角形中,若已知两角 对应相等,则第三角也必然 相等,这一性质可用于证明
复杂角度相等关系。
证明图形形状和大小关系
利用相似三角形形状相同的性质 ,可以证明两个图形形状相同。
01
04
对应角相等;
全等三角形的性质
02
05
面积相等;
对应边相等;
03
06
周长相等。
全等与相似关系探讨
联系 全等三角形是相似三角形的特例,即
相似比为1:1的情况;
全等和相似都涉及到两个三角形的形 状和大小关系。
区别
全等要求两个三角形完全重合,而相 似只要求形状相同,大小可以不同;
全等三角形的对应边和对应角都相等 ,而相似三角形只要求对应角相等, 对应边成比例。
02
相似三角形性质探究
对应角相等性质
01Biblioteka 0203性质描述
相似三角形的对应角相等 。
证明方法
通过三角形的相似定义和 角的对应关系进行证明。
应用举例
在几何问题中,利用相似 三角形的对应角相等性质 ,可以解决角度相关的问 题。
目录
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何证明中应用 • 相似三角形在解决实际问题中应用 • 拓展:全等三角形与相似三角形联系
与区别
01
相似三角形基本概念
定义及判定方法
定义
两个三角形如果它们的对应角相等,那 么这两个三角形相似。
AAA相似
01
利用相似三角形对应角相等 的性质,可以证明两个角相
等。
02
通过构造相似三角形,将待 证相等的两个角作为对应角 ,从而证明角度相等关系。
03
相似三角形中,若已知两角 对应相等,则第三角也必然 相等,这一性质可用于证明
复杂角度相等关系。
证明图形形状和大小关系
利用相似三角形形状相同的性质 ,可以证明两个图形形状相同。
01
04
对应角相等;
全等三角形的性质
02
05
面积相等;
对应边相等;
03
06
周长相等。
全等与相似关系探讨
联系 全等三角形是相似三角形的特例,即
相似比为1:1的情况;
全等和相似都涉及到两个三角形的形 状和大小关系。
区别
全等要求两个三角形完全重合,而相 似只要求形状相同,大小可以不同;
全等三角形的对应边和对应角都相等 ,而相似三角形只要求对应角相等, 对应边成比例。
02
相似三角形性质探究
对应角相等性质
01Biblioteka 0203性质描述
相似三角形的对应角相等 。
证明方法
通过三角形的相似定义和 角的对应关系进行证明。
应用举例
在几何问题中,利用相似 三角形的对应角相等性质 ,可以解决角度相关的问 题。
相似三角形ppt教学课件完整版
在摄影测量学中,通过拍摄地面的照片,并利用射影几何的原理进行解析,可以精确地测量 出地面点的三维坐标,为地图制作和地形分析提供重要数据。
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应
相似三角形的判定全ppt课件
2024/1/27
5
相似三角形性质总结
对应边成比例
相似三角形的对应边之比等于相似比。
对应高、中线、角平分线成比例
相似三角形的对应高、中线、角平分线之 比也等于相似比。
周长比等于相似比
相似三角形的周长之比等于相似比。
2024/1/27
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方 。
6
02
相似三角形的判定全ppt课件
2024/1/27
1
目 录
2024/1/27
• 相似三角形基本概念及性质 • 判定方法一:两边成比例且夹角相等 • 判定方法二:三边成比例 • 判定方法三:直角三角形中斜边和一直角边成
比例 • 综合运用及拓展延伸 • 课堂小结与作业布置
2
01
相似三角形基本概念及性质
2024/1/27
判定方法一:两边成比例且夹角 相等
2024/1/27
7
定理内容阐述
01
02
03
定理描述
如果两个三角形有两边成 比例,并且夹角相等,则 这两个三角形相似。
2024/1/27
定理条件
两个三角形中,任意两边 长度之比等于另两边长度 之比,且这两边所夹的角 相等。
定理
8
18
05
综合运用及拓展延伸
2024/1/27
19
不同判定方法之间的联系与区别
角角角(AAA)相似
三个内角分别相等,则两个三角形相 似。此方法简单易行,但需注意AAA 相似不能推出边长成比例。
边角边(BAB)相似
两边成比例且夹角相等,则两个三角 形相似。此方法结合了边的长度和角 的大小,较为常用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求证:AC2=AD·AB
C
分析:要证明AC2=AD·AB,需
要先将乘积式改写为比例
A
D
B
证明:∵ ∠ACD= ∠ ABC ∠A = ∠ A
∴ △ABC △ACD
∴
AC AD
AB =AC
∴ AC2=AD·AB
式 AC AD
AB =AC
,再证明AC、
AD、AB所在的两个三角形相
似。由已知两个三角形有二个
② ∵ △MAD∽ △MEA
AM ME ∴ M D =AM
即AM2=MD·ME
3. 如图,AB∥CD,AO=OB,DF=FB,DF交AC于E,
求证:ED2=EO ·EC.
分析:欲证 ED2=EO·EC,即证: D
C
E D E C ,只需证DE、EO、EC EO =ED
所在的三角形相似。
O E
证明:∵ AB∥CD ∴ ∠C=∠A ∵ AO=OB,DF=FB
② AM2=MD ·ME
B
C
D
B
E
A D
M
C
D
C
3. 如图,AB∥CD,AO=OB,
O
DF=FB,DF交AC于E,
E
求证:) △ ABC中,D、E分别是AB、AC上的点,
且∠AED= ∠ B,那么△ AED ∽ △ ABC,
从而
AD ()
DE =BC
A
解:∵∠AED=∠B, ∠A=∠A
A
似。AM是△ MAD 与△ MEA 的公共
D
边,故是对应边MD、ME的比例中项。
B
M
C
证明:①∵∠BAC=90°
M为斜边BC中点
∴AM=BM=BC/2
∴ ∠B= ∠MAD
又 ∵ ∠B+ ∠BDM=90°
∠E+ ∠ADE= 90°
∠BDM= ∠ADE
∴∠B=∠E ∴∠MAD= ∠E 又 ∵ ∠DMA= ∠AME ∴△MAD∽ △MEA
角对应相等,所以两三角形相
似,本题可证。
2. △ABC中,∠ BAC是直角,过斜边中点M而垂直于
斜边BC的直线交CA的延长线于E, 交AB于D,连AM.
求证:① △ MAD ~△ MEA ② AM2=MD ·ME
E
分析:已知中与线段有关的条件仅有
AM=BC/2=BM=MC,所以首先考虑用
两个角对应相等去判定两个三角形相
的最大边为10cm, 则三角形乙的最短边为__5____cm.
4. 如图,△ADE∽ △ACB,
A
2 D
3
则DE:BC=_1_:_3__ 。
7
E
3
5. 如图,D是△ABC一边BC B
C
上一点,连接AD,使 △ABC ∽ △DBA的条件是( D ).
A. AC:BC=AD:BD
A
B. AC:BC=AB:AD
AD (AC)
DE =BC
(2) △ ABC中,AB的中点为E,AC的中点为D,连结ED,
则△ AED与△ ABC的相似比为__1_:_2__.
2.如图,DE∥BC, AD:DB=2:3,
D
则△ AED和△ ABC
的相似比为_2_:5_.
B
A E C
3. 已知三角形甲各边的比为3:4:6, 和它相似的三角形乙
4、相似三角形有哪些性质
(1)对应角相等,对应边成比例 (2)对应角平分线、对应中线、 对应高线、对应周长的比都等于相 似比。 (3)相似三角形面积的比等于相 似比的平方。
一.填空选择题:
1.(1) △ ABC中,D、E分别是AB、AC上的点,且∠AED=
∠ B,那么△ AED ∽ △ ABC,从而
∴ △ADE∽△ABC
即△ADE与△ABC的相似比为1:2
2. 如图,DE∥BC, AD:DB=2:3, 则△ AED
和△ ABC 的相似比为___.
A
解: ∵DE∥BC
∴△ADE∽△ABC
D
E
∵AD:DB=2:3 ∴DB:AD=3:2
∴(DB+AD):AD=(2+3):3
即 AB:AD=5:2
B
3.性质
对应周长的比等于相似比
4.判定 5.应用
面积比等于相似比的平方 1.AA 2.SAS 3.SSS 4.HL
C
∴AD:AB=2:5
即△ADE与△ABC的相似比为2:5
3.已知三角形甲各边的比为3:4:6, 和它相似的三角形乙
的最大边为10cm, 则三角形乙的最短边为______cm.
C
A
B
F
解: 设三角形甲为△ABC ,三角 形乙为 △DEF,且△DEF的最大 边为DE,最短边为EF
∵ △DEF∽△ABC
相似三角形复习课件公开课
一、复习:
1.线段成比例
1.比例的基本性质 2.合比性质 3.等比性质 4.平行线分线段成比 例定理及推论
2、相似三角形的定义是什么? 答:对应角相等,对应边成比例
的两个三角形叫做相似三角形. 3、判定两个三角形相似有哪些方法? 答:A、用定义;
B、用判定定理1、2、3. C、直角三角形相似的判定定理
C. AB2=CD·BC
D. AB2=BD·BC
B
DC
二、证明题:
1. D为△ABC中AB边上一点, ∠ACD= ∠ ABC. 求证:AC2=AD·AB.
A
2. △ABC中,∠ BAC是直角,过斜
边中点M而垂直于斜边BC的直线
交CA的延长线于E,交AB于D,
连AM.
求证:① △ MAD ~△ MEA
D E
B
C
∴△AED∽ △ABC(两角对 应相等,两三角形相似)
∴ AD AC
DE =BC
(2) △ ABC中,AB的中点为D,AC的中点为E,连结DE, 则△ ADE与△ ABC的相似比为______
D B
A E C
解 :∵D、E分别为AB、AC的中点
∴DE∥BC,且A D AB
AE =AC
1 =2
A
F
B
∴ ∠A= ∠B, ∠B= ∠FDB
∴ ∠C= ∠FDB
又 ∵ ∠DEO= ∠DEC
∴ △EDC∽△EOD
∴
ED EO
=
E E
C D
,即
ED2=EO ·EC
小相
似 三 角
结形
1.线段成比例
1.比例的基本性质
2.合比性质
3.等比性质 4.平行线分线段成比 例定理及推论
2.定义
对应高,中线,角平分线的比 等于相似比
D
E ∴ DE:EF=6:3
即 10:EF=6:3
∴ EF=5cm
4. 如图,△ADE∽ △ACB, 则DE:BC=_____ 。
2A D3
7
E
3
B
C
解: ∵ △ADE∽△ACB
且
AE AB
AD =AC
1 =3
∴
DE BC
=
A A
E B
=
1 3
1. D为△ABC中AB边上一点,∠ACD= ∠ ABC.