大学物理第四章 刚体的转动(3课时)

合集下载

第4章刚体转动

第4章刚体转动

16
长江大学物理教程
M1
外力在转动平面上对转
轴的力矩使刚体发生转动
F2
j2
F 2
F 1
r2 O r1
P2 d2 d1
P1
F1 力矩 M1 = r1 × F1 j1 大小 M1 = r1 F1 sin j1
= F1 d1 =F 1 r1
方向 MM2 = r2 × F2
M2
大小 M 2 = r2F2 sin j 2
定轴转动刚体在某时刻t 的瞬时角速度为 ,瞬
时角加速度 , 刚体中一质点P至转轴的距离为r
瞬时线速度
质点P 瞬时切向加速度 瞬时法向加速度
的大小
2019/10/31
这是定轴转动中线量与角量的基本关系
11
长江大学物理教程
质点直线运动或刚体平动 位移 速度 加速度
匀速直线运动 匀变速直线运动
刚体的定轴转动 角位移 角速度 角加速度 匀角速定轴转动 匀变角速定轴转动
2019/10/31
12
长江大学物理教程
例1 在高速旋转的微型电动机里,有一 圆柱形转子可绕垂直其横截面并通过中心的 转轴旋转.开始起动时,角速度为零.起动
后式其中转m速随5时40间r变 s化1,关系为2.:0s .求m (:1 et / )
(1)t=6 s时电动机的转速.(2)起动后,电动 机在 t=6 s时间内转过的圈数.(3)角加速度 随时间变化的规律.
优秀精品课件文档资料
长江大学物理教程
长江大学物理科学与技术学院
第四章 刚体的转动
主讲教师:喻秋山
2010~2011年第一学期
4-0 教学基本要求
一 理解描写刚体定轴转动角速度和 角加速度的物理意义,并掌握角量与线量 的关系.

大学物理。刚体转动课件

大学物理。刚体转动课件

解:杆上各质元均 受摩擦力作用, 受摩擦力作用,但 各质元受的摩擦阻 力矩不同, 力矩不同,靠近轴 的质元受阻力矩小, 的质元受阻力矩小, 远离轴的质元受阻 力矩大, 力矩大,
4 – 2 力矩 转动定律 转动惯量
第四章 刚体的转动
细杆的质量密度 m λ= l 质元质量 dm = λdx 质元受阻力矩
O
−l 2
O
l 2
r
dr
dr O´

l
解 设棒的线密度为 λ ,取一距离转轴 OO´ 为 处的质量元 dm = λdr dJ = r 2 dm = λr 2 dr
r
1 3 J = 2λ ∫ r dr = λl 0 12 1 = ml 2 12
l/2 2
如转轴过端点垂直于棒
1 2 J = λ ∫ r dr = ml 0 3
4 –三 力矩 转动定律 转动惯量 2 转动惯量
2 j j j
第四章 刚体的转动
2
J = ∑ ∆m r , J = ∫ r dm
物理意义: 物理意义:转动惯性的量度 . 意义 转动惯性的计算方法 质量离散分布刚体的转动惯量
J = ∑ ∆m r = m r + m r + L
2 j j 2 11 2 2 2 j
4 – 2 力矩 转动定律 转动惯量
第四章 刚体的转动
3) 刚体内作用力和反作用力的力矩互相抵消 ) 刚体内作用力和反作用力的力矩互相抵消
v Mij
O
v rj
v Mji
d
v iF ri ij
j v Fji v
v v M ij = −M ji
4 – 2 力矩 转动定律 转动惯量
第四章 刚体的转动

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

第四部分刚体的转动教学-

第四部分刚体的转动教学-

y
y
dA
x
dy
hy
x
O
Q
O
解 设水深h,坝长L,在坝面上取面积元 dA Ldy
作用在此面积元上的力
dFpdApLdy
h100m
L1000m
y
令大气压为 p 0 ,则
pp0g(hy) h y
d F [p 0 g (h y)]L d y O
dA dy
x
F 0 h [p 0g (h y )]L d yp 0 L h 1 2g L h 2
解 (1)0 5πrads1, t = 30 s 时, 0.
设 t = 0 s 时, 0 0 .飞轮做匀减速运动
0 0 5 π ra d s 1 π ra d s 2
t 3 0
6
飞轮 30 s 内转过的角度
22 0 22 ((5 π π)26)75πrad
mB B
FT1
FT2

mAmBg mA mB
(2) B由静止出发作匀加速直线运动,下落的速率
v 2ay
2mBgy
mAmBmC/2
(3) 考虑滑轮与轴承间的摩
擦力矩 M f ,转动定律
RF T2RF T1M f J
F T1
结合(1)中其它方程
Mf
F T2
FT 1mAa
m BgF T2 m Ba
NmR 784N
0
解:飞轮匀减速制动时有角加速度
0
t
01000r/m in2000/60104.7rad/s
0 t5s 0020.9rad/s2
t
fr
N
外力矩是摩擦阻力矩,
角加速度为负值。

第四章 刚体的转动

第四章  刚体的转动
1 1 2 2 E k= E ki mi ri = 2 2
m r
2 i i
2
用转动惯量表示
1 2 E k= J 2
四、刚体绕定轴转动的动能定理 设在合外力矩M的作用下,刚体绕定轴转过的角 位移为dθ,合外力矩对刚体所作的元功为 d dW =M dθ,由转动定律 M J J dt 得 d d
M=r F r Fi r Fi M i
M F1 r1 sin 1 F2 r2 sin 2 F3 r3 sin 3
单位: N.m 注意:力矩的单位和功的单位不是一回事,力矩的 单位不能写成焦耳。 与转动垂直但通过转轴的力对转动不产生力矩; 与转轴平行的力对转轴不产生力矩; 刚体内各质点间内力对转轴不产生力矩。 对于刚体的定轴转动,不同的力作用于刚体上的 不同位置(或不同作用方向)可以产生相同的效 果。
§4-2 力矩
转动定律
转动惯量
一、力矩 从转轴与截面的交点到力的作用线的垂直距离叫做力对 转轴的力臂。力的大小和力臂的乘积,就叫做力对转 轴的力矩。用M表示。 用矢量表示 M rF 或:
M=Fr sin
若力F不在垂直与转轴的平面内,则可把该力分解为两个 力,一个与转轴平行的分力,一个在垂直与转轴平面 内的分力,只有后者才对刚体的转动状态有影响。 合力矩对于每个分力的力矩之和。
第四章 刚体的转动
§4-1 刚体的定轴转动 一、刚体
定义:在外力作用下形状和大小保持不变的物体称为刚体。 说明: 刚体和质点一样是一个理想化的力学模型; 刚体内任何两点之间的距离在运动过程中保持不变; 刚体可以看成一个包含由大量质点、而各个质点间距 离保持不变的质点系。

大学物理课件-刚体转动

大学物理课件-刚体转动
d M K
dt I I
K dt d
I
tK
0 d
0
I
dt 2 0
t I ln 2 k
[例題]一繩跨過定滑輪,一端系品質為m的物體, 滑輪的
品質為m,半徑為R,轉動慣量為J=mR2/2,可繞水準軸 自由轉動。繩與滑輪間無相對滑動. 求:物體的加速度和 繩的張力.
mg T ma TR J
O
任意質點i 的動能是
Eki
1 2
Dmii2
1 2
Dmi
ri2
2
剛體轉動動能是
Ek
i
Eki
1( 2
i
Dmi ri2 ) 2
Dmi
ri
i
Ek
1 2
I 2
m2>m1。滑輪可看作是品質均勻分佈的圓盤,品質為m,半徑為R, 轉動慣量為I=mR2/2,可繞水準軸自由轉動。繩與滑輪間無相對滑 動。 求:物體的加速度和繩的張力。
解:
T1
(2m2
1 2
m1 m2
m )m1 g 1m
2
T2
(2m1
1 2
m1 m2
m )m2 g 1m
2
T a
2m1m2 m1 m2 m2 m1
解:根據牛頓定律、轉動定律
m2 g T2 m2a T1 m1 g m1a
T2 R T1R I
a R
a (m2 m1 )g
m1
m2
1 2
m
m1
m2
T1 T2
m1 g m2 g T1 T2
例3.5 一 繩 跨 過 定 滑 輪 , 兩 端 分 別 系 品 質 為 m1 和 m2 的 物 體 ,
Lz ( Dmiri2) I

大学物理学(上册)第4章 刚体的转动_OK

大学物理学(上册)第4章 刚体的转动_OK

系统,其所受外力是两者的重力以及轴处轴对
l
杆的支持力,所有这些外力对轴的力矩为零,
因此系统对轴的角动量守恒.
m1
m10l
m11l
1 3
m2l 2
3m1(0 1) 25rad s-1
m2l
24
变为 ω2 ,积分可得:
t2 t1
Mdt
J2
J1
角动量定理积分形式
21
4.4.3 角动量守恒定律
定轴转动的角动量定理
M
dL dt
若 M 0 , L 常矢量
对于某一固定轴,当刚体所受合外力矩为零时,其角动量 保持不变。(惯性系)-----角动量守恒定律
讨论
守恒条件 M 0
若 J不变, 不变;
若 J 变, 也变,但
L J 不变.
22
内力矩不改变系统的角动量.
在冲击等问题中 M内 M外 L 常量
角动量守恒定律是自然界的一个基本定律.
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律
电荷守恒定律 质量守恒定律 宇称守恒定律等
23
例1 如图所示,一竖直悬挂的木杆,可绕杆端O处的水平
动惯量为Jz,轴与平面的交点为O,物体绕平面内通过0点 相互垂直的两轴的转动惯量分别为Jx和Jy,则有:
Z
Jz Jx Jy
XO Y
o

实心圆盘
16
例1. 求质量为m,长度为 L 的均质细棒的转动惯量。(转轴
oo´通过棒的一端并与棒垂直) 0
L
解:在距转轴x处,取质量元dm,
其长度为dx
0
x dx dm
J miri2 m1r12 m2r22 m3r32 i 1

大学物理B(上)第4章 刚体的转动

大学物理B(上)第4章  刚体的转动

度 0 0,经300s 后,其转速达到 18000r·min-1 . 已知转
子的角加速度与时间成正比 . 问在这段时间内,转子转
过多少转?
(变角加速转动)
解:(1) 先求 ~ t 关系 由题意,令 ct,即 d ct,积分
dt

t
d c tdt
得 1 ct 2
z
r 刚体内任意一质元到转轴的垂直距离 i
v
转 ri P
动 平
θ




θ

线速度 i ri 切向加速度 ait ri
法向加速度 ain ri 2
ω
ω
定轴转动时,刚体上任意质元作圆周运动具有相同的,,
即定轴转动用角量描述最为方便。
4一– 1 刚刚体体的转定动轴的转角动速度和角加速度第四章 刚体的转动
4 – 1 刚体的定轴转动
第四章 刚体的转动
§4.1 刚体的基本运动(2)
4刚–体1 :刚在体外的力定作轴用转下动,形状和大小都不第发四生章变刚化体的的物转体动 . (任意两质点间距离保持不变的特殊质点组) 刚体的运动形式:平动、转动 .
一. 平动
GTPD
刚体中所有点的运动轨迹都保持完全相同,或者说刚体内任 意两点间的连线总是平行于它们的初始位置间的连线 .
4例–11 刚一飞体轮的半定径轴为转动0.2m、 转速为150r第·m四in章-1,刚因体受的转制动 动而均匀减速,经 30 s 停止转动 . 试求:
(1)角加速度和在此时间内飞轮所转的圈数;
(2)制动开始后 t = 6 s 时飞轮的角速度;
(3)t = 6 s 时飞轮边缘上一点的线速度、切向加速度和法向加速度 .

大学物理课件:刚体定轴转动

大学物理课件:刚体定轴转动

M f k 2
(1)
由刚体定轴转动定律得:
k2 J J d
(2)
dt
对上式分离变量并积分得:
0
k
J
t
dt
0
2 0
d 2
(3)
得到所需时间为: t J
(4)
k0
(2)由刚体定轴转动定律得:
k2 J J d d J d
(5)
dt d d
0
对上式分离变量并积分得: k
d
2
设 为两飞轮啮合后共同角速度:
J AA 33.3rad s1
JA JB
例题4.3.2 质量 M 、半径 R 的圆盘,绕过圆心 O
且垂直于盘面的水平光滑固定轴转动,已知其角速
惯量,故该量有关于刚体,还有关于转轴! 2.由上述结果看出:
JO
1 3
ml 2
1 12
ml2 +m( l )2 2
JO
+m( l )2 2
4.2.3 平行轴定理
平行轴定理:质量为 m的刚体,如果
对其质心轴的转动惯量为 JC ,则对任
一与该轴平行,相距为 d 的转轴的转
动惯量为:
J O J C md 2
2.合力矩等于各分力矩的矢量和 :
M M1 M2 M3
(2)
3.刚体内力矩互相抵消:
M ij M ji
注意:内力矩对刚体 动力学效应无贡献;
M ij
o
rj
d ri
i
j
Fji Fij
M ji
例题4.2.1 研磨专用动力卡盘是专门为精密研磨 机所设计,如图所示用于固定被加工工件,卡盘在 绕垂直通过盘心的轴转动时会与接触工件产生滑动 摩擦。试求卡盘转动时受到的摩擦力矩。设其质

大学物理授课教案第四章刚体转动

大学物理授课教案第四章刚体转动

第四章 刚体的转动§4-1刚体运动一、刚体定义:物体内任意二点距离不变的物体称为刚体。

说明:⑴刚体是理想模型⑵刚体模型是为简化问题引进的。

二、刚体运动刚体运动:(1)平动:刚体内任一直线方位不变。

特点:各点运动状态一样,如:a 、v 等都相同,故可用一个点来代表刚体运动。

(2)转动:1)绕点转动2)绕轴转动:刚体中所有点都绕一直线作圆周运动说明:刚体的任何运动都可看作平动与转动的合成。

(如:乒乓球飞行等) 三、定轴转动(本章仅讨论此情况)定义:转轴固定时称为定轴转动。

转动特点:⑴刚体上各点的角位移θ∆相同(如:皮带轮),各点的ω、α相同。

⑵刚体上各点的)(ωr v =、)(2ωr a n =、 ()αr a t =一般情况下不同。

说明:⑴ω是矢量,方向可由右手螺旋法则确定。

见图4-1。

⑵r v ⨯=ω图 4-1§4-2 力矩 转动定律 转动惯量一、力矩1、外力F在垂直于轴的平面内 如图4-2: 定义:⑴力矩: F r M⨯= (4-1)⑵力矩 :大小:θsin Fr Fd M ==(θsin r d =,称为力臂);方向:沿(F r⨯它垂直于r 、F构成的平面即M 与轴平行。

注意:θ是r、F 间夹角。

2、外力F不在垂直于轴的平面内如图4-3: (垂直轴)平行轴)⊥+=F F F(// ∵ //F对转动无贡献∴ 对转动有贡献的仅是⊥F。

F 产生的力矩即⊥F的力矩,故上面的结果仍适用。

说明:F平行轴或经过轴时0=M 。

二、转动定律0≠M 时,转动状态改变,即0≠α ,那么α与M的关系如何?这就是转动定律的内容。

推导:如图4-4,把刚体看成由许多质点组成的系统, 这些质点在垂直于轴的平面内作圆周运动。

考虑第i 个质点: 质量:i m ∆到轴的距离:i r受力:外力:i F;内力:i f (设i F、i f在垂直于转轴的平面内) 在切线方向上由牛顿定律有:αi i t i it it r m a m f F ∆=∆=+ (4-2)图 4-3⊥F 图 4-4即 αθϕi i i i i i r m f F ∆=+sin sin (4-3) (4-3)×i r : αθϕ2sin sin i i i i i i i i r m r f r F ∆=+⇒ (4-4) 每一个质点都有一个这样方程,所有质点对应方程求和之后,有αθϕ⎥⎦⎤⎢⎣⎡∆=+∑∑∑i i i i i i i i i i i r m r f r F 2sin sin (4-5)可证明0sin =∑iii i r F θ合内力矩。

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

《物理学基本教程》课后答案_第四章__刚体的转动

《物理学基本教程》课后答案_第四章__刚体的转动

第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。

大学物理(物理学教程第二版上册)第四章PPT刚体的转动 高等教育出版社

大学物理(物理学教程第二版上册)第四章PPT刚体的转动 高等教育出版社
dt dt
比较:
b W F dr p F v 平动 a b p M 转动W M d a
四、刚体的重力势能
EP mgh c
其中m为刚体的总质量 hc为刚体质心的高度
质量分布均匀而有一定几何形状的刚体,质 心的位置为它的几何中心。




质量连续分布 M r dm
2
i 1
设J r dm
2
M外 J
' Fi fi mi ai ( fi fij )
Fi sin i fi sin( i ) mi ri Fi cos i fi cos( i ) mi ri 2


A B C B C A C A B






补充
一、力矩的功
对于i 质点其受外力为 Fi, dAi Fi dri Fi cos i dri
Fi dsi Fi ri d M id
o
ri
dri dds i i

R
2
4
1 2 mR 2
思考题:
1拖拉机的转轮应该怎么设计
2滑冰运动员转动时候为什么会随动作 不同转动快慢也发生变化
例. 物体 m1>m2,滑轮(R,m)。阻力 矩Mf , 绳子质量忽略,不伸长、不打滑。 求重物的加速度及绳中张力 R

解: m1 g T1 m1a
T2 m2 g m2 a
如图所示,杆AB以匀角速度绕A 点转动,并带动水平杆OC上的质点M运动。 设起始时刻杆在竖直位置,OA= h 。 (1)列出质点M沿水平杆OC的运动方程; (2)求质点M沿杆OC沿动的速度和加速 度的大小。 B w x O C M h

大学物理:Cha.4 刚体定轴转动

大学物理:Cha.4 刚体定轴转动
每学期、每章首页
上次课的主要内容
第四章 刚体的定轴转动
本章内容、重点、难点
第一节
一、刚体
刚体的基本运动--平动
二、刚体的基本运动
+ 刚体的运动 质心的平动 平动加转动
绕质心的转动
➢ 刚体的平面运动 .
+ 刚体的运动
质心的平动 (续)平动加转动
绕质心的转动
(续)二、基本运动--平动
转动与碰撞
(续)转动与碰撞

木棒 子弹
联立解得

以弹、棒为系统 击入阶段 子弹击入木棒瞬间,系统在
竖直位置,受合外力矩为零,角动量守恒。 该瞬间之始 该瞬间之末

棒弹

上摆阶段 弹嵌定于棒内与棒一起上摆,
用系统动能定理,其中非保守内力的功为零,
外力(重 上摆末动能
力)的功
上摆初动能

其中

(续)刚体定轴转动定律
定律应用的注意
两个常用的转动惯量

细绳缠绕轮缘
初 始 静 止
轮轴无摩擦 轻绳不伸长 轮绳不打滑
变力
制动前

0. 5
2
制动的 阻力矩
制动过程使得
降至 0.5 时的
需时
0.5
0.5
0.693
0.693


(续)例
匀直细杆一端为 轴水平静止释放

由 求 本题
力臂
代入得:
11.2 km/s > v1 > 7.9 km/s
椭圆
v1 = 7.9 km/s

v1
远地点
v2
近地点
卫星 的角动量对地心 守恒

大学物理学教程马文蔚43角动量角动量守恒定律

大学物理学教程马文蔚43角动量角动量守恒定律
假定演员M落在跷板上,与跷板的碰撞是完全非弹性碰撞.问演员N 可弹起多高?
解: 碰撞前M落在A点的速度
vM (2gh)1 2
碰撞后的瞬间, M、N具有相同的线速度
N
u l
B
2
M
h
C
A
l
l/
2
M、N和跷板系统,角动量守恒
mvM
l 2
J
2mu
l 2
1 12
ml 2
1 2
ml 2
第四章 刚体的转动

mvMl 2 ml 2 12 ml2
d
例8: 两只同重量的猴子,一只用力往上爬,另一只不爬,若滑轮重 量忽略不计,问哪一只先到达滑轮顶端?
(同时到达)
第四章 刚体的转动
例9: 如图,一质量为 m的均匀圆盘,半径为 R,放在一粗糙的 水平面上,圆盘可绕通过其中心O 的竖直光滑轴转动,开始时, 圆盘静止,有一质量为m0 的子弹以速度0 垂直打入圆盘边缘并嵌 在盘边上,求(1)子弹击中圆盘后,盘获得的角速度;(2)经多
得 3m
2Ml
m
例5 已知 M , L, m, ,求
解: 子弹与杆碰撞过程,系统角动量守恒
Lm Lm 1 ML2
23
得 3m
2ML
第四章 刚体的转动
O
Ml
ห้องสมุดไป่ตู้
/2
O
L
M
2
m
第四章 刚体的转动
例6: 人造地球卫星绕地球作椭圆轨道运动,求远地点的速度与近
地点的速度的比值
.
m1(l1 R) m2 (l2 R)
解:小虫与细杆的碰撞视为完全非弹性碰撞,碰撞前后系统角动 量守恒

大学物理学(课后答案)第4章

大学物理学(课后答案)第4章

第4章 刚体的定轴转动习 题一 选择题4-1 有两个力作用在一个有固定转轴的刚体下,对此有以下几种说法:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对L 述说法下述判断正确的是[ ](A )只有(l )是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确 (D )(1)、(2)、(3)、(4)都正确 解析:力矩是描述力对刚体转动的作用,=⨯M r F 。

因此合力为零时,合力矩不一定为零;合力矩为零时,合力也不一定为零。

两者并没有一一对应的关系。

答案选B 。

4-2 有A 、B 两半径相同,质量相同的细圆环。

A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为A I 和B I ,则有[ ](A )A B I I > (B )A B I I < (C )无法确定哪个大 (D )A B I I = 解析:转动惯量2i i iI m r =∆∑,由于A 、B 两细圆环半径相同,质量相同,所以转动惯量相同2A B I I mR ==,而与质量分布均匀与否无关。

选D 。

4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图4-3所示.今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是[ ](A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大(C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零解析:在棒摆到竖直位置的过程中,重力势能和转动动能相互转化,因此转速越来越大,即角速度从小到大。

整个过程中棒只受到重力矩的作用,211cos 23M mg l J ml θαα===,所以3cos 2gl αθ=,随着转角θ逐渐增大,角加速度α由大变小。

大学物理 第四章 刚体转动(三)

大学物理 第四章 刚体转动(三)
思考题
定轴转动刚体的角动量守恒定律
直线运动与定轴转动规律对照
质点的直线运动 d v d2 x dx a 2 v dt dt dt 1 P mv EK mv2 2 刚体的定轴转动 d d2 d 2 dt dt dt 1 L J EK J 2 2
F dA Fdx

d( J ) dL M dt dt
(2)力矩对给定轴的冲量矩和角动量定理
dL M dt
Mdt dL
Mdt
t
L0
t
t0
L
L0
dL L L0
L
分别为刚体在时刻t0和t的角动量,
Mdt
t0
为刚体在时间间隔t-t0内所受的冲量矩。
1、刚体定轴转动 的角动量

ri
mi
z
2 L mi ri
i
2
( mi ri )

O
vi
L J
i
2 、刚体定轴转动的角动量定理
(1)刚体定轴转动定理的另一种表述
质点mi受合力矩Mi(包括Miex、 Miin ) dLi d( J ) d 2 Mi (mi ri ) dt dt dt in 对定轴转动的刚体 M i 0 , 合外力矩 ex d M M i ( mi ri 2 ) d( J ) dt dt
力的时间累积效应:
冲量、动量、动量定理.
力矩的时间累积效应:
冲量矩、角动量、角动量定理.
一、质点的角动量定理和角动量守恒定律
1、质点的角动量 质量为 m 的质点以 在空间运动,某 速度 v ,质 时对 O 的位矢为 r 点对参考点O的角动量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r
Fz
q
F
4- 2
力矩 转动定律
转动惯量
(2) 外力矩与合外力矩 M1
外力在转动平面上对转 轴的力矩使刚体发生转动
F2
F 2
j2
r2
P2
O
r1
F 1
P1
F1
j1
d2 d1
力矩 M1 = r1 × F1 大小 M1 = r1 F1 sin j1
M2
合外力矩 大小
M = M1 + ቤተ መጻሕፍቲ ባይዱ 2
dy
y O Q
代入数据,得:
M 2.1410 N m
12
物理学
第五版
4-2
力矩
转动定律
转动惯量

转动定律
(1)单个质点 m 与转轴刚性连接
z
M
O
Ft
Ft mat mr
M rF sin θ
r
F
q m Fn
M rFt mr
2
M mr
2
4- 2
刚体的运动形式:平动、转动.
4-1 刚体的定轴转动
平 动
定轴转动
平面运动
定点运动 一般运动
刚体任意 刚体质心 刚体上 刚体每点 限制在一平 两点的连线 保持方向不 绕同一轴线 面内,转轴 各质点都 变。各点的 作圆周运动,可平动,但 以某一定 且转轴空间 始终垂直于 点为球心 位置及方向 该平面且通 的各个球 相同,可当 面上运动 不变。 过质心 作质点处理.
F Fi 0, M i 0 i i
F
4- 2
力矩 转动定律
转动惯量
讨论
(1)若力 F 不在转动平面内,把力分
解为平行和垂直于转轴方向的两个分量
力矩为零,故 F 对转 轴的力矩
其中 Fz 对转轴的
F Fz F
z
k
O
F
M z k r F M z rF sin q
4- 2
力矩 转动定律
转动惯量
例1 有一大型水坝高110 m、长1 000 m , 水深100m,水面与大坝表面垂直,如图所示. 求作用在大坝上的力,以及这个力对通过大坝 基点 Q 且与 x 轴平行的力矩 .
y
y
x
h
O Q O x
L
4- 2
力矩 转动定律
转动惯量
解 设水深h,坝长L,在坝面上取面积 元 dA Ldy ,作用在此面积元上的力
第五版
4-2
力矩
转动定律
转动惯量
例3 一质量为 m 、半径为 R 的均匀圆盘,求通 过盘中心 O 并与盘面垂直的轴的转动惯量.
解 设圆盘面密度为 , 在盘上取半径为 ,宽为 dr 的圆环
r

圆环质量
dm 2 π r dr

dl
:质量线密度
对质量面分布的刚体: dm
:质量面密度

:质量体密度
dS
dV
对质量体分布的刚体:dm
物理学
第五版
4-2
力矩
转动定律
转动惯量
说明 刚体的转动惯量与以下三个因素有关: (1)与刚体的体密度 有关. (2)与刚体的几何形状及体密度 的分 布有关. (3)与转轴的位置有关.
O
ji
ri
Fi sin j i + f i cosq i
=
a i
=
ri

等式两边乘以 i 并对所有质元及其所受力矩求和
r
ri ri

M
=

4- 2
力矩 转动定律
转动惯量
(2)刚体
瞬时 角加速度
瞬时 角速度
M
=
称为

ri

Fi

qi
n
fi

刚体所获得的角加速度
合外力矩 的大小成正比, 与刚体的转动惯量 成反比。
d r O´
解 设棒的线密度为 ,取一距离转轴 OO´ 为 处的质量元 dm dr dJ r 2dm r 2dr
r
1 3 J 2 r dr l 0 12 1 ml 2 12
l/2 2
如转轴过端点垂直于棒
1 2 J r dr ml 0 3
l 2
物理学
1 2 2
1 2 2
v v0 at
0 t
4-1 刚体的定轴转动
三 角量与线量的关系 dq ω dt 2 dω d q 2 dt dt v rωet

an

a r P
et v a
t
at r an rω
2
2 a ret rω en
O
ji
ri
与刚体性质及质量分布有 关的物理量,用 J 表示
转动惯量
刚体的转动定律
的大小与刚体受到的
物理学
第五版
4-2
力矩
转动定律
转动惯量

转动惯量
J m j rj2 , J r 2dm
j
物理意义:转动惯性的量度.
转动惯性的计算方法
质量离散分布刚体的转动惯量
2 j j 2 11 j
(3) 电动机转动的角加速度为
d m t / t / 2 2 e 540 πe rad s dt
4-1 刚体的定轴转动
例2 在高速旋转圆柱形转子可绕垂直 其横截面通过中心的轴转动.开始时,它的 角速度 ω0 0 ,经300 s 后,其转速达到 18 000 r· min-1 .转子的角加速度与时间成正 比.问在这段时间内,转子转过多少转?
dF pdA pLdy
y
y
x
h y O Q
dA
dy
O
x
L
4- 2
力矩 转动定律
转动惯量
令大气压为 p0 ,则 p p0 g (h y)
dF PdA [ p0 g (h y)]Ldy
F [ p0 g (h y)]Ldy 0 y 1 2 p0 Lh gLh 2
4- 2
力矩 转动定律
转动惯量

力矩
z
O
M
右手法则判断方向 用来描述力对刚体的转动作用.
F 对转轴 z 的力矩
d r sin q 为力臂
F
M Fr sin q Fd M r F
合力为零时, 其合力矩不一定为零
r
d
*
P
q
F F Fi 0, M i 0 i i
4-1 刚体的定轴转动
物理学
第五版
4- 0
教学基本要求
一 理解描写刚体定轴转动角速度和 角加速度的物理意义,并掌握角量与线量 的关系.
二 理解力矩和转动惯量概念,掌握 刚体绕定轴转动的转动定理.
三 理解角动量概念,掌握角动量定 律,并能处理一般质点在平面内运动以及 刚体绕定轴转动情况下的角动量守恒问题.
复杂 的运动 与平动 的混合。

4-1 刚体的定轴转动 刚体转动的角速度和角加速度
刚体定轴转动 的运动方程 沿逆时针方向转动 q > 0 沿顺时针方向转动 q < 0 刚体
刚体中任 一点 (t+△t) (t)
参考 方向
1. 角坐标
转动平面(包含p并与转轴垂直)
2. 角位移
转轴
q q (t t) q (t)
= F1 d 1 = F 1 r1 方向 M M 2 = r 2 × F2 大小 M 2 = r 2F 2 sin F j2 = F2 d 2 = F 2 r2
M = F1 d 1
F 2 r2 F2 d 2 = F 1 r1 叉乘右螺旋
r
4- 2
力矩 转动定律
转动惯量
合力矩等于各分力矩的矢量和
d 解 令 ct,即 ct ,积分 dt 1 2 t 得 ct d c t d t 0 0 2
4-1 刚体的定轴转动
1 2 ct 2
当 t =300 s 时
18 000 r min 600π rad s
1
1
2 2 600 π π 3 c 2 rad s 2 t 300 75 1 2 π 2 ct t 2 150
M M1 M 2 M 3
j
(3)刚体内作用力和反作用力的力矩互相抵消.
M ij
Fji iF
ij
rj
O
M ji
d
ri
M内 M ij 0
i, j
Mij M ji
z
F
O
M 0
(4) 当作用力通过转轴时, 其力矩 为零. 如右图.
第四章 刚体的转动
物理学
第五版
4- 0
教学基本要求
四 理解刚体定轴转动的转动动能概 念,能在有刚体绕定轴转动的问题中正确 地应用机械能守恒定律. 能运用以上规律分析和解决包括质点 和刚体的简单系统的力学问题.
第四章 刚体的转动
物理学
第五版
第一节
第四章 刚体的转动
4-1 刚体的定轴转动
刚体:在外力作用下,形状和大小都不 发生变化的物体.(任意两质点间距离保持 不变的特殊质点组.) ⑴ 刚体是理想模型 说明: ⑵ 刚体模型是为简化问题引进的.
代入数据,得
h y
10
h
dA
dy
F 5.9110 N
相关文档
最新文档