2018-2019年人教版八年级下册数学第18章测试卷(附答案)

合集下载

人教版八年级数学下册第十八章卷(附答案)

人教版八年级数学下册第十八章卷(附答案)

人教版八年级数学下册第十八章卷(附答案)一、选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形2.下列命题中正确的是()A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H,测得对角线AC=10m,现想利用篱笆围成四边形EFGH场地,则需篱笆得总长度是()A.40 m B.30 m C.20 m D.10 m4.在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是()A.30B.15C.D.605.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP 的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定6.已知一个直角梯形,一腰长为6,这腰与一底所成的角为30°,那么另一腰的长是()A.1.5B.3C.6D.97.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.8.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是()A.①②③B.①④⑤C.①②⑤D.②⑤⑥二、填空题9.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.10.如图,点E、F在▱ABCD的对角线BD上,要使四边形AECF是平行四边形,还需添加一个条件.(只需写出一个结论,不必考虑所有情况).11.如图所示,工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(2)摆放成如图②的四边形,则这时窗框的形状是,根据的数学道理是.(3)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是,根据的数学道理是.12.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A、C重合),PE∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分(即多边形BCPFEB)的面积为.13.如图所示,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是.(只填一个条件即可,答案不唯一)14.等腰梯形两底之差为12cm,高为6cm,则其锐角底角为度.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.三、解答题16.已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.求:(1)AB的长;(2)梯形ABCD的面积.17.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.18.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.19.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.20.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.请判断四边形ADCE的形状,说明理由.答案1.D.2.D.3.C.4.A.5.C.6.B.7.D.8.B.9.20°.10.平行四边形.11.平行四边形;两组对边分别相等的四边形是平行四边形;矩形;由一个角是直角的平行四边形是矩形.12.2.5.13.∠BAD=90°或AC=BD.14.45°.15..16.解:(1)如图,过点D作DE⊥BC于E,∵∠C=30°,CD=10cm,∴DE=CD=×10=5cm,过A作AH⊥BC于H,则AH=DE=5cm,∵∠B=45°,∴△ABH是等腰直角三角形,∴AB=AH=5cm;(2)∵AH、DE都是梯形的高线,∴四边形AHED是矩形,∴HE=AD=5cm,又∵BH=AH=5cm,CE===5cm,∴BC=BH+HE+CE=5+5+5=(10+5)cm,∴梯形ABCD的面积=(5+10+5)×5=(+)cm.17.解:(1)连接BD,∵∠A与∠B互补,即∠A+∠B=180°,∠A与∠B的度数比为1:2,∴∠A=60°,∠B=120°.∴∠BDA=120°×=60°.∴△ABD是正三角形.∴BD=AB=48×=12cm.AC=2×=12cm.∴BD=12cm,AC=12cm.(2)S菱形ABCD=×两条对角线的乘积=×12×12=72cm218.证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.19.(1)解:AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD都是平行四边形.∴AD=BE,AD=FC,又∵四边形AEFD是平行四边形,∴AD=EF.∴AD=BE=EF=FC.∴AD=BC.(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴平行四边形AEFD是矩形.20.证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°,∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO.(ASA)∴AD=CE,OD=OE,∵OD=OE,OA=OC,∴四边形ADCE是平行四边形又∵∠AOD=90°,∴▱ADCE是菱形.。

人教版八年级数学下册第十八章测试卷及答案

人教版八年级数学下册第十八章测试卷及答案

人教版八年级数学下册第十八章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.下面的性质中,平行四边形不一定具有的是( )A.对角互补 B.邻角互补C.对角相等 D.对边相等2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE=4,则BC的长为( )A.2 B.4 C.6 D.83. 如图,在菱形ABCD中,下列结论错误的是( )A.AC=BD B.AC⊥BD C.AB=AD D.∠1=∠24. 如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为( )A.4 cm B.5 cm C.D.8 cm5.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是( )A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD6.如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且DE=3BE,则AE的长为( )A.2 B..3 D.7.如图,四边形ABCD 的两条对角线相交于点O,且互相平分.添加下列条件后,不能判定四边形ABCD为菱形的是( )A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.67.5° B.22.5° C.30° D.45°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD==2,则四边形OCED的面积为( )A..4 C..810. 如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD= PM时,t=4或6二.填空题(共8小题,每小题3分,共24分)11.在四边形ABCD中,AB=DC,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为__________.12. .如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,E,F是正方形ABCD的对角线AC上的两点,若AC=8,AE=CF=2,则四边形BEDF的周长是________.15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF.若CE =1 cm,则BF=__________cm.16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加______________条件,才能保证四边形EFGH是矩形.17.如果一个平行四边形的一个内角的平分线分它的一边为1:2两部分,那么称这样的平行四边形为"协调平行四边形",称该边为"协调边".当协调边为6时,这个平行四边形的周长为________.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,…,以此类推,第n个正方形的面积为________.三.解答题(共7小题, 66分)19.(8分) 如图,在▱ABCD中,E为AD延长线上的一点,F为CB延长线上的一点,且DE=BF,连接AF,CE.求证:四边形AFCE是平行四边形.20.(8分) 如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.21.(8分) 如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.22.(8分) 在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(10分)如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.24.(10分)如图,在正方形ABCD中,点E,F分别在BC和CD上,且BE=DF,连接EF.(1)求证:AE=AF;(2)过点E作EM∥AF,过点F作FM∥AE,求证:四边形AEMF是菱形.25.(14分)如图,在矩形ABCD中,AB=3,BC=4.点M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.参考答案1-5ADAAB 6-10CCBAD11. AB ∥DC(答案不唯一)_12. 3013. 三15.(216.AC ⊥BD(答案不唯一) 17. 16或2018. 2n -1 19.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC,AD =BC,∴AE ∥CF. 又∵DE =BF,∴AD +DE =BC +BF,即AE =CF,∴四边形AFCE 是平行四边形20.证明:∵四边形ABCD 是平行四边形,∴AD =BC,AD ∥BC,∠A =∠C.∴∠F =∠E.∵BE =DF,∴AD +DF =CB+BE,即AF =CE.在△AGF 和△CHE 中, {∠A =∠CAF =CE ∠F =∠E ∴△AGF ≌△CHE(ASA).∴AG =CH.21. 证明:(1)∵BF =DE,∴BF -EF =DE -EF,即BE =DF.(2)∵四边形ABCD 为平行四边形,∴AB =CD,且AB ∥CD.∴∠ABE =∠CDF.在△ABE 和△CDF 中, {AB =CD∠ABE =∠CDF BE =DF∴△ABE ≌△CDF(SAS).22. 证明:(1)∵四边形ABCD 是正方形,∴AB =AD,∠B =∠D =90°.又∵BE =DF,∴Rt△ABE≌Rt△ADF(SAS),∴AE =AF(2)∵EM ∥AF,FM ∥AE,∴四边形AEMF 是平行四边形.又由(1)知AE =AF,∴▱AEMF 是菱形23. (1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB,∠D =∠B =90°.∵E,F 分别为DC,BC 的中点,∴DE =12DC,BF =12BC.∴DE =BF.在△ADE 和△ABF 中, {AD =AB∠D =∠B DE =BF ∴△ADE ≌△ABF(SAS).(2)解:由题易知△ABF,△ADE,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.24. (1)证明:∵AF ∥BC,∴∠AFE =∠DBE.∵E 是AD 的中点,∴AE =DE.在△AFE 和△DBE 中, {∠AFE =∠DBE∠FEA =∠BED AE =DE ∴△AFE ≌△DBE(AAS).∴AF =BD.∵AD 是BC 边上的中线,∴DC =BD.∴AF =DC.(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC,又∵AF ∥BC,∴四边形ADCF 是平行四边形.∵AC ⊥AB,AD是斜边BC 上的中线,∴AD =12BC =DC.∴四边形ADCF 是菱形.25.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD,AB =CD,∴∠MAB =∠NCD.在△ABM 和△CDN 中,{AB =CD∠MAB =∠NCDAM =CN ∴△ABM ≌△CDN(SAS)(2)如图,连接EF,交AC 于点O.∵四边形ABCD 是矩形,∴AD =BC,∠ABC =90°,∵AB =3,BC =4,∴AC =5,∵E,F 分别是AD,BC 的中点,∴AE =BF =CF,∴四边形ABFE 是矩形,∴EF =AB =3.在△AEO 和△CFO 中,{∠EOA =∠FOC∠EAO =∠FCO AE =CF ∴△AEO ≌△CFO(AAS),∴EO =FO,AO =CO,∴O 为EF,AC 中点.∵∠EGF =90°,OG =12EF =32,∴AG =AO -OG =1或AG =AO +OG =4,∴AG 的长为1或4。

2018-2019学年度人教版八年级数学下册 第18章检测卷 含答案

2018-2019学年度人教版八年级数学下册 第18章检测卷  含答案

2018-2019学年度人教版数学八年级下册第十八章 平行四边形检测卷时间:120一、选择题(1.在下列命题中,真命题的是( )A. 两条对角线相等的四边形是矩形B . 两条对角线互相垂直的四边形是 C. 两条对角线互相平分的四边形是平行四边形 D .两邻边相等的四边形是菱形 2.菱形具有而矩形不一定具有的特征是( )A. 对角相等且互补 B . 对角线互相平分 C 一组对边相等,另一组对边平行 D .对角线互相垂直3.如图,菱形ABCD 中,已知∠A=60°,AB=5,则△ABD 的周长是( )A 10B . 12C 15D . 204.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点.若EF =3,则菱形ABCD 的周长是( ) A .12 B .16 C .20 D .24第4题图 第5题图 第6题图5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,AB =3,∠AOD=120°,则AD的长为( )A .3B .3 3C .6D .3 56.如图,在四边形ABCD 中,AD =BC ,BE =DF ,AE ⊥BD ,CF ⊥BD ,垂足分别是E ,F ,则四边形ABCD 一定是( )A .正方形B .菱形C .平行四边形D .矩形7.正方形和下列边长相同的正多边形地砖组合中,不能够铺满地面的是() A .正三角形 B .正六边形 C .正八边形 D .正三角形和正六边形8.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F .在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF =12AD C .AB =AF D .BE =AD -DF第8题图 第9题图 第10题图9.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )10.如图,正方形ABCD 对角线上的两个动点M ,N 满足AB =2MN ,点P 是BC的中点,连接AN,PM .若AB =6,则当AN +PM 的值最小时,线段AN 的长度为( )A .4B .2 5C .6D .3 5二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,在Rt △ABC 中,E 是斜边AB 的中点.若AB =10,则CE =________.第11题图 第12题图12.如图,矩形ABCD 的对角线BD 的中点为O ,过点O 作OE ⊥BC 于点E ,连接OA ,已知AB =5,BC =12,则四边形ABEO 的周长为________.13.如图,在菱形ABCD 中,∠BAD =70°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 的度数为________.第13题图 第14题图14.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠ABC =150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则BC 的长是________.三、(本大题共2小题,每小题8分,满分16分)15.如图,点E ,F 分别为▱ABCD 的边BC ,AD 上的点,且∠1=∠2.求证:AE =CF .16.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.求证:BM=MN.四、(本大题共2小题,每小题8分,满分16分)17.如图,在四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.18.如图,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知正方形ABCD的边长为5,G是BC边上的一点,DE⊥AG于点E,BF∥DE,且交AG于点F.若DE=4,求EF的长.20.如图,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形?并说明理由.六、(本题满分12分)21.如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,BE =DF ,连接AF ,BF . (1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB.七、(本题满分12分)22.在课外活动中,我们要研究一种四边形——筝形的性质. 定义:两组邻边分别相等的四边形是筝形(如图①).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究. 下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的满足筝形的定义的四边形是________;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图②,在筝形ABCD 中,AB =4,BC =2,∠ABC =120°,求筝形ABCD 的面积.八、(本题满分14分)23.如图①,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使点B 落在边AD 上的点E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于点F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动. ①当点Q 与点C 重合时(如图②),求菱形BFEP 的边长;②若限定点P 、Q 分别在边BA 、BC 上移动,求点E 在边AD 上移动的最大距离.。

初中数学人教版八年级下学期 第十八章测试卷

初中数学人教版八年级下学期 第十八章测试卷

初中数学人教版八年级下学期第十八章测试卷一、单项选择题〔共6题;共12分〕1. ( 2分) 在四边形ABCD中,∠A:∠B:∠C:∠D的比例依次如下,其中能使四边形ABCD是平行四边形的是( )A. 1:2:3:4B. 2:2:3:3C. 2:3:3:2D. 2:3:2:32. ( 2分) 如图,△ABC与△CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,那么下那么结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的个数为〔〕A. 2B. 3C. 4D. 53. ( 2分) 如图,在等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,那么△DEC的周长是〔〕.A. 3B. 12C. 15D. 194. ( 2分) 如图,矩形A BCD的对角线AC,BD相交于点O,CE//BD,DE//AC.假设AC=4,那么四边形CODE的周长是( ).A. 4B. 6C. 8D. 105. ( 2分) 如图,菱形ABCD中,边CD的中垂线交对角线BD于点E,交CD于点F,连结AE.假设∠ABC=50°,那么∠AEB的度数为〔〕A. 30°B. 40°C. 50°D. 60°6. ( 2分) 平行四边形ABCD中,对角线AC、BD相交于O.那么以下说法准确的是〔〕A. 当OA=OC时,平行四边形ABCD为矩形B. 当AB=AD时,平行四边形ABCD为正方形C. 当∠ABC=90°时,平行四边形ABCD为菱形D. 当AC⊥BD时,平行四边形ABCD为菱形二、填空题〔共2题;共2分〕7. ( 1分) 在四边形ABCD中,对角线AC,BD相交于点O,假设OA=OC,要使四边形ABCD成为平行四边形,那么可添加的条件为________(填一个即可)8. ( 1分) 如图,菱形中,对角线AC,BD交于点O,E为AD边中点,菱形ABCD的周长为28,那么OE的长等于________.三、解答题〔共1题;共5分〕9. ( 5分) 如图,D,E分别是△A BC的边AB,AC的中点,点O是OA BC内部任意一点,连接OB,0C,点G,F分别是OB ,OC的中点,顺次连接点D,G,F,E.求证:四边形DGFE是平行四边形.四、综合题〔共3题;共26分〕10. ( 6分) 如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.〔1〕求证:四边形AEFD是矩形;〔2〕假设AC=10,∠ABC=60°,那么矩形AEFD的面积是________.11. ( 10分) 如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.〔1〕证明:△ADG≌△DCE;〔2〕连接BF,证明:AB=FB.12. ( 10分) 如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.〔1〕求证:四边形AECF是菱形;〔2〕假设AB=2,BC=4,求四边形AECF的面积.答案解析局部一、单项选择题1.【答案】D【考点】平行四边形的判定【解析】【解答】A、由∠A:∠B:∠C:∠D=1:2:3:4,没有角相等,不能判定四边形是平行四边形,故A 错误;B、由∠A:∠B:∠C:∠D=2:2:3:3,没有角相等,不能判定四边形是平行四边形,故A错误;C、、由∠A:∠B:∠C:∠D=2:2:3:3,虽然有两组角相等,但它们是邻角,不能判定四边形是平行四边形,故C错误;D、、由∠A:∠B:∠C:∠D=2:3:2:3,两组对角分别相等,能判定四边形是平行四边形,故D正确.应选D.【分析】两组对角分别相等的四边形是平行四边形,据此逐一判断即可.2.【答案】D【考点】平行四边形的判定与性质【解析】【解答】△ABC与△CDA关于点O对称,那么AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,那么有:〔1〕点E和点F;B和D是关于中心O的对称点,符合题意;〔2〕直线BD必经过点O,符合题意;〔3〕四边形ABCD是中心对称图形,符合题意;〔4〕四边形DEOC 与四边形BFOA的面积必相等,符合题意;〔5〕△AOE与△COF成中心对称,符合题意;其中正确的个数为5个,故答案为:D.【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.3.【答案】C【考点】平行四边形的判定与性质【解析】【解答】∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=6,EB=AD=5,∴EC=8-5=3,那么△DEC的周长=DE+DC+EC=6+6+3=15.故答案为:C【分析】根据两组对边分别平行可证四边形ABED是平行四边形,从而可得DE=CD=AB=6,EB=AD=5,继而求出CE的长,利用△DEC的周长=DE+DC+EC计算即可.4.【答案】C【考点】菱形的判定与性质,矩形的性质【解析】【解答】解:∵CE//BD,DE//AC,∴四边形CODE是平行四边形,在矩形A BCD中,AC =4,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长:4OC=8.应选:C.【分析】利用两组对边分别平行可证四边形CODE是平行四边形,根据矩形的性质可得OC=OD=12AC=2,利用一组邻边相等的平行四边形可证四边形CODE是菱形,利用菱形的性质即可求出结论.5.【答案】C【考点】菱形的性质【解析】【解答】如图,连接CE.∵四边形ABCD是菱形,∴AB=BC,∠ABD=∠DBC=12∠ABC=25 °,AB∥CD,∴∠BDC=∠ABD=25 °,∵点E在线段CD的中垂线上,∴EC=ED,∴∠ECD=∠EDC=25 °,∴∠BEC=∠ECD+∠EDC=50°.在△ABE与△CBE中,{AB=CB∠ABE=∠CBEBE=BE,∴△ABE≌△CBE〔SAS〕,∴∠AEB=∠CEB =50 °.故答案为:C.【分析】连接CE.根据菱形的性质以及平行线的性质可得AB=BC,∠ABD=∠DBC,∠BDC=∠ABD=25 °,利用线段中垂线的性质得出EC=ED,那么∠ECD=∠EDC=25 °,点F垂直平分DC∠BEC=∠ECD +∠EDC=50 °.利用SAS证明△ABE≌△CBE,即可得出∠AEB=∠CEB=50 °.6.【答案】D【考点】菱形的判定,矩形的判定,正方形的判定【解析】【解答】∵平行四边形对角线互相平分,∴OA=OC而对角线相等的平行四边形是矩形,∴OA=OC不能判定平行四边形ABCD为矩形,故A错误;∵邻边相等的平行四边形是菱形,∴当AB=AD时,平行四边形ABCD是菱形,故B错误;∵有一个角是直角的平行四边形是矩形∴当∠ABC=90°时,平行四边形ABCD为矩形,故C错误;∵对角线互相垂直的平行四边形是菱形∴当AC⊥BD时,平行四边形ABCD为菱形,故D正确.故答案为:D.【分析】A. 根据平行四边形的性质和对角线相等的平行四边形是矩形进行判断;B. 根据邻边相等的平行四边形是菱形进行判断;C. 根据有一个角是直角的平行四边形是矩形进行判断;D. 根据对角线互相垂直的平行四边形是菱形进行判断.二、填空题7.【答案】答案不唯一如:OB=OD等【考点】平行四边形的判定【解析】【解答】解:条件:OB=OD.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故答案为:OB=OD.【分析】根据对角线互相平分的四边形是平行四边形进行解答即可.8.【答案】3.5【考点】直角三角形斜边上的中线,菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴AC⊥BD,AD=1×28=7,4∵E为AD的中点,∴OE=1AD=3.5.2故答案为:3.5.【分析】由于菱形的四边相等,对角线互相垂直,可得AD的长,AC⊥BD,结合E是AD的中点,那么由直角三角形斜边的中线等于斜边的一半可知OE的长.三、解答题9.【答案】解:证明:如图,连接OA,∵D、E分别是AB和AC的中点,∴DE∥BC,DE=1BC,2BC,同理GF∥BC,GH=12∴DE∥GF,DE=GF,∴四边形DGFE是平行四边形.【考点】三角形中位线定理,平行四边形的判定【解析】【分析】由三角形的中位线定理可得DE平行等于BC的一半,GF平行等于BC的一半,因此可得DE和GH平行且相等,那么四边形DGFE是平行四边形.四、综合题10.【答案】〔1〕证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形〔2〕50√3【考点】菱形的性质,矩形的判定与性质【解析】【解答】〔2〕∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF 〔HL〕,∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AO=1AC=5,AB=10,BO=5 √3,2∴矩形AEFD的面积=菱形ABCD的面积=1×10×10 √3=50 √3,2故答案为:50 √3.【分析】〔1〕根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;〔2〕根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF 〔HL〕,求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.11.【答案】〔1〕证明:∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE〔ASA〕;〔2〕解:如下图,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE〔ASA〕,∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=1AH=AB.2【考点】正方形的性质【解析】【分析】〔1〕利用正方形的性质可得∠ADG=∠C=90°,AD=DC,再利用AG⊥DE得DAG+∠ADF 90°=∠CDE+∠ADF,那么有∠DAG=∠CDE,从而可证△ADG≌△DCE;〔2〕延长DE交AB的延长线于H,易得△DCE≌△HBE,利用全等三角形的对应边相等可得DH=DC=AB,然后利用直角三角形斜边上的中线等于是斜边的一半证得BF=1AH=AB,故得证。

人教版八年级数学下册第十八章测试题(附答案)

人教版八年级数学下册第十八章测试题(附答案)

人教版八年级数学下册第十八章测试题(附答案)一、单选题1.如图,四边形为菱形,A,B两点的坐标分别是,,点C,D在坐标轴上,则菱形的面积等于()A. 4B. 6C.D.2.如图所示,在平行四边形中,EF过对角线的交点,若AB=4,BC=7,OE=3,则四边形的周长是()A. 14B. 11C. 17D. 103.如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=24.若△OAB的周长是20,则AB的长为()A. 8B. 9C. 10D. 124.已知长方形的长为,宽比长少,则这个长方形的周长为()A. B. C. D.5.如图,在中,是边的中点,交对角线于点,若,则等于()A. B. C. D. .6. 下列命题中,假命题是()A. 菱形的面积等于两条对角线乘积的一半B. 矩形的对角线相等C. 有两个角相等的梯形是等腰梯形D. 对角线相等的菱形是正方形7.关于□ABCD的叙述,正确的是()A. 若AB⊥BC,则□ABCD 是菱形;B. 若AC⊥BD,则□ABCD 是正方形;C. 若AC=BD,则□ABCD 是矩形;D. 若AB=AD,则□ABCD 是正方形;8.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C. 5 D. 49.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是A. AB=CDB. AD=BCC. AB=BCD. AC=BD10.如图,某同学作线段AB的垂直平分线:分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点C,D,则直线CD为线段AB的垂直平分线.根据这个同学的作图方法可知四边形ADBC一定是()A. 菱形B. 平行四边形C. 矩形D. 一般的四边形11.如图,点E、G分别是正方形ABCD的边CD、BC上的点,连接AE、AG分别交对角线BD于点P、Q.若∠EAG=45°,BQ=4,PD=3,则正方形ABCD的边长为()A. 6B. 7C. 7D. 512.如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y=(x>0)图象经过点A,与BC交于点D,则的值为()A. B. C. D.二、填空题13.如图所示,在□ABCD中,两条对角线交于点O,有△AOB≌△________,△AOD≌△________.14.已知平行四边形ABCD中,∠B=5∠A,则∠D=________ °.15.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2017B2017C2017D2017的边长是________;16.如图,在平行四边形ABCD中,过对角线BD上一点P作EF∥AB,GH∥AD,与各边交点分别为E、F、G、H,则图中面积相等的平行四边形的对数有________对;17.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为________.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在边BC和CD上,下列结论:①CE=CF= ;②∠BAE=15°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的序号是________(把你认为正确的都填上)19.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为________ cm.20.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为________,第n 正方形的边长为________.三、综合题21.如图,矩形中,,.,分别在,上,点与点关于所在的直线对称,是边上的一动点.(1)连接,,求证四边形是菱形;(2)当的周长最小时,求的值;(3)连接交于点,当时,求的长.22.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在P处,折痕为EC,连接AP并延长AP交CD于F点.(1)求证:四边形AECF为平行四边形;(2)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.23.如图,在四边形ABCD中,E、F分别为对角线BD上的两点,且BE=DF.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,则四边形ABCD是菱形吗?请说明理由?(3)若四边形AECF是矩形,则四边形ABCD是矩形吗?不必写出理由.24.如图,长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B 的坐标为(10,0),点E是BC边上一点,把长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处.(1)求点E、F的坐标;(2)求AF所在直线的函数关系式;(3)在x轴上求一点P,使△PAF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.答案一、单选题1. A2. C3. A4. A5. B6. C7. C8. A9. D 10. A 11.A 12. C二、填空题13. △COD;△COB 14.150 15.16. 3 17. -6 18.①②④ 19.21 20. 8;三、综合题21. (1)证明:如图:连接,,交于点四边形是矩形,,,,,点与点关于所在的直线对称,,,,且四边形是平行四边形,且四边形是菱形;(2)解:如图,作点关于的对称点,连接,交于点,此时的周长最小,四边形是菱形,,,点,点关于对称(3)解:如图,延长,延长交于点,过点作于,交于点,过点作于点,由(2)可知,,,四边形是矩形,,,,,,,22. (1)解:由折叠得到BE=PE,EC⊥PB,∵E为AB的中点,∴AE=EB=PE,∴AP⊥BP,∴AF∥EC,∵四边形ABCD是矩形,∴AE∥FC,∴四边形AECF为平行四边形;(2)解:过P作PM⊥DC,交DC于点M,在Rt△EBC中,EB=3,BC=4,根据勾股定理得:EC= =5,∵S△EBC= EB•BC= EC•BQ,∴BQ= = ,由折叠得:BP=2BQ= ,在Rt△ABP中,AB=6,BP= ,根据勾股定理得:AP= = ,∵四边形AECF为平行四边形,∴AF=EC=5,FC=AE=3,∴PF=5﹣= ,∵PM∥AD,∴= ,即= ,解得:PM= ,则S△PFC= FC•PM= ×3× =23. (1)证明:连接AC交BD于点O,如图所示:∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OB=OD,∴四边形ABCD是平行四边形(2)解:理由如下:∵四边形AECF是菱形,∴AC⊥BD,由(1)知,四边形ABCD是平行四边形;∴四边形ABCD是菱形(3)解:四边形ABCD不是矩形;理由如下:∵四边形AECF是矩形,∴OA=OC,OE=OF,AC=EF,∴OA=OC=OE=OF,∵BE=DF,∴OB=OD,∴AC<BD,∴四边形ABCD是平行四边形,不是矩形24. (1)解:∵长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B的坐标为(10,0),∴AC=OB=10,BC=OA=8,∵长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处,∴∆ACE≅∆AFE,∴AF=AC=10,∵在Rt∆AOF中,,∴,∴点F坐标是:(6,0),BF=10-6=4,设BE=x,则FE=CE=8-x,∵在Rt∆BEF中,,∴,解得:x=3,∴点E的坐标是:(10,3)(2)解:设AF所在直线的函数解析式为:y=kx+b,把A(0,8),F(6,0),代入y=kx+b,得:,解得:∴AF所在直线的函数解析式为:(3)解:①当AF=AP时,如图1,则OP=OF=6,图1∴点P坐标是:(-6,0),②当AF=PF时,如图2,则PF=10,OP=PF-OF=10-6=4,∴点P坐标是:(-4,0),图2③当AF=PF时,如图3,则PF=10,OP=PF+OF=10+6=16,∴点P坐标是:(16,0),图3。

人教版八年级数学下册第十八章综合素质评价附答案

人教版八年级数学下册第十八章综合素质评价附答案

人教版八年级数学下册第十八章综合素质评价一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为()A.100°B.160°C.80°D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14 B.12C.1 D.2(第2题)(第4题)(第5题)(第8题)3.【2022·河北】依据所标数据,下列一定为平行四边形的是()4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD的面积为()A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB=60°,AB=5,则BD的长为()A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是()A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形7.下列命题中,是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC =4,则该菱形的面积是()A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为()A.62 B. 6 C.2 2 D.2 3(第9题)(第10题)(第11题)(第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A =∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题)(第15题)(第16题)(第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF 的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分) 19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD 是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠F AC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t秒(t>0).(1)若点N的速度为每秒1个单位长度,①如图,当0<t<8时,求证:四边形AMCN是平行四边形;②点M,N运动的过程中,四边形AMCN可能出现的形状是________.A.矩形B.菱形C.正方形(2)若点N的速度为每秒2个单位长度,运动过程中,t为何值时,四边形AMCN是平行四边形?答案一、1.A 2.D 3.D 4.B 5.C 6.B7.D8.C9.B10.D提示:根据题意,可得DP=t cm,BM=t cm.∵AD=10 cm,BC=8 cm,∴AP=(10-t)cm,CM=(8-t)cm.当四边形ABMP为矩形时,AP=BM,即10-t=t,解得t=5.故A选项错误.当四边形CDPM为平行四边形时,DP=CM,即t=8-t,解得t=4.故B选项错误.当CD=PM时,分两种情况:(1)四边形CDPM是平行四边形,此时CM=PD,即8-t=t,解得t=4.(2)四边形CDPM是等腰梯形,如图,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,则∠MGP=∠CHD=90°,易得GM=HC.又∵PM=CD,∴Rt△MGP≌Rt△CHD(H L).∴GP=HD.易得GP=t-(8-t)2cm.∴AG=AP+GP=[10-t+t-(8-t)2]cm.又∵BM=t cm,易得AG=BM,∴10-t+t-(8-t)2=t,解得t=6.综上,当CD=PM时,t=4或6. 故C选项错误,D选项正确.二、11.1512.13 213.①14.4;215.2516.317.10点思路:根据勾股定理得到BC=AB2+AC2=5,由作图可知,MN是线段AC的垂直平分线,所以EC=EA, AF=CF.易证AE=CE=12BC=2.5.根据平行四边形的性质得到AD=BC=5,CD=AB=3,∠ACD=∠BAC=90°,同理证得AF=CF=2.5,于是得到结论.18.30°或150°提示:分两种情况.(1)如图,等边三角形ADE在正方形ABCD的内部,则∠CDE=∠CDA-∠ADE=90°-60°=30°.又∵CD=AD=DE,∴∠DCE=75°.∴∠ECB=15°.同理,∠EBC=15°.∴∠BEC=150°.(2)如图,等边三角形ADE在正方形ABCD的外部,则∠CDE=∠CDA+∠ADE=90°+60°=150°.又∵CD=AD=DE,∴∠CED=15°.同理,∠AEB=15°.∴∠BEC=∠AED-∠CED-∠AEB=60°-15°-15°=30°.三、19.证明:(1)∵BF=DE,∴BF-EF=DE-EF,即BE=DF.(2)∵四边形ABCD 为平行四边形, ∴AB =CD ,且AB ∥CD . ∴∠ABE =∠CDF . 在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ).20.证明:在△BEA 和△DFC 中,⎩⎨⎧AB =CD ,AE =CF ,BE =DF ,∴△BEA ≌△DFC (SSS ). ∴∠EAB =∠FCD . ∴∠BAC =∠DCA . ∴AB ∥DC .∵AB =DC ,∴四边形ABCD 是平行四边形. 21.(1)证明:∵△AOB 是等边三角形,∴OA =OB .∵四边形ABCD 是平行四边形, ∴OB =OD =12BD ,OA =OC =12AC . ∴BD =AC . ∴▱ABCD 是矩形. (2)解:∵▱ABCD 是矩形, ∴∠BAD =90°. 又易知∠ABO =60°,∴∠ADB =90°-60°=30°.∴BD =2AB =8.∴AD =BD 2-AB 2=82-42=4 3.22.(1)证明:在△ABC 中,点D 是AC 的中点,∴AD =DC . ∵AF ∥BC ,∴∠F AD=∠ECD,∠AFD=∠CED.∴△AFD≌△CED(AAS).∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G.由(1)知四边形AECF是菱形,又CF=2,∠F AC=30°,∴AE=CF=2,∠F AE=2∠F AC=60°.∵AF∥BC,∴∠AEB=∠F AE=60°.∴∠GAE=30°.∴GE=12AE=1.∴AG=AE2-GE2= 3.∵∠B=45°,∴AG=BG= 3.∴AB=AG2+BG2= 6.23.(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=∠D=90°.∴∠BAE+∠AEB=90°.∵BH⊥AE,∴∠BHE=90°.∴∠AEB+∠EBH=90°.∴∠BAE=∠EBH.在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA ). ∴AE =BF .(2)解:由(1)得△ABE ≌△BCF , ∴BE =CF .∵正方形的边长是5,BE =2, ∴DF =CD -CF =CD -BE =5-2=3.在Rt △ADF 中,由勾股定理得AF =AD 2+DF 2=52+32=34. 24.(1)①证明:当0<t <8时,根据题意,得BM =DN =t .∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD . ∴OB -BM =OD -DN . ∴OM =ON .∴四边形AMCN 是平行四边形. ②A(2)解:若点N 的速度为每秒2个单位长度,则0<t ≤8时,点N 从点D 向点B 运动,点M 在线段OB 上;当8<t ≤16时,点N 从点B 向点D 运动,点M 在线段OD 上.若四边形AMCN 是平行四边形,则OM =ON 且点M ,N 在点O 的两侧,当0<t ≤4时,ON =8-2t ,OM =8-t ,OM 与ON 不可能相等,不存在四边形AMCN 是平行四边形;当4<t ≤8时,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形; 当8<t ≤12时,点M ,N 在点O 的两侧,OM =t -8,ON =24-2t ,此时存在OM =ON ,即t -8=24-2t ,解得t =323;当12<t ≤16时,点M ,N 都在线段OD 上,点M ,N 在点O 的同侧,不存在四边形AMCN 是平行四边形.综上,当t =323时,四边形AMCN 是平行四边形.点思路:(1)②∵AB≠AD,∴四边形ABCD不可能是菱形或正方形.∴AC与MN不能垂直.∴四边形AMCN不可能是正方形或菱形.∴当MN=AC时,四边形AMCN可以是矩形.湘教版八年级数学下册期中学情评估一、选择题(每题3分,共30分)1.在Rt△ABC中,∠C=90°,∠B=40°,则∠A的度数是() A.60°B.30°C.50°D.40°2.以下有关勾股定理证明的图形中,不是中心对称图形的是()3.在▱ABCD中,AC,BD是它的两条对角线,下列条件中,能判定这个平行四边形是矩形的是()A.AB=BC B.∠DCA=∠DACC.∠BAC=∠ABD D.AC⊥BD4.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=3 cm,则下列说法正确的是()A.AC=3 cm B.BC=6 cmC.AB=6 cm D.AC=AD=3 cm(第4题)(第6题)5.已知▱ABCD的周长为20,且AB BC=23,则CD的长为() A.4 B.5 C.6 D.86.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别是AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1 C.32 D. 37.如图,OF是∠AOB内的一条射线,点E是射线OF上一点,EC⊥OA于点C,ED⊥OB于点D,若DE=CE,则下列结论不一定成立的是()A.OE平分∠AOBB.∠OED=∠OECC.OE=2CED.OE是线段CD的垂直平分线8. 已知下列命题,其中真命题有()①对角线相互垂直的四边形是菱形;②成中心对称的两个图形是全等形;③平行四边形的对称中心是对角线的交点;④正方形的对角线平分一组对角.A.1个B.2个C.3个D.4个9.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C,D为圆心,OC的长为半径作弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C,D两点之间距离为()A.10 B.12 C.13 D.8 3(第9题)(第10题)(第12题)10.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF,AP.给出下列5个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共15分)11.正五边形每个外角的大小是________度.12.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长CA,CB到点M,N,使AM=AC,BN =BC,测得MN=200 m,则A,B间的距离为________m.13. 如图,已知AB⊥CF于点B,DE⊥CF于点E,CE=FB,AC=DF,运用所给条件判定△ABC≌△DEF的依据为________.(第13题)(第14题)(第15题)14.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=________.15. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是边BC上的一动点,则AP的最小值为________.三、解答题(第16~17题每题6分,第18~20题每题8分,第21~22题每题12分,第23题15分,共75分)16.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,ED⊥BC于点D,交BA的延长线于点E,若∠E=35°,求∠BDA的度数.17.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1)求AB,AC,BC的长;(2)判断△ABC的形状,并说明理由.18. 如图,D,E,F分别是△ABC各边的中点.(1)四边形ADEF是怎样的四边形?证明你的结论.(2)若∠A=90°,且AB=AC,判断四边形ADEF是怎样的四边形?证明你的结论.19.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.20.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.21.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)根据条件与作图信息知四边形ABEF是________;A.非特殊的平行四边形B.矩形C.菱形D.正方形(2)设AE与BF相交于点O,若四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)证明:四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.23.如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.答案一、1.C 2.A 3.C 4.C 5.A6.B提示:∵∠ACB=90°,∠A=30°,∴AB=2BC=4.又∵D是AB的中点,∴CD=12AB=2.∵E,F分别是AC,AD的中点,∴EF为△ACD的中位线,∴EF=12CD=1.7.C8.C9.B提示:如图,连接CD交OE于点F,连接DE,CE,由作图过程可知OC=OD=DE=CE,∴四边形ODEC是菱形.∴OE⊥CD,OF=FE=12OE=8.∵OC=10,∴CF=DF=102-82=6,∴CD=2CF=12.10.C二、11.7212.10013.HL14.415.4.8三、16.解:∵ED⊥BC,∴∠BDE=90°.又∵∠E=35°,∴∠B=55°.∵∠BAC=90°,AD是边BC上的中线,∴DA=DB,∴∠B=∠DAB=55°,∴∠BDA=180°-55°-55°=70°.17.解:(1)根据勾股定理,得AB=5,AC=5,BC=10.(2)△ABC是等腰直角三角形.理由如下:∵AB2+AC2=5+5=10=BC2,∴△ABC是直角三角形.又∵AB=AC,∴△ABC是等腰直角三角形.18.解:(1)四边形ADEF 是平行四边形.证明:∵D ,E ,F 分别是△ABC 各边的中点,∴DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形. (2)四边形ADEF 是正方形.证明:由(1)知,四边形ADEF 是平行四边形. ∵∠A =90°,∴▱ADEF 是矩形.∵AB =AC ,D ,F 分别是AB ,AC 的中点, ∴AD =AF ,∴矩形ADEF 是正方形. 即四边形ADEF 是正方形.19.解:(1)∵在△ABC 中,∠B =50°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-50°-70°=60°. ∵AD 是△ABC 的角平分线, ∴∠BAD =12∠BAC =12×60°=30°. ∵DE ⊥AB ,∴∠DEA =90°,∴∠EDA =180°-∠BAD -∠DEA =180°-30°-90°=60°. (2)过点D 作DF ⊥AC 于点F .∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =3. 又∵AB =10,AC =8, ∴S △ABC =12AB ×DE +12AC ×DF =12×10×3+12×8×3=27.20.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠C =90°.由折叠的性质,得DF =CD ,∠F =∠C =90°, ∴AB =FD ,∠A =∠F .在△BEA 和△DEF 中,⎩⎨⎧∠AEB =∠FED ,∠A =∠F ,AB =FD ,∴△BEA ≌△DEF .(2)解:∵△BEA ≌△DEF ,∴BE =DE =AD -AE =4-AE .在Rt △BAE 中,由勾股定理,得AB 2+AE 2=BE 2. 设AE =x ,则BE =4-x ,∴22+x 2=(4-x )2. 解得x =32,故AE 的长为32. 21.解:(1)C(2)易知AE ⊥BF ,OB =OF ,AO =EO ,BE =EF ,AB ∥EF . ∵BF =4,∴OB =12BF =2.∵四边形ABEF 的周长为16,四边形ABEF 是菱形, ∴BE =4.在Rt △OBE 中,根据勾股定理,得OE =2 3, ∴AE =2OE =4 3.∵BE =BF =EF =4, ∴△BEF 是等边三角形,∴∠FEB =60°. ∵四边形ABCD 是平行四边形,∴AB ∥CD . ∵AB ∥EF ,∴CD ∥EF ,∴∠C =∠BEF =60°. 22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE .∴AF =DB .∵D 是BC 的中点,∴DB =DC ,∴AF =CD . 又∵AF ∥DC ,∴四边形ADCF 是平行四边形. ∵∠BAC =90°,D 是BC 的中点,∴AD =12BC =DC ,∴四边形ADCF 是菱形. (2)解:连接DF .∵AF ∥BC ,且由(1)知AF =BD , ∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC ×DF =12×4×5=10.23.(1)证明:过点E 作EP ⊥CD 于点P ,EQ ⊥BC 于点Q .∵四边形ABCD 为正方形,∴∠DCA =∠BCA ,21∴EQ =EP .由题易知∠QEF +∠FEC =45°,∠PED +∠FEC =45°,∴∠QEF =∠PED .在△EQF 和△EPD 中,⎩⎨⎧∠QEF =∠PED ,EQ =EP ,∠EQF =∠EPD =90°,∴△EQF ≌△EPD ,∴EF =ED ,∴矩形DEFG 是正方形.(2)解:由题意知AC =2 2.∵CE =2,∴AE = 2.∴AE =CE .∴点F 与点C 重合,此时△DCG 是等腰直角三角形,易知CG = 2.(3)解:∠EFC =120°或30°.。

人教版八年级数学下册第十八章测试题(附答案)

人教版八年级数学下册第十八章测试题(附答案)

人教版八年级数学下册第十八章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.若菱形的周长是40,则它的边长为()A. 20B. 10C. 15D. 252.下列叙述,错误的是( )A. 对角线互相垂直且相等的平行四边形是正方形B. 对角线互相垂直平分的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线相等的四边形是矩形3.如图,四边形ABCD是正方形,点E、F在AC上(除端点外),且AF=CE,下列结论不一定成立的是()A. △ADF≌△CBEB. 四边形BEDF是平行四边形C. BF DED. AE=AD4.在下列所给出的4个图形中,对角线一定互相垂直的是()A. 长方形B. 平行四边形C. 菱形D. 直角梯形5.如图,正方形ABCD的对角线AC、BD相交于点O,OA=3,则此正方形的面积为()A. 3B. 12C. 18D. 366.如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积将()A. 变大B. 变小C. 不变D. 变大变小要看点P向左还是向右移动7.顺次连接四边形ABCD各边中点,得到四边形EFGH,要使四边形EFGH是菱形,应添加的条件是()A. AD∥BCB. AC=BDC. AC⊥BDD. AD=AB8.菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A. 50B. 25C.D. 12.59.如图,△ABC的中线BD、CE交于点O,连接OA,点G,F分别为OC,OB的中点,BC=4,AO=3,则四边形DEFG的周长为()A. 6B. 7C. 8D. 1210.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形11.在下列条件中,不能确定四边形ABCD为平行四边形的是()A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A+∠B=180°,∠C+∠D=180°12.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A. B. C. D.二、填空题(共8题;共9分)13.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________14.在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=________.15.平行四边形ABCD中,AE平分∠BAD交BC与点E,且将BC分成4cm和6cm两部分,则平行四边形ABCD 的周长为________.16.如图,四边形ABCD的两条对角线AC、BD的长分别为5cm、4cm,点A1,B1,C1,D1是四边形ABCD各边上的中点,则四边形A1B1C1D1的周长为________cm.17.在Rt△ABC中,∠ACB=90°,若CA=8,BC=6,点D、E分别是AC、AB的中点.则DE=________,CE=________.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是________.19.如图,矩形ABCD被分成四部分,其中△ABE、△ECF、△ADF的面积分别为2、3、4,则△AEF的面积为________.20.如图,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点F是对角线BD上的一点,EF∥AB交AD于点E,FG∥BC交DC于点G,四边形EFGP是平行四边形,给出如下结论:①四边形EFGP是菱形;②△PED为等腰三角形;③若∠ABD=90°,则△EFP≌△GPD;④若四边形FPDG也是平行四边形,则BC∥AD且∠CDA=60°.其中正确的结论的序号是________(把所有正确结论的序号都填在横线上).三、解答题(共4题;共20分)21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=60°,求∠E的度数.22.如图,已知△ABC中,BE、CF分别是AC、AB边上的高,D是BC的中点,求证:DE=DF.23.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(Ⅰ)如图1,若点P在线段AB的延长线上,求证:EA=EC;(Ⅱ)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(Ⅲ)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.24.阅读材料,解决问题:明明家准备装修房子,房子的部分平面图如图1所示.为了增大房子的使用空间,爸爸想把现在两间卧室之间的非承重墙打掉,之后在打掉的位置做一排衣柜.爸爸说:“我想测量一下非承重墙的厚度,从而知道打掉这堵墙后可以腾出多少空间.我手里有的工具是教学用量角器、大刻度尺,明明,你帮助爸爸看看应该怎样测量.”“这堵墙的厚度处处相等吗?”明明说.爸爸说:“这个没问题,当年收房的时候我就考察过.”“那我就可以在地面上直接进行测量了.我再问您,每个房间中地面和墙的交线都是垂直或平行的吗?”明明说.爸爸回答:“是的”.“那就简单了.我们俩先测出客厅的东西向宽度,再测出每个卧室的东西向宽度,用客厅的宽度减去两个卧室的宽度就是中间这堵非承重墙的厚度.”明明说.爸爸说:“那不行,客厅和卧室的家具摆得满满的,东西向宽度勉强测到也不准确.你能不能在不借助测量房间宽度或房间内其它家具的前提下,设计一个通过测量和计算得到非承重墙厚度的方案.”请你利用学到的三角形或四边形的知识帮助明明解决此问题.要求:(1)在图2中画出测量时用到的示意图,图形要规范;(2)简要叙述测量过程;(3)写出测量的依据.四、综合题(共4题;共47分)25.已知直线a,b,a平行于b,过直线a上任意两点A,B分别向直线b作垂线,交直线b于点C,D.(1)线段AC,BD所在的直线有怎样的位置关系?(2)比较线段AC,BD的长短.26.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.27.如图1,△ABD和△BDC都是边长为1的等边三角形。

人教版八年级数学下册第18章平行四边形单元测试题含答案

人教版八年级数学下册第18章平行四边形单元测试题含答案
图 18- Z- 8
图 18- Z- 9 9.如图 18- Z- 9,在菱形 ABCD中, AB= 4,线段 AD的垂直平分线交 AC于点 N,△ CND 的周长是 10,则 AC的长为 ________. 10.如图 18- Z- 10,矩形 ABCD中, E是 BC的中点,矩形 ABCD的周长是 20 cm, AE=5 cm,则 AB的长为 ________ cm.
(1) 求证: AF= DC; (2) 若 AB⊥AC,试判断四边形 ADCF的形状,并证明你的结论.
3
图 18- Z-16 17. (12 分 ) 如图 18-Z- 17,在四边形 ABCD中, AB= AD, CB= CD, E 是 CD上一点, BE 交 AC于点 F,连接 DF. (1) 求证:∠ BAC=∠ DAC,∠ AFD=∠ CFE; (2) 若 AB∥CD,试证明四边形 ABCD是菱形; (3) 在 (2) 的条件下,试确定 E点的位置,使∠ EFD=∠ BCD,并说明理由.
图 18- Z-14
15. (12 分) 如图 18- Z- 15,四边形 ABCD是矩形,把矩形沿对角线 点 E 处, CE与 AD相交于点 O.
(1) 求证: AO= CO; (2) 若∠ OCD= 30°, AB= 3,求△ AOC的面积.
AC折叠,点 B 落在
图 18- Z-15
16.(12 分 ) 如图 18- Z-16,在△ ABC中, AD是 BC边上的中线, E是 AD的中点,过点 A 作 BC的平行线交 BE的延长线于点 F,连接 CF.
1 点,∴ CD= 2AB,∴ CD= EF.
4. B 5.C 6.C [ 解析 ] 作点 F 关于 BD的对称点 F′, 连接 EF′交 BD于点 P,则 PF= PF′, 此时 EP+ FP= EP+ F′ P. 由两点之间线段最短可知:当 E, P, F′

人教版数学八年级下册第十八章测试题含答案

人教版数学八年级下册第十八章测试题含答案

人教版数学八年级下册第十八章测试卷一.选择题(共10小题)1.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形B.平行四边形C.菱形D.矩形2.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m3.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8 C.4和6 D.2和124.菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3 B.C.2:1 D.5.如图,△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2016个三角形的周长为()A.22016B.22017 C.D.6.在Rt△ABC中,∠C=90°,AB=16cm,点D为AB的中点,则CD的长为()A.2cm B.4cm C.6cm D.8cm7.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次 C.3次 D.4次8.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.810.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形二.填空题(共5小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为.12.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为.13.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为,短边长为.14.在直角三角形中,斜边上的中线为3,那么斜边长为.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=.三.解答题(共7小题)16.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.17.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.求证:AB=AC.18.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.19.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.20.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.21.如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.22.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD 的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.参考答案与试题解析一.选择题(共10小题)1.以三角形的一条中位线和第三边上的中线为对角线的四边形是()A.梯形B.平行四边形C.菱形D.矩形【解答】解:如右图:∵D、E、F分别是三角形的三边的中点∴DF∥AC,EF∥AB∵AE、AD分别在AC、AB上∴DF∥AE,EF∥AD∴四边形是平行四边形.故选B.2.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=4m,∠A=30°,则DE等于()A.1m B.2m C.3m D.4m【解答】解:∵点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,∴点E是AC的中点,∴DE是直角三角形ABC的中位线,根据三角形的中位线定理得:DE=BC,又∵在Rt△ABC中,AB=4m,∠A=30°,∴BC=AB=2m.故DE=BC=1m,故选:A.3.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8 C.4和6 D.2和12【解答】解:如图,过点C作CF∥BD,交AB延长线于点F,∴四边形BFCD为平行四边形,∴CF=BD,∴在△AFC中:AC﹣CF<AF<AC+CF,即AC﹣BD<2AB<AC+BD,∵AB=5,∴选项中只有D中的数据能满足此关系:8﹣4=4<5×2<8+4=12,故选B.4.菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3 B.C.2:1 D.【解答】解:如图在菱形ABCD中,连接AC、BD交于点O,∵∠ADC=2∠DAB,∠ADC+∠DAB=180°,∴∠DAB=60°,∴∠DAO=30°,∠AOD=90°,'设OD=a,则AD=2a,OA=a,∴AC=2OA=2a,∴AC:AD=2a:2a=:1,故选D.5.如图,△ABC周长为1,连接△ABC三边中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,以此类推,第2016个三角形的周长为()A.22016B.22017 C.D.【解答】解:根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长1×=,第三个三角形的周长为=△ABC的周长×=()2,第2016个三角形的周长═()2015.故选D.6.在Rt△ABC中,∠C=90°,AB=16cm,点D为AB的中点,则CD的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵∠C=90°,点D为AB的中点,∴CD=AB=8cm,故选:D.7.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD 边上以每秒1cm 的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次 C.3次 D.4次【解答】解:∵四边形ABCD为平行四边形,∴PD∥BQ.若要以P、D、Q、B四点组成的四边形为平行四边形,则AP=BQ.设运动时间为t.当0<t<时,AP=t,PD=10﹣t,CQ=4t,BQ=10﹣4t,∴10﹣t=10﹣4t,方程无解;当<t<5时,AP=t,PD=10﹣t,BQ=4t﹣10,∴10﹣t=4t﹣10,解得:t=4;当5<t<时,AP=t,PD=10﹣t,CQ=4t﹣20,BQ=30﹣4t,∴10﹣t=30﹣4t,解得:t=;当<t<10时,AP=t,PD=10﹣t,BQ=4t﹣30,∴10﹣t=4t﹣30,解得:t=8.综上所述:当运动时间为4秒、秒或8秒时,以P、D、Q、B四点组成的四边形为平行四边形.故选C.8.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.变小B.不变C.变大D.无法判断【解答】解:在木棍滑动的过程中,点P到点O的距离不发生变化,理由是:连接OP,∵∠AOB=90°,P为AB中点,AB=2a,∴OP=AB=a,即在木棍滑动的过程中,点P到点O的距离不发生变化,永远是a;故选B.9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD 的长等于()A.5 B.6 C.7 D.8【解答】解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.10.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形B.菱形C.正方形D.平行四边形【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=0C,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B二.填空题(共5小题)11.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为2.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=2.故答案为:2.12.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为2+或22+11..【解答】解:①如图1中,当∠BAD是钝角时,设AB=a,BC=b,∵四边形ABCD是平行四边形,∴AB=CD=a,•BC•AE=•CD•AF,∴6a=5b ①∵a+b=22 ②由①②解得a=10,b=12,在Rt△ABE中,∵∠AEB=90°,AB=10,AE=5,∴BE===5,∴EC=12﹣5,在Rt△ADF中,∵∠AFD=90°.AD=12,AF=6.∴DF===6,∵6>10,∴CF=DF﹣CD=6﹣10,∴CE+CF=EC+CF=2+.②如图2中,当∠BAD是锐角时,由①可知:DF=6,BE=5,∴CF=10+6,CE=12+5,∴CE+CF=22+11.故答案为:2+或22+11.13.用20cm长的铁丝围成一个平行四边形,使长边比短边长2cm,则它的长边长为6cm,短边长为4cm.【解答】解:设平行四边形的两边分别为xcm,(x﹣2)cm,由题意2[x+(x﹣2)]=20,解得x=6,∴平行四边形的两边分别为6cm,4cm,故答案为6cm,4cm.14.在直角三角形中,斜边上的中线为3,那么斜边长为6.【解答】解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故答案为:6.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=2,则CD=1.【解答】解:在Rt△ABC中,∵CD是斜边AB上的中线,AB=2,∴CD=AB=1,故答案为1.三.解答题(共7小题)16.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.【解答】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.17.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.求证:AB=AC.【解答】证明:∵四边形ADEF是平行四边形,∴AD=EF AD∥EF,∴∠2=∠3,又∵AD=BF,∴BF=EF,∴∠1=∠3,∴∠1=∠2,∴AB=AC.18.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.【解答】证明:连接AF,ED,EF,EF交AD于O.∵AE=DF,AE∥DF.∴四边形AEDF为平行四边形,∴EO=FO,AO=DO,又∵AB=CD,∴AO﹣AB=DO﹣CD,∴BO=CO,又∵EO=FO,∴四边形EBFC是平行四边形.19.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.【解答】解:(1)连接CF,在Rt△ABC中,F是AB的中点,∴CF=AB=5,∵点E,F分别是边AC,AB的中点,∴EF∥BC,EF=BC,∵2CD=BC,∴EF=CD,EF∥CD,∴四边形EDCF是平行四边形,∴DE=CF=5;(2)如图2,∵四边形EDCF是平行四边形,∴CF∥DM,∵点E是边AC的中点,∴点M是AF的中点.20.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.21.如图,∠ACB=∠ADB=90°,M、N分别为AB、CD的中点.求证:MN⊥CD.【解答】证明:如图,连接CM、DM,∵∠ACB=∠ADB=90°,M为AB的中点,∴CM=AB,DM=AB,∴CM=DM=AB,∵N为CD的中点,∴MN⊥CD.22.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD 的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.。

2018-2019学年人教版八年级数学下第18章质量评估试卷(含答案)

2018-2019学年人教版八年级数学下第18章质量评估试卷(含答案)

第十八章平行四边形质量评估试卷班级姓名分数一、选择题(每小题3分,共30分)1.下列命题中,假命题是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形2.如图1,已知四边形ABCD是平行四边形,则下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形3.菱形的两条对角线分别是12和16,则该菱形的边长是() A.10 B.8 C.6 D.54.顺次连接矩形四边中点所得的四边形一定是()A.正方形 B.矩形C.菱形 D.不能确定5.小明用四根长度相等的木条制作了能够活动的菱形学具,他先活动学具成为图2(1)所示的菱形,并测得∠B=60°,接着活动学具成为图2(2)所示的正方形,并测得对角线AC=40 cm,则图2(1)中对角线AC的长为()A.20 cm B.30 cm C.40 cm D.20 2 cm图26.求证:菱形的两条对角线互相垂直.已知:如图3,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又∵BO=DO.②∴AO⊥BD,即AC⊥BD.③∵四边形ABCD是菱形.④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④ B.③→④→①→②C.①→②→④→③ D.①→④→③→②7.如图4,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积为( )A .2 3 B.4 C.4 3 D.88.如图5,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到四边形EFC ′D ′,ED ′交BC 于点G ,则△GEF 的周长为( )A .6 B.12 C .18D.249.如图6,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为( )A .2a B.22a C .3aD.433a10.如图7,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则CF 的长为( )A .1B.2C . 2 D. 3二、填空题(每小题4分,共24分)11.如图8,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是 .图812.如图9,菱形ABCD 的周长是40,对角线AC 为10,则菱形ABCD 相邻两内角的度数分别为 .图913.如图10,在▱ABCD 中,∠D =100°,∠DAB 的角平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为 .图1014.如图11,在正方形ABCD 中,等边三角形AEF 的顶点E ,F 分别在边BC 和CD 上,则∠AEB = .图1115.如图12,在△ABC中,CD⊥AB于点D,点E是AC的中点,若AD=6,DE=5,则CD=.16.如图13,已知菱形ABCD的周长为16,面积为83,E为AB 的中点,若P为对角线BD上一动点,则EP+AP的最小值为.三、解答题(共66分)17.(10分)如图14,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长,与BC的延长线交于点E.求证:BC=CE.18.(10分)如图15,E,F为▱ABCD对角线AC 上的两点,且AE=CF,连接BE,DF.求证:BE=DF.19.(10分)如图16,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.20.(12分)如图17,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACB,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AGFE是菱形.21.(12分)如图18,在Rt △ABC 中,∠B =90°,点E是AC 的中点,AC =2AB ,∠BAC 的角平分线AD 交BC于点D ,作AF ∥BC ,连接DE 并延长,交AF 于点F ,连接FC .求证:四边形ADCF 是菱形.22.(12分)我们给出如下的定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.图19(1)如图19(1),四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,求证:中点四边形EFGH 是平行四边形.(2)如图19(2),点P 是四边形ABCD 内的一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD .点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.(3)若改变(2)中的条件,使∠APB =∠CPD =90°.其他条件不变,直接写出中点四边形EFGH 的形状(不必证明).。

2018-2019学年人教版八年级数学下册第18章单元综合检测试卷及答案参考

2018-2019学年人教版八年级数学下册第18章单元综合检测试卷及答案参考

2018-2019学年人教版八年级数学下册第18章单元综合检测试卷(时间120分钟;满分150分)一、选择题(每小题4分,共48分)1.下列命题中,假命题是()(A)菱形的面积等于两条对角线乘积的一半(B)矩形的对角线相等(C)对角线互相垂直的平行四边形是矩形(D)对角线相等的菱形是正方形2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()(A)当AB=BC时,它是菱形(B)当AC⊥BD时,它是菱形(C)当∠ABC=90°时,它是矩形(D)当AC=BD时,它是正方形3.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()(A)1(B)2(C)3(D)44.顺次连接矩形四边中点所得的四边形一定是()(A)正方形(B)矩形(C)菱形(D)不能确定5.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出四边形ABCD是正方形,那么这个条件可以是()(A)∠D=90°(B)AB=CD(C)AD=BC(D)BC=CD6.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()(A)45°(B)55°(C)60°(D)75°7.在Rt△ABC中,∠C=90°,AC=6,BC=8,则AB上的中线长是()(A)5(B)6(C)8(D)108.如图,菱形ABCD的周长为40cm,对角线AC与BD相交于点O,点E是BC的中点,则OE的长为()(A)6cm(B)5cm(C)4cm(D)3cm9.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长()(A)4(B)32(C)4.5(D)510.如图,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()(A)8或23(B)10或4+23(C)10或23(D)8或4+2311.如图,矩形ABCD的对角线AC,BD交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()(A)4(B)8(C)10(D)1212.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()(A)4.8(B)5(C)6(D)7.2二、填空题(每小题4分,共20分)13.如图,菱形ABCD的周长是40cm,对角线AC为10cm,则菱形相邻两内角的度数分别为.14.如图,菱形ABCD对角线AC,BD交于点O,∠BAD=60°,点E是AD的中点,OE=4,则菱形ABCD的面积为.15.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.16.如图,△ABC中,CD⊥AB于点D,点E是AC的中点,若AD=6,DE=5,则CD的长为.17.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的动点,则EF+BF的最小值是.三、解答题(共82分,解答时写出必要的解答过程)18.(6分)如图,在▱ABCD中,∠BAD和∠BCD的平分线AF,CE分别与对角线BD交于点F,E.求证:四边形AFCE是平行四边形.19.(8分)如图所示,在矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB,CD的延长线分别交于点E,F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么条件时,四边形AECF是菱形?并证明你的结论.20.(8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.21.(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.22.(10分)如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线MN交AC于点O.(1)求证:△COM≌△AON;(2)求线段OM的长度.23.(10分)如图,已知点P为∠ACB平分线上的一点,∠ACB=60°,PD⊥CA于D,PE⊥CB于E,点M是线段CP上的一动点(不与两端点C,P重合),连接DM,EM.(1)求证:DM=EM;(2)当点M运动到线段CP的什么位置时,四边形PDME为菱形,请说明理由.24.(10分)如图,四边形ABCD中,对角线相交于点O,E,F,G,H分别是AD,BD,BC,AC的中点.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.25.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论;(3)在(2)的条件下,要使四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上(不需说明理由).26.(10分)(1)如图(1),已知△ABC,以AB,AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹) (2)如图(2),已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图(3),要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.第十八章检测试题参考答案1.C2.D3.B4.C5.D6.C7.A8.B9.A10.D11.B12.A13.60°,120°14.32315.516.817.2718.证明:因为四边形ABCD是平行四边形,所以AD=BC,AD∥BC,∠BAD=∠BCD,所以∠ADB=∠CBD,因为AF平分∠BAD,所以∠DAF=12∠BAD,因为CE平分∠BCD,所以∠BCE=12∠BCD,所以∠DAF=∠BCE,在△DAF和△BCE中,∠ADB=∠CBD,AD=BC,∠DAF=∠BCE,所以△ADF≌△BCE(ASA),所以AF=CE,∠AFD=∠CEB,所以AF∥CE,所以四边形AFCE是平行四边形.19.(1)证明:因为四边形ABCD是矩形,所以OB=OD(矩形的对角线互相平分),AE∥CF(矩形的对边平行),所以∠BEO=∠DFO,∠OBE=∠ODF,在△BOE与△DOF中,∠BEO=∠DFO,∠OBE=∠ODF,OB=OD,所以△BOE≌△DOF(AAS).(2)解:当EF⊥AC时,四边形AECF是菱形,证明:连接AF,EC,因为四边形ABCD是矩形,所以OA=OC(矩形的对角线互相平分),又因为△BOE≌△DOF,所以OE=OF,所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形),因为EF⊥AC,所以四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).20.(1)证明:因为菱形ABCD,所以AB=CD,AB∥CD,又因为BE=AB,所以BE=CD,BE∥CD,所以四边形BECD是平行四边形,所以BD=EC.(2)解:因为平行四边形BECD,所以BD∥CE,所以∠ABO=∠E=50°,又因为菱形ABCD,所以AC⊥BD,即∠AOB=90°,在Rt△AOB中,所以∠BAO=90°-∠ABO=40°,所以∠BAO的大小为40°.21.(1)证明:∵点D,E分别是边BC,AB的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE.(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.22.(1)证明:因为四边形ABCD为矩形,沿MN翻折后,A,C重合,所以AO=CO,AD∥BC,所以∠1=∠2,在△AON和△COM中,∠1=∠2,AO=CO,∠AON=∠COM,所以△AON≌△COM(ASA).(2)解:连接AM,因为四边形ABCD是矩形,AB=6,BC=8,所以∠B=90°,在Rt△ABC中,由勾股定理,得AC=AB2+BC2=62+82=10,由对折知,MN垂直平分AC,所以∠COM=90°,CO=AO=12AC=12×10=5,CM=AM,设BM=x,则AM=CM=BC-BM=8-x,在Rt△ABM中,由勾股定理,得AM2-BM2=AB2,即(8-x)2-x2=62,解得x=74,所以BM=74,CM=8-74=254,在Rt△COM中,由勾股定理,得OM=CM2-CO2==154,所以线段OM的长度为154.23.(1)证明∵PC平分∠ACB,PD⊥CA,PE⊥CB,∴PD=PE.∴Rt△PCD≌Rt△PCE,∴CD=CE.在△DMC和△EMC中,CD=CE,∠DCM=∠ECM,CM=CM.∴△DCM≌△ECM,∴DM=EM.(2)解:当点M运动到线段CP的中点时,四边形PDME为菱形.理由如下:∵M为PC的中点,PD⊥CA,∴DM=12PC,在直角三角形PDC中.∵∠ACB=60°,∴∠PCD=30°,∴PD=12PC,∴DM=PD.由(1)得DM=EM,PD=PE,∴PD=PE=EM=DM,∴四边形PDME为菱形.24.(1)证明:因为E,F分别是AD,BD的中点,G,H分别是BC,AC的中点,所以EF∥AB,EF=12AB,GH∥AB,GH=1AB,2所以EF∥GH,EF=GH,所以四边形EFGH是平行四边形.(2)解:当AB=CD时,四边形EFGH是菱形,理由:因为E,F分别是AD,BD的中点,H,G分别是AC,BC的中点,G,F分别是BC,BD的中点,E,H分别是AD,AC的中点,所以EF=12AB,HG=12AB,FG=12CD,EH=12CD,又因为AB=CD,所以EF=FG=GH=EH,所以四边形EFGH是菱形.25.(1)证明:因为E是AD的中点,所以AE=ED,因为AF∥BC,所以∠AFE=∠DBE,∠FAE=∠BDE,在△AFE和△DBE中,∠AFE=∠DBE,∠FAE=∠BDE,AE=DE,所以△AFE≌△DBE(AAS),所以AF=BD,因为AD是BC边中线,所以CD=BD,所以AF=CD.(2)解:四边形ADCF的形状是菱形.证明:因为AF=DC,AF∥BC,所以四边形ADCF是平行四边形,因为AB⊥AC,所以∠CAB=90°,因为AD为中线,所以AD=DC=BD=12BC,所以平行四边形ADCF是菱形.(3)解:AB=AC.26.解:(1)作图如图(a)所示,因为△ABD和△ACE都是等边三角形,所以AD=AB,AC=AE,∠DAB=∠EAC=60°,因为∠DAC=∠DAB+∠BAC,∠BAE=∠BAC+∠CAE,所以∠DAC=∠BAE.在△DAC和△BAE中,AD=AB,∠DAC=∠BAE,AC=AE,所以△DAC≌△BAE(SAS),所以BE=CD.(2)BE=CD.理由:因为四边形ABFD和ACGE是正方形,所以AD=AB,AC=AE,∠DAB=∠EAC=90°,因为∠DAC=∠DAB+∠BAC,∠BAE=∠BAC+∠CAE,所以∠DAC=∠BAE,在△DAC和△BAE中,AD=AB,∠DAC=∠BAE,AC=AE,所以△DAC≌△BAE(SAS),所以BE=CD.(3)运用(1)(2)解答中所积累的经验和知识,以边AB为直角边向△ABC外作等腰直角三角形ABD,如图(b)所示.则∠BAD=90°,AD=AB,∠ABD=45°.在Rt△ABD中,AD=AB=100,由勾股定理得,BD=AB2+AD2=1002.因为∠ABC=45°,所以∠DBC=∠DBA+∠ABC=45°+45°=90°,则△DBC为直角三角形.在Rt△DBC中,BC=100,由勾股定理得,DC=BD2+BC2=1003.由(1)可知,BE=DC=1003米.所以BE的长为1003米.。

2018-2019学年度人教版八年级下《第18章平行四边形》单元测试题含答案

2018-2019学年度人教版八年级下《第18章平行四边形》单元测试题含答案

第十八章 平行四边形一、选择题(每小题3分,共30分)1.如图,在菱形ABCD 中,AC =8,AD =6,则△ABC 的周长为( D ) A .14 B .16 C .18 D .202.如图,将边长为2cm 的菱形ABCD 沿边AB 所在的直线翻折得到四边形ABEF .若∠DAB =30°,则四边形CDFE 的面积为( C )A .2cm 2B .3cm 2C .4cm 2D .6cm 2第2题图 第3题图3.如图,在矩形ABCD 中,AB =5,AD =3,动点P 在矩形ABCD 内,且满足S △P AB=13S 矩形ABCD ,则点P 到A ,B 两点距离之和P A +PB 的最小值为( D ) A.29 B.34 C .5 2 D.414、矩形具有而菱形不具有的性质是( B ) A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等5.已知在▱ABCD 中,BC -AB =2cm ,BC =4cm ,则▱ABCD 的周长是( B )A.6cm B.12cm C.8cm D.10cm6.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为(D)A.25cm B.50cmC.75cm D.100cm第6题图第7题图第8题图7.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于E,交BA的延长线于F,则AF的长等于(A)A.2 B.3 C.4 D.68.如图,在正方形ABCD中,P、Q分别为BC、CD的中点,则∠CPQ的度数为(C) A.50°B.60°C.45°D.70°9.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是(D)A.①②B.①④C.③④D.②③10、如图,下列四组条件中,能判定□ABCD是正方形的有( D )①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.12.在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是________.第13题图第15题图14.在矩形ABCD中,对角线AC、BD交于点O,AB=1,∠AOB=60°,则AD=________.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD 的中点.若AB=8,则EF=________.16.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A′处.若∠1=∠2=50°,则∠A′的度数为________.第16题图第17题图第18题图17.如图,已知菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为________cm.18.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为________.三、解答题(共66分)19.(8分)如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.20.(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.21.(8分)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法);(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.22.(8分)如图,在矩形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF∥BD交线段OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.23.(10分)如图,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形?请说明理由.24.(10分)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E 作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.25.(14分)如图①,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动.①当点Q与点C重合时(如图②),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案11.45° 12.30 13.9 14.3 15.2 16.105° 17.1318.519.解:∵E 是▱ABCD 的边AD 的中点,∴AE =DE .(2分)∵四边形ABCD 是平行四边形,∴AB =CD =6,AB ∥CD ,∴∠F =∠DCE .(4分)在△AEF 和△DEC 中,⎩⎪⎨⎪⎧∠F =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),(6分)∴AF =CD =6,∴BF =AB +AF =12.(8分)20.(1)证明:∵O 是AC 的中点,∴OA =OC .∵AD ∥BC ,∴∠ADO =∠CBO .(2分)在△AOD 和△COB 中,⎩⎪⎨⎪⎧∠ADO =∠CBO ,∠AOD =∠COB ,OA =OC ,∴△AOD ≌△COB ,∴OD =OB ,∴四边形ABCD 是平行四边形.(4分)(2)解:∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形,(6分)∴S ▱ABCD=12AC ·BD =24.(8分) 21.解:(1)如图所示.(3分)(2)四边形ABEF 是菱形.(4分)证明如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠AEB .∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴BE =AB .(6分)由(1)得AF =AB ,∴BE =AF .又∵BE ∥AF ,∴四边形ABEF 是平行四边形.(7分)∵AF =AB ,∴四边形ABEF 是菱形.(8分)22.证明:(1)∵CF ∥BD ,∴∠DOE =∠CFE .∵E 是CD 的中点,∴CE =DE .(2分)在△ODE 和△FCE 中,⎩⎪⎨⎪⎧∠DOE =∠CFE ,∠DEO =∠CEF ,DE =CE ,∴△ODE ≌△FCE (AAS).(4分) (2)∵△ODE ≌△FCE ,∴OD =FC .(5分)∵CF ∥BD ,∴四边形ODFC 是平行四边形.(6分)在矩形ABCD 中,∵OC =OD ,∴四边形ODFC 是菱形.(8分)23.解:(1)四边形EFGH 为平行四边形.(1分)理由如下:在△ABC 中,∵E ,F 分别是边AB ,BC 的中点,∴EF ∥AC ,且EF =12AC ,同理有GH ∥AC ,且GH =12AC ,(3分)∴EF ∥GH且EF =GH ,故四边形EFGH 是平行四边形.(5分)(2)当AC =BD 且AC ⊥BD 时,四边形EFGH 是正方形.(6分)理由如下:∵EH =12BD ,EF =12AC ,∴若AC =BD ,则有EH =EF .又∵四边形EFGH 是平行四边形,∴四边形EFGH是菱形.(8分)∵AC ⊥BD ,∴∠EHG =90°.∴四边形EFGH 为正方形.(10分)24.(1)证明:连接CF ,在正方形ABCD 中,∠D =90°.∵EF ⊥AC ,∴∠CEF =∠AEF=90°.在Rt △CDF 和Rt △CEF 中,⎩⎪⎨⎪⎧CF =CF ,CD =CE ,∴Rt △CDF ≌Rt △CEF (HL),∴DF =EF .(2分)∵AC 是正方形ABCD 的对角线,∴∠EAF =45°,∴△AEF 是等腰直角三角形,∴AE =EF ,∴DF =AE .(4分)(2)解:在正方形ABCD 中,∠ABC =90°,CD =BC =AB =2.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=2AB =2 2.∵CE =CD ,∴AE =AC -CE =AC -CD =22-2.(6分)过点E 作EH ⊥AB 于H .∵AC 是正方形ABCD 的角平分线,∴△AEH 是等腰直角三角形,∴EH =AH =22AE =22(22-2)=2-2,∴BH =AB -AH =2-(2-2)= 2.(8分)在Rt △BEH 中,由勾股定理得BE 2=BH 2+EH 2=(2)2+(2-2)2=8-4 2.(10分)25.(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF .(2分)又∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形.(4分)(2)解:①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°.∵点B 与点E 关于PQ 对称,∴CE =BC =5cm.(5分)在Rt △CDE 中,DE =CE 2-CD 2=4cm ,∴AE =AD -DE =5-4=1(cm).(7分)在Rt △APE 中,AE =1,AP =3-PB =3-EP ,∴EP 2=12+(3-EP )2,∴EP =53cm ,∴菱形BFEP 的边长为53cm.(9分) ②当点Q 与点C 重合时,如图②所示.点E 离点A 最近,由①知,此时AE =1cm.(11分)当点P 与点A 重合时,如图③所示.点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm ,(13分)∴点E 在边AD 上移动的最大距离为2cm.(14分)。

2018-2019学年度人教版八年级数学下期第十八章平行四边形达标测试卷

2018-2019学年度人教版八年级数学下期第十八章平行四边形达标测试卷

2018-2019学年度人教版八年级数学下期第十八章平行四边形达标测试卷一、选择题(每题3分,共30分)1.如图,在▱ABCD中,已知AC=4 cm,若△ACD的周长为13 cm,则▱ABCD 的周长为()(第1题)A.26 cm B.24 cm C.20 cm D.18 cm 2.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()A.12 cm B.9 cm C.6 cm D.3 cm(第2题)3.下列四组条件中,不能判定四边形ABCD是平行四边形的是() A.AB=DC,AD=BC B.AB∥DC,AD∥BCC.AB∥DC,AD=BC D.AB∥DC,AB=DC4.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为()A.4 cm B.5 cm C.6 cm D.8 cm(第4题)5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为一边的正方形ACEF 的周长为()A.14 B.15 C.16 D.17(第5题)6.下列说法中,正确的个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A .1个B .2个C .3个D .4个7.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( )A .16 3B .16C .8 3D .8(第7题)8.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )9.如图,在矩形ABCD 中,AD =3AB ,点G ,H 分别在AD ,BC 上,连接BG ,DH ,且BG ∥DH ,当AG AD =( )时,四边形BHDG 为菱形.A.45B.35C.49D.38(第9题)10.如图,在▱ABCD 中,CD =2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF ,BF ,下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S 四边形DEBC =2S △EFB ;④∠CFE =3∠DEF ,其中正确的结论有( )A .1个B .2个C .3个D .4个(第10题)二、填空题(每题3分,共24分)11.如图,▱ABCD 中,AC ,BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为________.(第11题)12.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使四边形ABCD成为菱形(只需添加一个即可).(第12题)13.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在第________象限.14.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为________.(第14题)15.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.(第15题)16.矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为________.17.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是__________.18.如图,在边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第n个菱形的边长是________.(第18题)三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分) 19.如图,在▱ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证AG=CH.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.21.如图,矩形ABCD中,E是AD的中点,连接CE并延长与BA的延长线交于点F,连接AC、DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.(第21题)22.在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.(第23题)24.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图①,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,判断中点四边形EFGH的形状,并说明理由;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).(第24题)答案一、1.D 2.C 3.C 4.A 5.C 6.B7.C 8.C9.C 点拨:在矩形ABCD 中,AD =3AB ,设AB =1,则AD =3,由AD∥BC ,BG ∥DH 得四边形BHDG 为平行四边形.若四边形BHDG 为菱形,则BG =GD ,设BG =GD =x ,则AG =3-x ,在Rt △ABG 中,1+()3-x 2=x 2,解得x =53 ,所以AG AD =3-533=49.10.D 点拨:∵在▱ABCD 中,CD =2AD ,F 为DC 的中点.∴CF =12CD=AD =BC ,∴∠CBF =∠CFB ,AB ∥CD .∴∠CBF =∠CFB=∠ABF .∴∠ABC =∠ABF +∠CBF =2∠ABF .故①正确.延长EF ,BC ,相交于点G .容易证明△DEF ≌△CGF ,∴FE=FG .∵BE ⊥AD ,AD ∥BC ,∴∠EBG =90°.根据直角三角形斜边上的中线等于斜边的一半得EF =BF ,②正确.∵BF 是△BEG 的中线,∴S △BEG =2S △BEF ,而S △DEF =S △CGF ,∴S △BEG =S 四边形DEBC ,∴S 四边形DEBC =2S △EFB ,故③正确.设∠DEF =x ,∵AD ∥BC ,∴∠DEF =∠G =x .又∵FG =FB ,∴∠G =∠FBG =x.∴∠EFB =2x ,∠CFB =∠CBF =x .∴∠CFE =∠CFB +∠BFE =x +2x =3x =3∠DEF ,故④正确.二、11.1412.OA =OC (答案不唯一) 13.三 14.(3,4)15.(2+2) cm 点拨:过点E 作EG ⊥BD 于点G .∵BE 平分∠DBC ,∠EGB =∠BCE =90°,∴EG =EC =1 cm.易知△DEG 为等腰直角三角形,∴DE =2EG = 2 cm.∴CD =(1+2) cm ,那么BC =(1+2) cm.又∵CF =CE =1 cm ,∴BF =(2+2) cm.16.125 点拨:设AC ,BD 交于点O ,连接PO ,过D 作DG ⊥AC 于G ,由△AOD 的面积=△AOP 的面积+△POD 的面积,可得PE +PF =DG ,易得PE +PF =125.17.30°或150° 点拨:分两种情况:(1)如图①,等边三角形ADE 在正方形ABCD 的内部,则∠CDE =∠CDA -∠ADE =90°-60°=30°.∵CD =AD =DE ,∴∠DCE =75°.∴∠ECB =15°.同理,∠EBC =15°.∴∠BEC =150°.(第17题)(2)如图②,等边三角形ADE 在正方形ABCD 的外部,则∠CDE =∠CDA +∠ADE =90°+60°=150°.∵CD =AD =DE ,∴∠CED =15°.同理,∠AEB =15°.∴∠BEC =∠AED -∠CED -∠AEB =60°-15°-15°=30°.18.(3)n -1 点拨:连接DB ,与AC 相交于M .∵四边形ABCD 是菱形,∴AD =AB ,AC ⊥DB .∵∠DAB =60°,∴△ADB 是等边三角形.∴DB =AD =1.∴DM =12.∴AM =32.∴AC = 3.同理可得AE =3AC =(3)2,AG =3AE =33=(3)3,…,按此规律,所作的第n 个菱形的边长为(3)n -1.三、19.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠A =∠C .∴∠F =∠E .∵BE =DF ,∴AD +DF =CB +BE ,即AF =CE .在△AGF 和△CHE 中,⎩⎨⎧∠A =∠C ,AF =CE ,∠F =∠E ,∴△AGF ≌△CHE (ASA).∴AG =CH .20.(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°.∴∠BAE +∠AEB =90°.∵BH ⊥AE ,∴∠BHE =90°.∴∠AEB +∠EBH =90°.∴∠BAE =∠EBH .在△ABE 和△BCF 中,⎩⎨⎧∠BAE =∠CBF ,AB =BC ,∠ABE =∠BCF ,∴△ABE ≌△BCF (ASA).∴AE =BF .(2)解:由(1)得△ABE≌△BCF,∴BE=CF.∵正方形的边长是5,BE=2,∴DF=CD-CF=CD-BE=5-2=3.在Rt△ADF中,由勾股定理得:AF=AD2+DF2=52+32=34. 21.(1)证明:∵四边形ABCD是矩形,∴AB∥CD.∴∠F AE=∠CDE.∵E是AD的中点,∴AE=DE.又∵∠FEA=∠CED,∴△F AE≌△CDE(ASA).∴CD=F A.又∵CD∥F A,∴四边形ACDF是平行四边形.(2)解:BC=2CD.理由如下:∵CF平分∠BCD,∴∠DCE=45°.∵∠CDE=90°,∴△CDE是等腰直角三角形.∴CD=DE.∵E是AD的中点,∴AD=2DE.∴AD=2CD.∵AD=BC,∴BC=2CD.22.(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,∴AE=DE.在△AFE和△DBE中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE (AAS).∴AF =BD .∵AD 是BC 边上的中线,∴DC =BD .∴AF =DC .(2)解:四边形ADCF 是菱形.证明:由(1)得AF =DC ,又AF ∥BC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 上的中线,∴AD =12BC =DC .∴▱ADCF 是菱形.23.解:(1)四边形ADCE 是菱形.理由:∵四边形BCED 为平行四边形,∴CE ∥BD ,CE =BD ,BC ∥DE .∵D 为AB 的中点,∴AD =BD .∴CE ∥AD ,CE =AD .∴四边形ADCE 为平行四边形.又∵BC ∥DF ,∴∠AFD =∠ACB =90°,即AC ⊥DE .∴四边形ADCE 为菱形.(2)在Rt △ABC 中,∵AB =16,AC =12,∴BC =47. 而BC =DE ,∴DE =47.∴四边形ADCE 的面积=12AC ·DE =247.(3)当AC =BC 时,四边形ADCE 为正方形.证明:∵AC =BC ,D 为AB 的中点,∴CD ⊥AB ,即∠ADC =90°.∴菱形ADCE 为正方形.24.(1)证明:如图①,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD .∴EH ∥FG ,EH =FG .∴中点四边形EFGH 是平行四边形.(第24题)(2)解:中点四边形EFGH 是菱形.理由:如图②,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠BPD =∠APC .在△APC 和△BPD 中,⎩⎨⎧PA =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS).∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD .∴EF =FG .又由(1)中结论知中点四边形EFGH是平行四边形,∴中点四边形EFGH是菱形.(3)解:中点四边形EFGH是正方形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019年人教版八年级下册数学第18章检测卷时间:120分钟满分:150分题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平行四边形ABCD中,∠A=65°,则∠D的度数是( )A.105°B.115°C.125°D.65°2.若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9 B.8 C.7 D.63.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在菱形ABCD中,E,F分别是AB,AC的中点.若EF=3,则菱形ABCD的周长是( ) A.12 B.16 C.20 D.24第4题图第5题图第6题图5.如图,矩形ABCD的对角线AC,BD相交于点O,AB=3,∠AOD=120°,则AD的长为( ) A.3 B.3 3 C.6 D.3 56.如图,在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别是E,F,则四边形ABCD 一定是( )A.正方形B.菱形C.平行四边形D.矩形7.正方形和下列边长相同的正多边形地砖组合中,不能够铺满地面的是( )A.正三角形B.正六边形C.正八边形D.正三角形和正六边形8.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F.在下列结论中,不一定正确的是( )A.△AFD≌△DCE B.AF=12AD C.AB=AF D.BE=AD-DF第8题图第9题图第10题图9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )10.如图,正方形ABCD对角线上的两个动点M,N满足AB=2MN,点P是BC的中点,连接AN,PM.若AB=6,则当AN+PM的值最小时,线段AN的长度为( )A.4 B.2 5 C.6 D.3 5二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,在Rt△ABC中,E是斜边AB的中点.若AB=10,则CE=________.第11题图第12题图12.如图,矩形ABCD的对角线BD的中点为O,过点O作OE⊥BC于点E,连接OA,已知AB=5,BC=12,则四边形ABEO的周长为________.13.如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF的度数为________.第13题图第14题图14.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠ABC=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则BC的长是________.三、(本大题共2小题,每小题8分,满分16分)15.如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.16.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.求证:BM=MN.四、(本大题共2小题,每小题8分,满分16分)17.如图,在四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.18.如图,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知正方形ABCD的边长为5,G是BC边上的一点,DE⊥AG于点E,BF∥DE,且交AG于点F.若DE=4,求EF的长.20.如图,E,F,G,H分别是边AB,BC,CD,DA的中点,连接EF,FG,GH,HE.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形?并说明理由.六、(本题满分12分)21.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,BE=DF,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.七、(本题满分12分)22.在课外活动中,我们要研究一种四边形——筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图①).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的满足筝形的定义的四边形是________;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图②,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.八、(本题满分14分)23.如图①,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使点B落在边AD上的点E处,折痕为PQ,过点E作EF∥AB交PQ于点F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动.①当点Q与点C重合时(如图②),求菱形BFEP的边长;②若限定点P、Q分别在边BA、BC上移动,求点E在边AD上移动的最大距离.参考答案与解析1.B 2.B 3.D 4.D 5.B 6.C 7.B 8.B 9.B10.B 解析:如图,取CD 的中点E ,连接NE ,PE .∵AB =2MN ,AB =6,∴MN =32.∵四边形ABCD为正方形,∴AD =BC =CD =AB =6,∠C =∠ADC =90°.∵点P 是BC 的中点,点E 是CD 的中点,∴CP =12BC =3,CE =DE =12CD =3,PE ∥BD ,∴PE =CP 2+CE 2=32,∴PE =MN ,∴四边形PMNE 是平行四边形,∴PM =EN ,∴AN +PM =AN +NE .连接AE ,交BD 于点N ′,则AE 的长即为AN +PM 的最小值.∵四边形ABCD 是正方形,∴点N ′到AD 和CD 的距离相等,∴S △ADN ′∶S △EDN ′=AD ∶DE =2∶1.又∵△ADN ′的边AN ′和△EDN ′的边EN ′上的高相等,∴AN ′∶N ′E =2∶1.∵AE =AD 2+DE 2=62+32=35,∴AN ′=23AE =23×35=2 5.即当AN +PM 的值最小时,线段AN 的长度为25.故选B.11.5 12.2013.75° 解析:连接BF .∵四边形ABCD 是菱形,且菱形是轴对称图形,∴∠BAC =12∠BAD =12×70°=35°,∠CBF =∠CDF ,AD ∥BC ,∴∠ABC =180°-∠BAD =180°-70°=110°.∵EF 垂直平分AB ,∴AF =BF ,∴∠ABF =∠BAC =35°,∴∠CBF =∠ABC -∠ABF =110°-35°=75°,∴∠CDF =∠CBF =75°.14.2或1 解析:如图①,过点A 作AN ∥BC 交BD 于点E ,过点B 作BT ⊥EC 于点T .当四边形ABCE 为平行四边形时,∵AB =BC ,∴四边形ABCE 是菱形,∴AB ∥CE .又∵∠ABC =150°,∴∠BCE =30°.在Rt △BCT 中,∠BCT =30°,设BT =x ,则BC =2x ,∴CE =2x .∵四边形ABCE 的面积为2,∴CE ·BT =2,即2x ·x =2,解得x =1(负值舍去),∴BC =2.如图②,当四边形BEDF 是平行四边形时,∵BE =BF ,∴四边形BEDF 是菱形.∵∠A =∠C =90°,∠ABC =150°,∴∠ADC =30°,∴∠ADB =∠BDC =15°.∵BE =DE ,∴∠EBD =∠ADB =15°,∴∠AEB =30°.在Rt △ABE中,设AB =y ,则BE =2y ,∴DE =2y .∵四边形BEDF 的面积为2,∴DE ·AB =2,即2y 2=2,解得y =1(负值舍去),∴BC =AB =1.综上所述,BC 的长为2或 1.15.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,∠B =∠D .又∵∠1=∠2,∴△ABE ≌△CDF ,∴AE =CF .(8分)16.证明:∵在△CAD 中,M ,N 分别是AC ,CD 的中点,∴MN =12AD .(4分)∵在Rt △ABC 中,M 是AC 的中点,∴BM =12AC .∵AC =AD ,∴BM =MN .(8分)17.(1)证明:∵O 是AC 的中点,∴OA =OC .∵AD ∥BC ,∴∠ADO =∠CBO .(2分)在△AOD 和△COB 中,∵⎩⎪⎨⎪⎧∠ADO =∠CBO ,∠AOD =∠COB ,OA =OC ,∴△AOD ≌△COB ,∴OD =OB ,∴四边形ABCD 是平行四边形.(4分) (2)解:∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形,(6分)∴S ▱ABCD =12AC ·BD =24.(8分)18.(1)证明:∵四边形ABCD 是矩形,∴AD =BC ,∠ADC =∠ABC =90°.由平移的性质得DE =AC ,CE =BC ,∠DCE =∠ABC =90°,∴AD =CE ,∠ADC =∠DCE .在△ACD 和△EDC 中,∵⎩⎪⎨⎪⎧AD =EC ,∠ADC =∠ECD ,CD =DC ,∴△ACD ≌△EDC (SAS ).(4分)(2)解:△BDE 是等腰三角形.(5分)理由如下:∵四边形ABCD 是矩形,∴AC =BD .由平移的性质得DE =AC ,∴BD =DE ,∴△BDE 是等腰三角形.(8分)19.解:∵四边形ABCD 为正方形,∴AB =AD ,∠BAD =90°,∴∠BAG +∠DAG =90°.∵DE ⊥AG ,∴∠DEA =∠DEF =90°,∴∠ADE +∠DAG =90°,∴∠ADE =∠BAG .∵BF ∥DE ,∴∠AFB =∠DEF =90°=∠DEA .(4分)在△ADE 和△BAF 中,∵⎩⎪⎨⎪⎧∠DEA =∠AFB ,∠ADE =∠BAF ,AD =BA ,∴△ADE ≌△BAF (AAS ),∴AF =DE =4.(6分)∵在Rt △ADE 中,AD =5,DE =4,∴AE=AD 2-DE 2=52-42=3,∴EF =AF -AE =4-3=1.(10分)20.解:(1)四边形EFGH 为平行四边形.(1分)理由如下:∵在△ABC 中,E ,F 分别是边AB ,BC 的中点,∴EF ∥AC ,EF =12AC .同理可得GH ∥AC ,GH =12AC ,(3分)∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形.(5分)(2)当AC =BD 且AC ⊥BD 时,四边形EFGH 是正方形.(7分)理由如下:∵E ,F ,H 分别是边AB ,BC ,DA 的中点,∴EH =12BD ,EH ∥BD ,EF =12AC ,EF ∥AC .∵AC =BD ,则有EH =EF .由(1)可知四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.∵AC ⊥BD ,EF ∥AC ,EH ∥BD ,∴EF ⊥EH ,∴∠FEH =90°,∴四边形EFGH 为正方形.(10分)21.证明:(1)∵四边形ABCD 是平行四边形,∴BE ∥DF .又∵BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形.(5分)(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AB ∥DC ,∴∠DFA =∠FAB .由(1)可知四边形BFDE 是矩形,∴∠BFD =90°,∴∠BFC =90°.在Rt △BCF 中,由勾股定理得BC =CF 2+BF 2=32+42=5,(8分)∴AD =BC =5.∵DF =5,∴AD =DF ,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .(12分)22.解:(1)菱形(或正方形)(2分)(2)它是一个轴对称图形;一组对角相等;一条对角线所在的直线垂直平分另一条对角线(写出其中的两条即可).(3分)选取“一组对角相等”进行证明.证明如下:已知:四边形ABCD 是筝形.求证:∠B =∠D .证明:连接AC .∵四边形ABCD 是筝形,∴AB =AD ,CB =CD .又∵AC =AC ,∴△ABC ≌△ADC ,∴∠B =∠D .(7分) (3)连接AC ,易知S筝形ABCD =2S △ABC .过点C 作CE ⊥AB 交AB 的延长线于点E ,则∠E =90°.(8分)∵∠ABC =120°,∴∠EBC =60°,∴∠ECB =30°.又∵BC =2,∴BE =1,∴CE =BC 2-BE 2=3.∴S 筝形ABCD =2S △ABC =2×12AB ·CE=2×12×4×3=4 3.(12分)23.(1)证明:由折叠可得BP =EP ,∠BPF =∠EPF .又∵PF =PF ,∴△PBF ≌△PEF ,∴BF =EF .(2分)∵EF ∥AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形.(4分)(2)解:①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°.由折叠可得BP =EP ,CE =BC =5cm.在Rt △CDE 中,DE =CE 2-CD 2=52-32=4(cm),∴AE =AD -DE =5-4=1(cm).设BP =EP =x cm ,则AP =(3-x )cm.在Rt △APE 中,由勾股定理得EP 2=AE 2+AP 2,即x 2=12+(3-x )2,解得x =53,∴菱形BFEP 的边长为53cm.(10分)②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1cm.如图,当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3cm.3-1=2(cm),∴点E 在边AD 上移动的最大距离为2cm.(14分)。

相关文档
最新文档