中介效应分析PPT精选文档
合集下载
《中介作用分析》课件
《中介作用分析》PPT课 件
中介作用是指在人际关系中起到桥梁和纽带作用的现象。本课件将介绍中介 作用的定义、类别、形成条件、特点、作用机制、作用效应和在实际生活中 的应用。
什么是中介作用
中介作用是指在人际关系中起到桥梁和纽带作用的现象。了解中介作用的定义和类别有助于我们 深入理解其作用机制和作用效应。
中介作用的实现途径包括面对面交流、媒体传播、互联网技术等多种方式。
3
中介作用的作用效应
中介作用可能产生积极效应,如促进信息传递和资源共享,也可能产生负面效应, 如信息失真和资源占用。
中介作用在实际生活中的应用
中介作用在商业领域、社交媒体和政治领域等各个方面都有广泛的应用,通过中介作用可以更好地实现 信息传递和资源共享。
3 中介作用的相对性
中介作用的效果因具体 情况而异,可能对某些 人有好处,但对另一些 人产生负面影响。
中介作用的作用机制
中介作用的作用机制包括作用模式和作用途径,理解这些机制有助于我们更好地把握和运用中介作 用。
1
中介作用的作用模式
中介作用有多种模式,如信息传递、资源借贷、协调冲突等。
2
中介作用的作用途径
中介作用对社会发展具有重要作用,它促进了信息传递和资源流通,对个人也有启示作用。
1 中介作用对社会发展的作用
中介作用促进了社会交往、信息传递和资源共享,推动了社会的发展和进步。
2 对于个人的启示
通过充分利用中介作用,个人可以更好地获取信息、实现目标,并与他人建立良好的人 际关系。
中介作用的定义
中介作用指的是一个人或一个事物在人际关系中起到连接和沟通的作用。
中介作用的类别
中介作用可以分为人际中介、物质中介和信息中介等几种类别。
中介作用是指在人际关系中起到桥梁和纽带作用的现象。本课件将介绍中介 作用的定义、类别、形成条件、特点、作用机制、作用效应和在实际生活中 的应用。
什么是中介作用
中介作用是指在人际关系中起到桥梁和纽带作用的现象。了解中介作用的定义和类别有助于我们 深入理解其作用机制和作用效应。
中介作用的实现途径包括面对面交流、媒体传播、互联网技术等多种方式。
3
中介作用的作用效应
中介作用可能产生积极效应,如促进信息传递和资源共享,也可能产生负面效应, 如信息失真和资源占用。
中介作用在实际生活中的应用
中介作用在商业领域、社交媒体和政治领域等各个方面都有广泛的应用,通过中介作用可以更好地实现 信息传递和资源共享。
3 中介作用的相对性
中介作用的效果因具体 情况而异,可能对某些 人有好处,但对另一些 人产生负面影响。
中介作用的作用机制
中介作用的作用机制包括作用模式和作用途径,理解这些机制有助于我们更好地把握和运用中介作 用。
1
中介作用的作用模式
中介作用有多种模式,如信息传递、资源借贷、协调冲突等。
2
中介作用的作用途径
中介作用对社会发展具有重要作用,它促进了信息传递和资源流通,对个人也有启示作用。
1 中介作用对社会发展的作用
中介作用促进了社会交往、信息传递和资源共享,推动了社会的发展和进步。
2 对于个人的启示
通过充分利用中介作用,个人可以更好地获取信息、实现目标,并与他人建立良好的人 际关系。
中介作用的定义
中介作用指的是一个人或一个事物在人际关系中起到连接和沟通的作用。
中介作用的类别
中介作用可以分为人际中介、物质中介和信息中介等几种类别。
中介效应与调节效应分析
对个XM性另是一c调类节学变生量却。没c:有衡效量,调节从效而应学的生大小
概述-核心概念 调节效应与交互效应 从统计分析角度看: 调节效应=交互效应 从概念定义角度看: 调节效应≠交互效应 交互效应: 两个自变量对称或不对称,任何一个都可为调节变量 调节效应: 哪个是自变量、调节变量,是明确的,不能互换
6
检验方法-中介效应
传传传统统统检检检验验验方方方法法法123 依系差次数异检乘检验积验法项法检验法 检验回归系数c、a、b、c'
➢➢S检ob验elc检和验c'的法差异是否显著
c✓:回Y归与系X数是的否乘相积关ab是否显著,即H0:ab=0 a✓、检b验:统间计接量为检z验= 系ab数/ sa乘b 积 c✓'sa:b是= 否为完a全2sb2中 b介2sa2
统计工具: SPSS
步骤
验证c不等于0: 中介时,还需验证c'等于0)
用X向M做回归,得到a
进行层次回归,第一层放入x,第二层放入M得到b
1
4
中介效应值=a*b
实例分析-中介效应
实例分析1 某研究在探究成年人的生活满意度时,根据既往理论支持,初步建立
概述-核心概念
c
X
Y
e1
M
e2
a
b
c'
X
Y
e3
中介效应模型示意图
3
中介效应方程式
Y = cX +e1
(1)
M = aX +e2
(2)
Y =c'X +bM +e3
(3)
➢ 中介效应: a*b ➢ 直接效应: c ' ➢ 总效应: c (c = c'+ ab)
概述-核心概念 调节效应与交互效应 从统计分析角度看: 调节效应=交互效应 从概念定义角度看: 调节效应≠交互效应 交互效应: 两个自变量对称或不对称,任何一个都可为调节变量 调节效应: 哪个是自变量、调节变量,是明确的,不能互换
6
检验方法-中介效应
传传传统统统检检检验验验方方方法法法123 依系差次数异检乘检验积验法项法检验法 检验回归系数c、a、b、c'
➢➢S检ob验elc检和验c'的法差异是否显著
c✓:回Y归与系X数是的否乘相积关ab是否显著,即H0:ab=0 a✓、检b验:统间计接量为检z验= 系ab数/ sa乘b 积 c✓'sa:b是= 否为完a全2sb2中 b介2sa2
统计工具: SPSS
步骤
验证c不等于0: 中介时,还需验证c'等于0)
用X向M做回归,得到a
进行层次回归,第一层放入x,第二层放入M得到b
1
4
中介效应值=a*b
实例分析-中介效应
实例分析1 某研究在探究成年人的生活满意度时,根据既往理论支持,初步建立
概述-核心概念
c
X
Y
e1
M
e2
a
b
c'
X
Y
e3
中介效应模型示意图
3
中介效应方程式
Y = cX +e1
(1)
M = aX +e2
(2)
Y =c'X +bM +e3
(3)
➢ 中介效应: a*b ➢ 直接效应: c ' ➢ 总效应: c (c = c'+ ab)
中介效应与调节效应分析(课堂PPT)
对另一c类学生却没有效,从而学生 个XM性是调节变量。 c:衡量调节效应的大小
概述-核心概念 调节效应与交互效应
➢ 从统计分析角度看:调节效应=交互效应 ➢ 从概念定义角度看:调节效应≠交互效应 ✓ 交互效应:两个自变量对称或不对称,任何一个都可为调节变量 ✓ 调节效应:哪个是自变量、调节变量,是明确的,不能互换
自大大我学学效生生能领领×导导力力 团队绩效
团队绩效 团团队队绩绩效效
概述-核心概念
中介效应(mediating effect)
考虑自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M 为中介变量。X通过M对Y产生的间接影响称为中介效应。
X
Y
M
X
Y
自我效能
大学生领导力
团队绩效
2
概述-核心概念
✓ 验证c不等于0:利用相关或者回归 ✓ 验证a不等于0,b不等于0(完全中介时,还需验证c'等于0)
用X向M做回归,得到a 进行层次回归,第一层放入x,第二层放入M得到b
✓ 中介效应值=a*b
1 4
实例分析-中介效应
实例分析1
➢ 某研究在探究成年人的生活满意度时,根据既往理论支持,初步建立假 设如下:
c
X
Y
e1
M
e2
a
b
c'
X
Y
e3
中介效应模型示意图
3
中介效应方程式
Y = cX +e1
(1)
M = aX +e2
(2)
Y =c'X +bM +e3
(3)
➢ 中介效应:a*b ➢ 直接效应:c ' ➢ 总效应:c (c = c'+ ab)
概述-核心概念 调节效应与交互效应
➢ 从统计分析角度看:调节效应=交互效应 ➢ 从概念定义角度看:调节效应≠交互效应 ✓ 交互效应:两个自变量对称或不对称,任何一个都可为调节变量 ✓ 调节效应:哪个是自变量、调节变量,是明确的,不能互换
自大大我学学效生生能领领×导导力力 团队绩效
团队绩效 团团队队绩绩效效
概述-核心概念
中介效应(mediating effect)
考虑自变量X对因变量Y的影响,如果X通过影响变量M来影响Y,则称M 为中介变量。X通过M对Y产生的间接影响称为中介效应。
X
Y
M
X
Y
自我效能
大学生领导力
团队绩效
2
概述-核心概念
✓ 验证c不等于0:利用相关或者回归 ✓ 验证a不等于0,b不等于0(完全中介时,还需验证c'等于0)
用X向M做回归,得到a 进行层次回归,第一层放入x,第二层放入M得到b
✓ 中介效应值=a*b
1 4
实例分析-中介效应
实例分析1
➢ 某研究在探究成年人的生活满意度时,根据既往理论支持,初步建立假 设如下:
c
X
Y
e1
M
e2
a
b
c'
X
Y
e3
中介效应模型示意图
3
中介效应方程式
Y = cX +e1
(1)
M = aX +e2
(2)
Y =c'X +bM +e3
(3)
➢ 中介效应:a*b ➢ 直接效应:c ' ➢ 总效应:c (c = c'+ ab)
高级心理统计11-中介分析ppt课件.ppt
5.2 中介模型的推理假设
时间顺序。
中介模型中假定了变量的先后顺序,即X出现在M之前,M出现在Y之前。
中介链的选择。
一条中介链可能包含很多个路径。研究者必须决定测量哪些路径,以及
确定最终的因变量。
测量的时机。
中介变量和因变量的测量时机必须与自变量的变化、中介变量的变化以
及因变量的变化三者之间关系的真实时间相匹配。
如果二者符号相反,则说明是遮掩效应,报告效应量|ab/c’|
。除了 ab/c 或|ab/c’|,也可以酌情报告其他的效应量。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
4.2 使用潜变量中介模型
潜变量中介模型就是结构方程模型的一个特例,具体来说
,如果中介效应涉及到的 3 个变量(自变量 X,中介变
量 M,结果变量 Y)中,至少有一个是潜变量时,就需要
使用结构方程模型来分析三者间的中介效应。
下面依然以三个变量之间的中介模型为例,但在这里,中
介涉及的三个变量都是潜变量,每个潜变量都由 3 个指
3.2 中介效应检验流程
第四步,确定中介效应存在后,检验直接效应 c’。若不显著
,则说明是完全中介效应。按照中介效应解释结果即可。否则
,系数显著,说明存在中介效应,进行下一步。
第五步,中介效应和直接效应都存在时是部分中介效应,报告效应量 ab/c。
正态分布的系数乘积项。
两个随机变量乘积项的分布或是Bootstrap方法来建构置信区间。
遗漏的影响。
以单个中介变量的模型为例,模型假设没有其他变量与这三个变量
中介作用分析 ppt课件
③复合式多重中介模型:由前两种模型复合而成,既包含并行的多个中介变量也包 含串联的多个中介变量。 (见图5)
(2)多元多重中介模型
2020/11/13
12
M1
M2
....
xx
Y
Mn-1
Mn 图3.并行多重中介模型
2020/11/13
M1 M2 .. Mn
x
Y
图4.链式多重中介模型
M1 a1 a2 x
② Davis(1985:15)曾提到,好的决定因素(如中介 作用中的X)可以是“某些稳定的”的特征:如宗教 信仰、职业声望、收入、智力、性别等。好的M或Y 可以是“相对不稳定的”或易变的变量:如幸福感 指标、品牌偏好、态度等。
③ 例如:X可以是某种认知需要,M是对广告的态 度,Y是购买某种广告商品的可能性。
2020/11/13
6
二、基本方法
(一)经典的中介作用检验
Xc Y
最流行的检验中介作用的方法是Baron和
Kenny(1986)年提出的。根据这一方法,需要拟
ε1
合三个回归方程。假设所有变量都已经中心化
(即均值为零),可以用下列方程来描述变量之
间的关系,相应的路径图见图2.
M
ε2
a
b
X
Y
c'
图2.中介变量示意图
②检验H0 :ab=0
目前至少有5种以上的近似计算公式,当样本容量比较大时(如大于
500),各种检验的检验力差别不大。比较常用的是Sobel根据一阶
Taylor展式得到的近似公式:
z= aˆ b ˆ
s ab
sab=
s s aˆ2 2 bˆ2 2
b
a
③检验H0 :c- c‘=0
(2)多元多重中介模型
2020/11/13
12
M1
M2
....
xx
Y
Mn-1
Mn 图3.并行多重中介模型
2020/11/13
M1 M2 .. Mn
x
Y
图4.链式多重中介模型
M1 a1 a2 x
② Davis(1985:15)曾提到,好的决定因素(如中介 作用中的X)可以是“某些稳定的”的特征:如宗教 信仰、职业声望、收入、智力、性别等。好的M或Y 可以是“相对不稳定的”或易变的变量:如幸福感 指标、品牌偏好、态度等。
③ 例如:X可以是某种认知需要,M是对广告的态 度,Y是购买某种广告商品的可能性。
2020/11/13
6
二、基本方法
(一)经典的中介作用检验
Xc Y
最流行的检验中介作用的方法是Baron和
Kenny(1986)年提出的。根据这一方法,需要拟
ε1
合三个回归方程。假设所有变量都已经中心化
(即均值为零),可以用下列方程来描述变量之
间的关系,相应的路径图见图2.
M
ε2
a
b
X
Y
c'
图2.中介变量示意图
②检验H0 :ab=0
目前至少有5种以上的近似计算公式,当样本容量比较大时(如大于
500),各种检验的检验力差别不大。比较常用的是Sobel根据一阶
Taylor展式得到的近似公式:
z= aˆ b ˆ
s ab
sab=
s s aˆ2 2 bˆ2 2
b
a
③检验H0 :c- c‘=0
中介效应与调节效应对比和分析课件PPT
比较
调节变量 VS 中介变量
• 差别的关键在于? 统计模型
统计方法详析. 调节效应
统计分析方法
• 主要方法
• 方法一
•
-分组回归(适用于M为分类,X为连续变量的情况)
• 方法二
•
-层级回归(适用于M为连续变量的情况)
• 方法三
-偏回归系数分析(适用于M为连续变量的情况)
统计方法详析. 调节效应
调节效应
调节效应和交互效应
• 从统计上看,调节效应和交互效应是相同的 (对H0:c=0进行检验,c显著,则调节效应显著)
• 从概念上看,交互效应中,两个自变量地位不固定,可以任意解释。 调节作用中,调节变量和自变量根据假设模型固定。
调节效应
统计分析方法
• 关键词解释
• -显变量:可以直接观测的显变量
中介效应
统计分析方法
• 主要方法
• 方法一
•
-依次检验回归系数,c、a、b系数分别显著
• 方法二
•
-路径分析,经过中介变量路径上回归系数的乘积ab是否显著
•
即H0:ab=0
• 方法三
- 检验c和c'的差异是否显著
中介效应
统计分析方法
• 基本分析流程 主要采用结构方程模型进行统计或用SPSS进行回归 以下为一般中介检验程序
统计方法详析. 中介效应
统计分析方法
• 主要方法
• 方法一
•
-依次检验回归系数,c、a、b系数分别显著
• 方法二
•
-路径分析,经过中介变量路径上回归系数的乘积ab是否显著
•
即H0:ab=0
• 方法三
-检验c和c'的差异是否显著
中介效应分析
假设所有变量都已经中心化(即均值为零) ,可用 下列方程来描述变量之间的关系:
X
c
X
Y
e1
Y cX e1 (1)
M
e2
a
b
X
Y
c'
图1:变量关系图
M aX e2 (2) Y c, X bM e3 (3)
对于这样的简单中介模型,中介效应等于 间接效应,即等于系数乘积ab,它与总效应和直接 效应有下面关系:
new (H); !定义辅助变量 H=a*b; ! 系数乘积ab的估计 OUTPUT: cinterval (bcbootstrap);!输出各个系数及系数乘积 ab 的偏差校 正的非参数百分位 Bootstrap 法置信区间 若要得到(不校正的)非参数百分位Bootstrap 法置信区间, 只需将 OUTPUT
偏差校正的非参数百分位 bootstrap法Mplus(检验显变量中介效应)
DATA: FILE IS p.dat; ! p.dat是原始数据文件, 按X M Y顺序排列 VARIABLE: NAMES ARE X M Y; !变量名称 Analysis: bootstrap=1000; ! Bootstrap 法抽样1000 次 MODEL:
c c, ab
检验间接效应的两类方法:
(1)检验H0: ab=0(间接检验和直接检验) (2)是检验H0:c-c’=0。
间接检验:依次检验回归系数 直接检验:sobel法、bootstrap法和MCMC法
中介效应分析的3中方法:
(1)依次检验回归系数法 H0 : a 0 H0 :b 0
中介效应分析方法
学生:肖 翔 导师:曾晓青
中介变量的定义:考虑自变量X 对因变量Y 的 影响,如果X 通过影响变量M 来影响Y ,则称M 为中介变 量。例如,“专业满意度”影响“专业承诺”,进而影 响“对该专业的学习投入”。“专业承诺”是中介变量。
中介效应分析原理程序Bootstrap方法及其应用-PPT精选文档
>逻辑:X对Y的影响通过中介M发挥 作用,这种中介受到W的调节。
W
W
X
M
Y
X
M
Y
两者没有本质区别,只是强调的重点不同
Muller, Judd & Yzerbyt (2005), Edwards & Lambert (2007), Preacher, Rucker & Hayes (124007)
3. Bootstrap中介效应检验方法及其应用
按照Zhao et al.(2010)提出的中介分析程序,参照Preacher & Hayes (2012)提出的多类别分类自变量模型进行Bootstrap中介效应 检验, 将自变量以无实验要求组为参照编码为两个哑变量,样本 量选择5000,在95%置信区间下,遵照实验要求排斥他人(vs. 无 实验要求)对情绪的负面影响受到心理需求的中介影响(LLCI=.25 ULCI=.63) ,该区间不包含0,中介效应大小为0.43;遵照实验要 求接纳他人(vs. 无实验要求)对情绪的负面影响也受到心理需求 的中介影响(LLCI=.01 ULCI=.28),该区间没有包含0,中介效应 大小为0.13。此外,两个哑变量(遵照实验要求排斥他人 vs. 无实 验要求;遵照实验要求接纳他人 vs. 无实验要求)对因变量(情绪) 的直接影响均不显著(p>0.05),表明心理需求是唯一的中介变1量3 。
3.3 有调节的中介( Moderated Mediation )
7种有调节的中介检验模型
W
M
X
Y
Edwards & Lambert (2007), Preacher, Rucker & Hayes (2007)
中介课件ppt
安全防护与备份
保障数据安全
采用先进的安全技术,如加密传输和存储、防火墙等,确保课件数 据的安全性和完整性。
数据备份与恢复
定期对课件数据进行备份,并制定应急预案,以便在数据丢失或损 坏时能够迅速恢复。
防范网络攻击
加强安全监测和防范措施,及时发现和应对网络攻击和病毒入侵,确 保课件的正常运行和用户信息安全。
色彩与字体设计
选择舒适、易读的色彩和字体, 确保学习者在阅读课件时不易疲
劳。
图标与按钮设计
设计简洁、明确的图标和按钮, 方便学习者理解操作功能。
交互设计
操作流程设计
设计流畅的操作流程,确保学习者能够快速上手 并完成学习任务。
反馈设计
为学习者的操作提供及时、准确的反馈,以激发 学习者的学习兴趣和动力。
中介课件
目 录
• 中介课件概述 • 中介课件的设计与开发 • 中介课件的制作技术 • 中介课件的发布与推广 • 中介课件的运营与维护 • 中介课件的成功案例分析
01
中介课件概述
中介课件的定义
中介课件是一种数字化教育资源,它 利用多媒体技术将教学内容以图文、 音频、视频等形式展现出来,以辅助 教师教学和学生学习。
中介课件具有交互性、动态性、可重 复利用等特点,能够提高学生的学习 兴趣和效率,促进知识的传递和吸收 。
中介课件的特点
01
02
03
多样性
中介课件可以包含文字、 图片、音频、视频等多种 媒体形式,使教学内容更 加生动、形象。
交互性
中介课件可以设置交互环 节,如选择题、填空题等 ,让学生参与到教学过程 中,提高学习效果。
案例三:某政府宣传的中介课件
总结词
覆盖面广、传播效果好、公众认知度高
中介作用分析课件
M= β2+aX+ ε2
Y= β3+c' X+bM+ε3
ε3
方程中的β表示截距(一般忽略不计),ε表示 模型的误差项(一般忽略不计), ,a、b、c、
c' 表示回归系数,反映了三个关键变量之间
的关系。其中,ab是经过中介变量M的中介效
应,c是X对Y的总效应, c'是直接效应。
如果满足下列条件,则认为中介作用可能存在:
以图5所示的含有两个中介变量M1和M2的多重中介模型为例,此时的多重中介效应 分析可以从三个角度入手:
①总的中介效应:a1b1 + a2b2 + a1a3b2 ②特定路径的中介效应:a1b1、a2b2和a1a3b2 ③对比中介效应:a1a3b2 - a2b2、a1b1 - a2b2和a1a3b2- a1b1
(五)中介效应的相对大小
①中介效应/总效应aˆ=bˆ / aˆbˆ cˆ '
②中介效应/直接效应aˆ=bˆ / cˆ '
三、多重中介模型
(一)定义
多重中介模型是指在自变量与因变量之间存在多个中介变量的模型。链式多重中介 模型与并行多重中介模型是多重中介模型的基本构成单元。多重中介模型可以分析 总的中介效应、特定中介效应和对比中介效应。
(二)常见的多重中介模型
(1)单变量多重中介模型(根据多个中介变量之间是否存在相互影响划分)
①并行(单步)多重中介模型:反映的是多个中介变量(不存在相互影响)同时在 自变量和因变量之间起中介作用(见图3)
②链式(多步)多重中介模型:多个中介变量之间存在相互影响,并且表现顺序性 特征,形成中介链。 (见图4)
②检验H0 :ab=0
目前至少有5种以上的近似计算公式,当样本容量比较大时(如大
(优)中介效应检验方法pptppt文档
中介效应检验方法
《中介效应的检验方法和效果量测量: 回顾与展望》
方杰 张敏强 邱皓政(心理发展与教育2012)
《中介效应研究的新趋势———研究设计和数据统计方法》
甘怡群 (心理卫生评估2014)
中介效应分析思路
中介作用分析是在确认了两个变量有因果关系的前提下 ,确认中介变量可以全部或部分地解释这种因果关系的机制 的统计程序。
9 of Coefficients Approach)
1、Sobel 检验法
局限
• 前提假设是中介效应ab是正态分布,且需要大样本,但实际情况是即使a ,b分别服从正态分布,ab的乘积也不一定是正态分布存。
• Macho 和Ledermann(2011) 指出Sobel 检验的另一个不足是在有多个 中介变量的模型中,中介效应估计值的标准误常用Delta 法计算,计算公 式比较复杂,且使用不便。
10
中介检验的方法
二、系数乘积法(Product of Coefficients Approach)
不一管类使 是用基2、何于种显不程变序量对,路称如径果分置析0 不模信在型的区SP间SS法、SAS等软件,
原理 有学者认为,这主要与因果步骤法需要系数c 显著有关,系数c 显著的要求严重降低了统计功效。
总效应c = ab + c’
c为总效应,c’为考虑中介效 应后的直接效应,ab为中介 效应也称间接效应。
在回归模型中ab = c-c’,
但在其他模型(如logistic回 归和多水平分析)中两者不一 定完全相等(MacKinnon, 2008; 温忠麟等, 2012)。
2
中介检验的方法
一、逐步检验法/因果步骤法/依次检验法(Causal Steps Approach; Baron & Kenny, 1986) 中介效应的效果量( effect size) 常用ab / c 或ab / c' 来衡量
《中介效应的检验方法和效果量测量: 回顾与展望》
方杰 张敏强 邱皓政(心理发展与教育2012)
《中介效应研究的新趋势———研究设计和数据统计方法》
甘怡群 (心理卫生评估2014)
中介效应分析思路
中介作用分析是在确认了两个变量有因果关系的前提下 ,确认中介变量可以全部或部分地解释这种因果关系的机制 的统计程序。
9 of Coefficients Approach)
1、Sobel 检验法
局限
• 前提假设是中介效应ab是正态分布,且需要大样本,但实际情况是即使a ,b分别服从正态分布,ab的乘积也不一定是正态分布存。
• Macho 和Ledermann(2011) 指出Sobel 检验的另一个不足是在有多个 中介变量的模型中,中介效应估计值的标准误常用Delta 法计算,计算公 式比较复杂,且使用不便。
10
中介检验的方法
二、系数乘积法(Product of Coefficients Approach)
不一管类使 是用基2、何于种显不程变序量对,路称如径果分置析0 不模信在型的区SP间SS法、SAS等软件,
原理 有学者认为,这主要与因果步骤法需要系数c 显著有关,系数c 显著的要求严重降低了统计功效。
总效应c = ab + c’
c为总效应,c’为考虑中介效 应后的直接效应,ab为中介 效应也称间接效应。
在回归模型中ab = c-c’,
但在其他模型(如logistic回 归和多水平分析)中两者不一 定完全相等(MacKinnon, 2008; 温忠麟等, 2012)。
2
中介检验的方法
一、逐步检验法/因果步骤法/依次检验法(Causal Steps Approach; Baron & Kenny, 1986) 中介效应的效果量( effect size) 常用ab / c 或ab / c' 来衡量
(2021年)中介效应与调节效应对比和分析优秀ppt
统计方法详析. 中介效应
侯杰泰等提出的中介效应检验程序
• 基本思路:
第一步 回归系数检验
第二步 部分中介检验 依次检验a、b
第三步 完全中介检验
第四步 Sobel检验
R22,若R22显著高于R12,则调节 作用显著。
层次回归(同左)。
或者做XM的回归系数检验,若显 著,则调节作用显著。
中介效应
统计分析方法
• 基本概念 • -c=ab+c', 中介效应大小即ab • -检验ab/(c'+ab)或者ab/c'是否显著(中介效应相对大小) • 若显著,则表示中介效应显著 • 关键词解释 • -完全中介效应:c'=0 • -部分中介效应:c'显著
当自变量和因变量的相关很弱,或相 关研究的结果不一致时,最好考察调 节作用。如性别、家庭社会经济地位。
中介效应
定义和性质
• 如果X通过影响变量 M来影响Y,则称M为中介变量 • c是X对Y的总效应,a、b是经过中介变量M的中介效应 • c=c'+ab (一个中介变量的情况)
比较
调节变量 VS 中介变量
中介效应
统计分析方法
• 主要方法
• 方法一
•
-依次检验回归系数,c、a、b系数分别显著
• 方法二
•
-路径分析,经过中介变量路径上回归系数的乘积ab是否显著
•
即H0:ab=0
• 方法三
- 检验c和c'的差异是否显著
中介效应
统计分析方法
基本分析流程 主要采用结构方程模型进行统计或用SPSS进行回归
通过公式我们•可以基发本现依分据析路径流分程析中的主效应要分采解的用术结语,构ab方其实程也模代表型了进间接行作统用,计中或介作用用S属P于S间S接进作行用。回归
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f2 by y6-y12; !定义模型,因子f2由y6-y12七个指标测量。 f3 by y13-y17; !定义模型,因子f3由y13-y17五个指标测量。 PTSD by F1-F3; !定义二阶测量模型。 OUTPUT: STANDARDIZED; !要求Mplus输出标准化解。
14
Mplus结果解读指标: (1)SRMR <0.08 标准化残差均方根 (2)RMSEA <0.08 近似误差均方根 (3)CFI >0.95 比较拟合指数 (4)NNFI/TLI >0.95 非规范拟合指数
(3)系数差异检验法 H0:cc, 0
8
sobel法的检验力高于依次检验,但这个检验统
计量的推导要假设aˆ bˆ 服从正态分布,就算其中每一
个系数都是正态分布,其乘积通常也不是正态的,因 而Sab的计算只是近似的,可能很不准确,所以该检 验具有很明显的局限性。
9
因此,Bootstrap 法是公认的可以取代 Sobel 法而 直接检验系数乘积的方法。
12
a=0.6
b=0.39
c=0.54(c'=0.31)
图3:专业承诺对专业满意度和学习投 入的中介作用模型
13
依次检验回归系数法Mplus
TITLE: The structure of PTSD of DSM-4 using ML in table 5-8 !题目。 DATA: FILE IS PTSD.dat / .txt ; !指定数据存储位置。 VARIABLE: NAMES ARE x1 x2 y1-y17; !定义数据文件中的变量名。
先看以上指标,如果满足以上条件,则模型符 合拟合指标。
15
16
再看STDYX Standardization输出数据,确定中介调节效应
17
偏差校正的非参数百分位 bootstrap法Mplus(检验潜变量中介效应)
DATA: FILE IS p.dat; ! p.dat是原始数据文件, 按x1-x4 m1-m3 y1-y3顺序排列 VARIABLE: NAMES ARE x1-x4 m1-m3 y1-y3; !变量名称 Analysis: bootstrap=1000; ! Bootstrap 法抽样1000 次 MODEL:
中介效应分析方法
学生:肖 翔 导师:曾晓青
1
中介变量的定义:考虑自变量X 对因变量Y 的影响, 如果X 通过影响变量M 来影响Y ,则称M 为中介变量。例 如,“专业满意度”影响“专业承诺”,进而影响“对该专业 的学习投入”。“专业承诺”是中介变量。
2
某一变量成为中介变量需要满足如下条件: (1)自变量与中介变量对因变量均有影响; (2)自变量对中介变量的回归系数显著; (3)控制中介变量后,自变量对因变量的影响减 弱,依据减弱程度的不同分为部分中介和完全中 介作用。
至少有一个不显著
做Sobel检验
显 著
中介效 应显著
不 显 著
中介效 应不显著
图2:依次检验流程图
X、Y不相关, 停止中介分析
11
表1:专业承诺的中介效应依次检验
标准化回 归方程
第一步 Y=0.54X
第二步 W=0.6X
第三步
Y=0.31X +0.39X
SE
t
p
0.03 17.52** 0.00 0.03 20.51** 0.00 0.04 8.53** 0.00 0.04 10.91** 0.00
偏差校正的非参数百分位bootstrap法(置信区间的 检验力更高)在某些条件下的第一类错误率会超过设定 的显著性水平;而非参数百分位法bootstrap法不会有这 个问题。
10
依次检验回归系数法spss
检验系数c
显 著
依次检验系数a,b
都显著
检验系数c’
Hale Waihona Puke 显 著部分中介 效应显著
不 显 著
完全中介 效应显著
new (H); !定义辅助变量 H=a*b; ! 系数乘积ab的估计 OUTPUT: cinterval (bcbootstrap);!输出各个系数及系数乘积 ab 的偏差校正的非参数 百分位 Bootstrap 法置信区间 若要得到(不校正的)非参数百分位Bootstrap 法置信区间, 只需将 OUTPUT 中的 cinterval (bcbootstrap)改为 cinterval (bootstrap)即可。
5
检验间接效应的两类方法: (1)检验H0: ab=0(间接检验和直接检验) (2)是检验H0:c-c’=0。
6
间接检验:依次检验回归系数 直接检验:sobel法、bootstrap法和MCMC法
7
中介效应分析的3中方法:
(1)依次检验回归系数法 H 0 : a 0 H0 :b 0
(2)系数乘积检验法 H0:ab0
Y by y1-y3; ! y1-y3是潜变量Y的指标 M by m1-m3; ! m1-m3是潜变量M的指标 X by x1-x4; ! x1-x4是潜变量X的指标 Y on X; !做Y对X的回归 M on X (a); !做M对X的回归, X的回归系数命名为a Y on X
M (b); !做Y对X和M的回归, M的回归系数命名为b, 需要单独一行 MODEL CONSTRAINT:
3
假设所有变量都已经中心化(即均值为零) ,可用下列 方程来描述变量之间的关系:
X
c
X
Y
e1
YcXe1 (1)
M
e2
a
b
X
Y
c'
图1:变量关系图
MaXe2 (2)
Yc,XbM e3 (3)
4
对于这样的简单中介模型,中介效应等于间接 效应,即等于系数乘积ab,它与总效应和直接效应 有下面关系:
cc, ab
USEVARIABLES are y1-y17; !由于数据文件中包含多个变量,在单个研 究中并非会使用,所以需要定义本研究中使用y1-y17; ANALYSIS: ESTIMATOR=ML; !选择估计方法,Mplus默认的估计法为ML; MODEL: f1 BY y1-y5; !定义模型,因子f1由y1 y2 y3 y4 y5五个指标测量。
18
偏差校正的非参数百分位 bootstrap法Mplus(检验显变量中介效应)
DATA: FILE IS p.dat; ! p.dat是原始数据文件, 按X M Y顺序排列 VARIABLE: NAMES ARE X M Y; !变量名称 Analysis: bootstrap=1000; ! Bootstrap 法抽样1000 次 MODEL:
14
Mplus结果解读指标: (1)SRMR <0.08 标准化残差均方根 (2)RMSEA <0.08 近似误差均方根 (3)CFI >0.95 比较拟合指数 (4)NNFI/TLI >0.95 非规范拟合指数
(3)系数差异检验法 H0:cc, 0
8
sobel法的检验力高于依次检验,但这个检验统
计量的推导要假设aˆ bˆ 服从正态分布,就算其中每一
个系数都是正态分布,其乘积通常也不是正态的,因 而Sab的计算只是近似的,可能很不准确,所以该检 验具有很明显的局限性。
9
因此,Bootstrap 法是公认的可以取代 Sobel 法而 直接检验系数乘积的方法。
12
a=0.6
b=0.39
c=0.54(c'=0.31)
图3:专业承诺对专业满意度和学习投 入的中介作用模型
13
依次检验回归系数法Mplus
TITLE: The structure of PTSD of DSM-4 using ML in table 5-8 !题目。 DATA: FILE IS PTSD.dat / .txt ; !指定数据存储位置。 VARIABLE: NAMES ARE x1 x2 y1-y17; !定义数据文件中的变量名。
先看以上指标,如果满足以上条件,则模型符 合拟合指标。
15
16
再看STDYX Standardization输出数据,确定中介调节效应
17
偏差校正的非参数百分位 bootstrap法Mplus(检验潜变量中介效应)
DATA: FILE IS p.dat; ! p.dat是原始数据文件, 按x1-x4 m1-m3 y1-y3顺序排列 VARIABLE: NAMES ARE x1-x4 m1-m3 y1-y3; !变量名称 Analysis: bootstrap=1000; ! Bootstrap 法抽样1000 次 MODEL:
中介效应分析方法
学生:肖 翔 导师:曾晓青
1
中介变量的定义:考虑自变量X 对因变量Y 的影响, 如果X 通过影响变量M 来影响Y ,则称M 为中介变量。例 如,“专业满意度”影响“专业承诺”,进而影响“对该专业 的学习投入”。“专业承诺”是中介变量。
2
某一变量成为中介变量需要满足如下条件: (1)自变量与中介变量对因变量均有影响; (2)自变量对中介变量的回归系数显著; (3)控制中介变量后,自变量对因变量的影响减 弱,依据减弱程度的不同分为部分中介和完全中 介作用。
至少有一个不显著
做Sobel检验
显 著
中介效 应显著
不 显 著
中介效 应不显著
图2:依次检验流程图
X、Y不相关, 停止中介分析
11
表1:专业承诺的中介效应依次检验
标准化回 归方程
第一步 Y=0.54X
第二步 W=0.6X
第三步
Y=0.31X +0.39X
SE
t
p
0.03 17.52** 0.00 0.03 20.51** 0.00 0.04 8.53** 0.00 0.04 10.91** 0.00
偏差校正的非参数百分位bootstrap法(置信区间的 检验力更高)在某些条件下的第一类错误率会超过设定 的显著性水平;而非参数百分位法bootstrap法不会有这 个问题。
10
依次检验回归系数法spss
检验系数c
显 著
依次检验系数a,b
都显著
检验系数c’
Hale Waihona Puke 显 著部分中介 效应显著
不 显 著
完全中介 效应显著
new (H); !定义辅助变量 H=a*b; ! 系数乘积ab的估计 OUTPUT: cinterval (bcbootstrap);!输出各个系数及系数乘积 ab 的偏差校正的非参数 百分位 Bootstrap 法置信区间 若要得到(不校正的)非参数百分位Bootstrap 法置信区间, 只需将 OUTPUT 中的 cinterval (bcbootstrap)改为 cinterval (bootstrap)即可。
5
检验间接效应的两类方法: (1)检验H0: ab=0(间接检验和直接检验) (2)是检验H0:c-c’=0。
6
间接检验:依次检验回归系数 直接检验:sobel法、bootstrap法和MCMC法
7
中介效应分析的3中方法:
(1)依次检验回归系数法 H 0 : a 0 H0 :b 0
(2)系数乘积检验法 H0:ab0
Y by y1-y3; ! y1-y3是潜变量Y的指标 M by m1-m3; ! m1-m3是潜变量M的指标 X by x1-x4; ! x1-x4是潜变量X的指标 Y on X; !做Y对X的回归 M on X (a); !做M对X的回归, X的回归系数命名为a Y on X
M (b); !做Y对X和M的回归, M的回归系数命名为b, 需要单独一行 MODEL CONSTRAINT:
3
假设所有变量都已经中心化(即均值为零) ,可用下列 方程来描述变量之间的关系:
X
c
X
Y
e1
YcXe1 (1)
M
e2
a
b
X
Y
c'
图1:变量关系图
MaXe2 (2)
Yc,XbM e3 (3)
4
对于这样的简单中介模型,中介效应等于间接 效应,即等于系数乘积ab,它与总效应和直接效应 有下面关系:
cc, ab
USEVARIABLES are y1-y17; !由于数据文件中包含多个变量,在单个研 究中并非会使用,所以需要定义本研究中使用y1-y17; ANALYSIS: ESTIMATOR=ML; !选择估计方法,Mplus默认的估计法为ML; MODEL: f1 BY y1-y5; !定义模型,因子f1由y1 y2 y3 y4 y5五个指标测量。
18
偏差校正的非参数百分位 bootstrap法Mplus(检验显变量中介效应)
DATA: FILE IS p.dat; ! p.dat是原始数据文件, 按X M Y顺序排列 VARIABLE: NAMES ARE X M Y; !变量名称 Analysis: bootstrap=1000; ! Bootstrap 法抽样1000 次 MODEL: