北京清华附中2019-2020学年度高三10月月考数学试卷(2019.10)

合集下载

2019-2020年高三(十月)月考数学试卷

2019-2020年高三(十月)月考数学试卷

2019-2020年高三(十月)月考数学试卷一、选择题(本大题共12小题,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.已知集合,则A B C D2.已知定义在R 上的奇函数满足,则的值为A -1B 0C 1D 2 3.已知两条直线和互相垂直,则等于A 2B 1C 0D 4.以点(2,-1)为圆心且与直线相切的圆的方程为A B C D5.若是平面外一点,则下列命题正确的是A 过只能作一条直线与平面相交B 过可作无数条直线与平面垂直C 过只能作一条直线与平面平行D 过可作无数条直线与平面平行 6.已知是(-,+)上的增函数,那么a 的取值范围是A (1,+)B (-,3)CD (1,3) 7.曲线与曲线的( )A.离心率相等 B.焦距相等 C.焦点相同 D.准线相同 8.直线与圆没有公共点,则的取值范围是( ) A . B . C . D .9.已知双曲线的一条渐近线方程为,则双曲线的离心率为 A B C D10.关于直线m 、n 与平面与,有下列四个命题:①若且,则;②若且,则;③若且,则;④若且,则;其中真命题的序号是A .①②B .③④C .①④D .②③11.已知双曲线的右焦点为F ,若过点F 且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A B C D12.如果函数且在区间上是增函数,那么实数的取值范围是 A B C D第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分。

把答案填在题中横线上)13.若直线y =kx +2与圆(x -2)2+(y -3)2=1有两个不同的交点,则k 的取值范围是 .14.双曲线上的点到左焦点的距离与到左准线的距离的比是,则等于_________. 15.已知圆直线l :,下面四个命题:(A)对任意实数与,直线l 和圆M 相切; (B)对任意实数与,直线l 和圆M 有公共点;(C)对任意实数,必存在实数,使得直线l 与和圆M 相切 (D)对任意实数,必存在实数,使得直线l 与和圆M 相切其中真命题的代号是______________(写出所有真命题的代号) 16.如图,把椭圆的长轴分成等份,过每个 分点作轴的垂线交椭圆的上半部分于 七个点,是椭圆的一个焦点,则 1234567PF P F P F P F P F P F P F ++++++=________________; 三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.设直线方程为(Ⅰ)若直线在两坐标轴上的截距相等,求直线方程;(Ⅱ)若不经过第二象限,求实数的取值范围。

2019-2020学年高三数学10月月考试题(I).doc

2019-2020学年高三数学10月月考试题(I).doc

2019-2020学年高三数学10月月考试题(I)一、填空本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应的位置上1.满足{1}⊆ A ⊆{1,2,3}的集合A 的个数为 ▲ .2.已知复数)()1(i a i z -⋅+=(i 为虚数单位)为纯虚数,则实数a 的值为 ▲ .3.已知3lg ,2lg ==b a ,则 5lg = ▲ .(用 a ,b 表示)4.函数)1ln()(+-=x x x f 的单调递减区间是 ▲ .5.命题“若实数a 满足a 2<4,则a≤2”是 ▲ 命题.(填“真”、“假”之一)6.设正项等比数列{a n }的公比为q ,且733=a S ,则q 的值为 ▲ . 7.把一个体积为27cm1的正方体木块表面涂上红漆,然后锯成体积为1 cm 3的27个小正方体,现从中任取一块,则这一块恰有两个面被涂有红漆的概率为▲ . 8.已知角a 的终边经过点P(x-6),且cosa=53-,则实数x 的值为 ▲ . 9.在平面直角坐标系中,己知A 、B 分别是椭圆13422=+y x 的左、右焦点,△ABC 的顶点C 在椭圆上,则CB A sin sin sin +的值是 ▲ . 10.已知函数||2)(x x f = ,记)5(log ),3(log 35.0f b f a ==,则a,b,c 的大小关系为 ▲ .(用“<”连接)11.曲线231x y =过点P (2,38)的切线方程为 ▲ . 12.设函数⎪⎩⎪⎨⎧≤--=,1,2,1>,1)(x x x x x f 则函数))((x f f 的值域为 ▲ .13.已知对于任意的),5()1,(+∞-∞∈ x ,都有a x a x +--)2(22>0 ,则实数a 的取值范围是 ▲ .14.已知定义在实数集R 上的偶函数)(x f 的最小值为3,且当0≥x 时,a e x f x +=3)((a为常数)。

北京市清华大学附属中学2019-2020学年高三年级第一学期10月考数学试卷

北京市清华大学附属中学2019-2020学年高三年级第一学期10月考数学试卷

清华附中高三2019年10月月考试卷数学一、选择题1.已知集合{}2A x x =>,()(){}130B x x x =--<,则A B =( )A.{}1x x >B.{}23x x <<C.{}13x x <<D.{}21x x x ><或2.若角θ的终边过点()3,4P -,则()tan θπ+=( ) A.34B.34-C.43 D.43-3.已知函数a y x =,log b y x =的图象如图所示,则( )A.1b a >>B.1b a >>C.1a b >>D.1a b >>4.设函数()y f x =的定义域为R ,则“()00f =”是“函数()f x 为奇函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件5.已知3cos 4α=,,02πα⎛⎫∈- ⎪⎝⎭,则sin 2α的值为( )A.36 B.38- D.6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏 C.5盏 D.9盏7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A.4 B.5 C.6 D.78.已知定义在R 上的函数()()2,0ln ,0xa x f x x a x ⎧+≤⎪=⎨+>⎪⎩,若方程()12f x =有两个不相等的实数根,则a 的取值范围是( )A.1122a -≤≤B.102a ≤<C.01a ≤<D.102a -<≤二、填空题9.已知函数()y f x =的导函数有且仅有两个零点,其图象如图所示,则函数()y f x =在x =___________处取得极值.10.32-,123,2log 5三个数中最大的数是_____________. 11.在ABC △中,13cos 14A =,73a b =,则B =____________. 12.去年某地的月平均气温y (℃)与月份x (月)近似地满足函数sin 6y a b x πϕ⎛⎫=++ ⎪⎝⎭(a 、b 为常数,02πϕ<<),其中三个月份的月平均气温如表所示:则该地2月份的月平均气温约为_______℃,ϕ=__________.13.在等腰梯形ABCD 中,已知AB DC ∥,2AB =,1BC =,60ABC =︒∠,点E 和点F 分别在线段BC 和CD 上,且23BE BC =,16DF DC =,则AE AF ⋅的值为_____________.14.如图,线段8AB =,点C 在线段AB 上,且2AC =,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP x =,CPD △的面积为()f x ,则()f x 的定义域为_________,()'f x 的零点是__________.三、解答题15.已知函数()()cos f x A x ωϕ=+0,0,02A πωϕ⎛⎫>><< ⎪⎝⎭的图象过点10,2⎛⎫⎪⎝⎭,最小正周期为23π,且最小值为1-.(1)求函数()f x 的解析式;(2)若,6x m π⎡⎤∈⎢⎥⎣⎦,()f x 的值域是1,⎡-⎢⎣,求m 的取值范围.16.数列{}n a 的前n 项和记为n S ,若数列n S n ⎧⎫⎨⎬⎩⎭是首项为9,公差为1-的等差数列.(1)求数列{}n a 的通项公式n a ;(2)若n n b a =,且数列{}n b 的前n 项和记为n T ,求415T T +的值.17.已知ABC △的内角,,A B C 所对的边分别为,,a b c ,()8sin 17A C +=,且角B 为锐角. (1)求cos B 的值;(2)若6a c +=,ABC △的面积为2,求边长b .18.已知函数()1xax f x e -=. (1)当1a =时,求函数()f x 的单调区间;(2)当0a <时,求函数()f x 在区间[]0,1上的最小值.19.已知函数()39f x x x =-,函数()23g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处且有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(),b -∞,求实数a 的取值范围.20.设满足以下两个条件的有穷数列12,,,n a a a …为()2,3,4,n n =…阶“期待数列”: ①1230n a a a a ++++=…; ②1231n a a a a ++++=…;(1) 分别写出一个单调递增的3阶和4阶“期待数列”;(2) 若某2013阶“期待数列”是等差数列,求该数列的通项公式; (3) 记n 阶“期待数列”的前k 项和为()1,2,3,,k S k n =…,试证:12k S ≤.一、1-8 BDAB DBCB二、9.函数y=f(x)的导函数有且仅有两个零点,其图象如图所示,x<﹣1时,f′(x)<0,x>﹣1时,f′(x)≥0,所以函数只有在x=﹣1时取得极值.10.由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.11.∵在△ABC中,cos A,∴sin A,∵7a=3b,∴sin B,∵B∈(0,π),∴B或.12.∵函数y=a+b sin(x+φ)(a,b为常数),∴当x8时,sin(x+φ)取得最大或最小值,∴8+φkπ,k∈Z,解得φ=kπ,k∈Z,又0<φ<,∴φ;∴a﹣b=31,且a+b sinπ=13,解得a=13,b=﹣18;∴y=13﹣18sin(x),当x=2时,y=13﹣18sin(2)=﹣5(°C).13.∵AB=2,BC=1,∠ABC=60°,∴BG,CD=2﹣1=1,∠BCD=120°,∵,,∴•()•()=()•()••••=2×1×cos60°2×1×cos0°1×1×cos60°1×1×cos120°=1,14.由题意,DC=2,CP=x,DP=6﹣x∵△CPD,∴>>>,解得x∈(2,4)如图,三角形的周长是一个定值8,故其面积可用海伦公式表示出来即f(x),∴f′(x),令f′(x)=0,解得x=3,三、15.(1)由函数的最小值为﹣1,A>0,得A=1,∵最小正周期为,∴ω3,∴f(x)=cos(3x+φ),又函数的图象过点(0,),∴cosφ,而0<φ<,∴φ,∴f(x)=cos(3x),(2)由x∈[,m],可知3x3m,∵f()=cos,且cosπ=﹣1,cos,由余弦定理的性质得:π≤3m,∴m,即m∈[,].16.(1)∵数列{}是首项为9,公差为﹣1的等差数列,∴9+(n﹣1)×(﹣1)=10﹣n,即S n=﹣n2+10n,①∴n≥2时,S n﹣1=﹣(n﹣1)2+10(n﹣1),②①﹣②可得a n=S n﹣S n﹣1=﹣2n+11,又当n=1时,a1=S1=9,满足上式,∴a n=﹣2n+11;(2)由题意,b n=|a n|=|11﹣2n|,∴当1≤n≤5时,T n=a1+a2+…+a n═﹣n2+10n;n≥6时,T n=25n2﹣10n+50.∴T4+T15=24+125=149.17.(1)∵sin(A+C),∴sin B=sin[π﹣(A+C)=sin(A+C),∵角B为锐角,∴cos B>0,即cos B.(2)∵△ABC的面积为2,∴S ac sin B ac2,则ac,∵a+c=6,∴b2=a2+c2﹣2ac cos B=(a+c)2﹣2ac﹣2ac•36﹣2236﹣17﹣15=4,则b=2.18.(Ⅰ)a=1时,f(x),x∈R,∴f′(x),令f′(x)>0,解得:x<2,令f′(x)<0,解得:x>2,∴f(x)在(﹣∞,2)递增,在(2,+∞)递减;(Ⅱ)由f(x)得:f′(x),x∈[0,1],令f′(x)=0,∵a<0,解得:x=1<1,①10时,即﹣1≤a<0时,f′(x)≥0对x∈[0,1]恒成立,∴f(x)在[0,1]递增,f(x)min=f(0)=﹣1;②当0<1<1时,即a<﹣1时,x,f′(x),f(x)在[0,1]上的情况如下:∴f(x)min=f(1);综上,﹣1≤a<0时,f(x)min=﹣1,a<﹣1时,f(x)min.19.(1)f'(x)=3x2﹣9,g'(x)=6x,设f(x)与g(x)的交点坐标为(x0,y0),则,解得:或,∴a的值为5或﹣27;(2)令h(x)=x3﹣3x2﹣9x,则y=h(x)的图象在直线y=a的下方的部分对应点的横坐标x∈(﹣∞,b),∵h'(x)=3x2﹣6x﹣9=3(x+1)(x﹣3),∴令h'(x)=0,得:x=﹣1或3,列表:∴h(x)的极大值为h(﹣1)=5,极小值为h(3)=﹣27,又∵当x→+∞时,h(x)→+∞,当x→﹣∞时,h(x)→﹣∞,如图所示:∴当a>5或a≤﹣27时,满足题意,∴实数a的取值范围为:(﹣∞,﹣27]∪(5,+∞).20.(1)数列,0,为三阶期待数列,数列,,,为四阶期待数列.(Ⅱ)设该2013阶“期待数列”的公差为d,∵a1+a2+…+a2013=0,∴0,∴a1+a2013=0,即a1007=0,∴a1008=d,当d=0时,与期待数列的条件①②矛盾,当d>0时,据期待数列的条件①②可得a1008+a1009+…+a2013,∴1006d d,即d,∴a n=a1007+(n﹣1007)d(n∈N*,n≤2013),当d<0时,同理可得a n,(n∈N*,n≤2013).(Ⅲ)当k=n时,显然|S n|=0成立;当k<n时,根据条件①得:S k=a1+a2+…+a k=﹣(a k+1+a k+2+…+a n),即|S k|=|a1+a2+…+a k|=|a k+1+a k+2+…+a n|,∴2|S k|=|a1+a2+…+a k|+|a k+1+a k+2+…+a n|≤|a1|+|a2|+…+|a k|+|a k+1|+…+|a n|=1,∴|S k|(k=1,2,…,n).。

2019-2020学年北京市清华附中高三(上)10月月考数学试卷试题及答案

2019-2020学年北京市清华附中高三(上)10月月考数学试卷试题及答案

2019-2020学年北京市清华附中高三(上)10月月考数学试卷一、选择题1.已知集合{|2}A x x =>,{|(1)(3)0}B x x x =--<,则(A B = )A .{|1}x x >B .{|23}x x <<C .{|13}x x <<D .{|2x x >或1}x <2.若角θ的终边过点(3,4)P -,则tan()(θπ+= ) A .34B .34-C .43 D .43-3.已知函数a y x =,log b y x =的图象如图所示,则( )A .1b a >>B .1b a >>C .1a b >>D .1a b >>4.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知3cos 4α=,(2πα∈-,0),则sin 2α的值为( )A .38B .38-C D .6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A .4B .5C .6D .78.已知定义在R 上的函数2,0()(),0x a x f x ln x a x ⎧+=⎨+>⎩…,若方程1()2f x =有两个不相等的实数根,则a 的取值范围是( ) A .1122a -<…B .102a <… C .01a <…D .102a -<…二、填空题9.已知函数()y f x =的导函数有且仅有两个零点,其图象如图所示,则函数()y f x =在 x = 处取得极值.10.32-,123,2log 5三个数中最大数的是 . 11.在ABC ∆中,13cos 14A =,73a b =,则B = . 12.去年某地的月平均气温(C)y ︒与月份x (月)近似地满足函数sin()(6y a b x a πϕ=++,b为常数,0)2πϕ<<.其中三个月份的月平均气温如表所示:则该地2月份的月平均气温约为 C ︒,ϕ= .13.在等腰梯形ABCD 中,已知//AB DC ,2AB =,1BC =,60ABC ∠=︒,点E 和F 分别在线段BC 和DC 上,且23BE BC =,16DF DC =,则AE AF 的值为 . 14.如图,线段8AB =,点C 在线段AB 上,且2AC =,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP x =,CPD ∆的面积为()f x .则()f x 的定义域为 ;()0f x '=的解是 .三、解答题15.已知函数()cos()(0f x A x A ωϕ=+>,0ω>,0)2πϕ<< 的图象过点1(0,)2,最小正周期为23π,且最小值为1-. (1)求函数()f x 的解析式.(2)若[6x π∈,]m ,()f x 的值域是[1-,,求m 的取值范围.16.数列{}n a 的前项n 和记为n S ,若数列{}nS n是首项为9,公差为1-的等差数列. (1)求数列{}n a 通项公式n a .(2)若||n n b a =,且数列{}n b 的前项n 和记为n T ,求415T T +的值.17.已知ABC ∆的内角A 、B 、C 所对应的边分别为a ,b ,c ,8sin()17A C +=,且角B 为锐角.(1)求cos B 的值;(2)若6a c +=,ABC ∆的面积为2,求边长b .18.已知函数1()xax f x e -=. (Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)当0a <时,求函数()f x 在区间[0,1]上的最小值.19.已知函数3()9f x x x =-,函数2()3g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处且有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(,)b -∞,求实数a 的取值范围.20.设满足以下两个条件的有穷数列1a ,2a ,⋯,n a 为(2n n =,3,4,⋯,)阶“期待数列”:①1230n a a a a +++⋯+=; ②123||||||||1n a a a a +++⋯+=.(1)分别写出一个单调递增的3阶和4阶“期待数列”;(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;(3)记n 阶“期待数列”的前k 项和为(1k S k =,2,3,⋯,)n ,试证:1||2k S ….2019-2020学年北京市清华附中高三(上)10月月考数学试卷参考答案与试题解析一、选择题1.已知集合{|2}A x x =>,{|(1)(3)0}B x x x =--<,则(A B = )A .{|1}x x >B .{|23}x x <<C .{|13}x x <<D .{|2x x >或1}x <【解答】解:集合{|2}A x x =>, {|(1)(3)0}{|13}B x x x x x =--<=<<,则{|23}A B x x =<<.故选:B .2.若角θ的终边过点(3,4)P -,则tan()(θπ+= ) A .34B .34-C .43 D .43-【解答】解:角θ的终边过点(3,4)P -,则44tan()tan 33y x θπθ-+=-=-=-=, 故选:D .3.已知函数a y x =,log b y x =的图象如图所示,则( )A .1b a >>B .1b a >>C .1a b >>D .1a b >>【解答】解:由图象可知,01a <<,1b >, 故选:A .4.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:函数()y f x =的定义域为R ,若函数()f x 为奇函数,则(0)0f =,反之不成立,例如2()f x x =.∴ “(0)0f =”是“函数()f x 为奇函数”的必要不充分条件.故选:B . 5.已知3cos 4α=,(2πα∈-,0),则sin 2α的值为( )A .38B .38-C D .【解答】解:3cos 4α=,(2πα∈-,0),sin α∴===,3sin 22sin cos 2(4ααα∴==⨯⨯= 故选:D .6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏【解答】解:设塔的顶层共有1a 盏灯, 则数列{}n a 公比为2的等比数列, 717(12)38112a S -∴==-,解得13a =. 故选:B .7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为( ) A .4B .5C .6D .7【解答】解:由题意可得,冠军得分比其他参赛人员高,且获胜场次比其他人都少,所以冠军与其他匹配场次中,平均至少为3场,A 选项:若最少4人,当冠军3次平局时,得3分,其他人至少1胜1平局,最低得3分,故A 不成立,B 选项:若最少5人,当冠军1负3平局时,得3分,其他人至少1胜1平,最低得3分,不成立,当冠军1胜3平局时,得5分,其他人至少2胜1平,最低得5分,不成立,故B 不成立, C 选项:若最少6人,当冠军2负3平局时,得3分,其他人至少1胜1平,最低得3分,不成立,当冠军1胜4平局时,得6分,其他人至少2胜1平,最低得5分,成立,故C 成立, D 选项:76>,故不为最少人数,故不成立,故选:C .8.已知定义在R 上的函数2,0()(),0x a x f x ln x a x ⎧+=⎨+>⎩…,若方程1()2f x =有两个不相等的实数根,则a 的取值范围是( ) A .1122a -<…B .102a <… C .01a <…D .102a -<…【解答】解:由题意知当0x >时,()()f x ln x a =+,则0a …, 当0x …时,()1a f x a <+…,若0a …,当0x >时,()()f x ln x a lna =+…,若方程1()2f x =有两个不相等的实数根, 则11212a a lna ⎧<+⎪⎪⎨⎪<⎪⎩…,即1212a a a ⎧<⎪⎪⎪-⎨⎪⎪<⎪⎩…,得1122a -<…,0a …,102a ∴<…, 故选:B .二、填空题9.已知函数()y f x =的导函数有且仅有两个零点,其图象如图所示,则函数()y f x =在x = 1- 处取得极值.【解答】解:函数()y f x =的导函数有且仅有两个零点,其图象如图所示, 1x <-时,()0f x '<,1x >-时,()0f x '…, 所以函数只有在1x =-时取得极值. 故答案为:1-.10.32-,123,2log 5三个数中最大数的是 2log 5 . 【解答】解:由于3021-<<,12132<<,22log 5log 42>=,则三个数中最大的数为2log 5. 故答案为:2log 5. 11.在ABC ∆中,13cos 14A =,73a b =,则B 3或3. 【解答】解:在ABC ∆中,13cos 14A =,sin A ∴== 73a b =,sin 7sin 3b A B a ∴===(0,)B π∈, 3B π∴=或23π. 故答案为:3π或23π. 12.去年某地的月平均气温(C)y ︒与月份x (月)近似地满足函数sin()(6y a b x a πϕ=++,b为常数,0)2πϕ<<.其中三个月份的月平均气温如表所示:则该地2月份的月平均气温约为 5- C ︒,ϕ= .【解答】解:函数sin()(6y a b x a πϕ=++,b 为常数),∴当51182x +==时,sin()6x πϕ+取得最大或最小值, ∴862k ππϕπ⨯+=+,k Z ∈,解得56k πϕπ=-,k Z ∈, 又02πϕ<<,6πϕ∴=;31a b ∴-=,且sin 13a b π+=,解得13a =,18b =-;1318sin()66y x ππ∴=-+,当2x =时,1318sin(2)5()66y C ππ=-⨯+=-︒.故答案为:5-,6π.13.在等腰梯形ABCD 中,已知//AB DC ,2AB =,1BC =,60ABC ∠=︒,点E 和F 分别在线段BC 和DC 上,且23BE BC =,16DF DC =,则AE AF 的值为18. 【解答】解:2AB =,1BC =,60ABC ∠=︒,1122BG BC ∴==,211CD =-=,120BCD ∠=︒, 23BE BC =,16DF DC =, ∴21()()()()36AE AF AB BE AD DF AB BC AD DC =++=++ 12216336AB AD AB DC BC AD BC DC =+++ 122121cos6021cos011cos6011cos1206336=⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯⨯︒111291331818=++-=, 故答案为:291814.如图,线段8AB =,点C 在线段AB 上,且2AC =,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP x =,CPD ∆的面积为()f x .则()f x 的定义域为 (2,4) ;()0f x '=的解是 .【解答】解:由题意,2DC =,CP x =,6DP x =- CPD ∆,∴262662x xx x x x +>-⎧⎪+->⎨⎪+->⎩,解得(2,4)x ∈如图,三角形的周长是一个定值8,故其面积可用海伦公式表示出来即()f x==()f x∴'=,令()0f x'=,解得3x=,故答案为:(2,4),3.三、解答题15.已知函数()cos()(0f x A x Aωϕ=+>,0ω>,0)2πϕ<<的图象过点1(0,)2,最小正周期为23π,且最小值为1-.(1)求函数()f x的解析式.(2)若[6xπ∈,]m,()f x的值域是[1-,,求m的取值范围.【解答】解:(1)由函数的最小值为1-,0A>,得1A=,最小正周期为23π,2323πωπ∴==,()cos(3)f x xϕ∴=+,又函数的图象过点1(0,)2,1cos2ϕ∴=,而02πϕ<<,3πϕ∴=,()cos(3)3f x xπ∴=+,(2)由[6xπ∈,]m,可知533633x mπππ++剟,5()cos66fππ==cos1π=-,7cos6π=,由余弦定理的性质得:7336mπππ+剟,∴25918mππ剟,即2[9mπ∈,5]18π.16.数列{}n a 的前项n 和记为n S ,若数列{}nS n是首项为9,公差为1-的等差数列. (1)求数列{}n a 通项公式n a .(2)若||n n b a =,且数列{}n b 的前项n 和记为n T ,求415T T +的值. 【解答】解:(1)数列{}nS n是首项为9,公差为1-的等差数列, ∴9(1)(1)10nS n n n=+-⨯-=-,即210n S n n =-+,① 2n ∴…时,21(1)10(1)n S n n -=--+-,②①-②可得1211n n n a S S n -=-=-+, 又当1n =时,119a S ==,满足上式, 211n a n ∴=-+;(2)由题意,|||112|n n b a n ==-,∴当15n 剟时,212(9112)102n n n nT a a a n n +-=++⋯+===-+;6n …时,2(5)(1211)2510502n n n T n n -+-=+=-+.41524125149T T ∴+=+=.17.已知ABC ∆的内角A 、B 、C 所对应的边分别为a ,b ,c ,8sin()17A C +=,且角B 为锐角.(1)求cos B 的值;(2)若6a c +=,ABC ∆的面积为2,求边长b . 【解答】解:(1)8sin()17A C +=, 8sin sin[()sin()17B AC A C π∴=-+=+=, 角B 为锐角, cos 0B ∴>,即15cos 17B ===.(2)ABC ∆的面积为2,118sin 22217S ac B ac ∴==⨯=, 则172ac =, 6a c +=,2222151717152cos ()2236223617154172217b ac ac B a c ac ac∴=+-=+--=-⨯-⨯⨯=--=, 则2b =.18.已知函数1()xax f x e -=. (Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)当0a <时,求函数()f x 在区间[0,1]上的最小值. 【解答】解:(Ⅰ)1a =时,1()xx f x e -=,x R ∈, 2()xx f x e -+∴'=, 令()0f x '>,解得:2x <, 令()0f x '<,解得:2x >,()f x ∴在(,2)-∞递增,在(2,)+∞递减;(Ⅱ)由1()xax f x e -=得: 1()xax a f x e -++'=,[0x ∈,1], 令()0f x '=,0a <,解得:111x a=+<, ①110a+…时,即10a -<…时,()0f x '…对[0x ∈,1]恒成立,()f x ∴在[0,1]递增,()(0)1min f x f ==-;②当1011a<+<时,即1a <-时, x ,()f x ',()f x 在[0,1]上的情况如下:111()(1)aaf x min f ae +∴=+=;综上,10a -<…时,()1min f x =-,1a <-时,11()min aa f x e+=.19.已知函数3()9f x x x =-,函数2()3g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处且有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(,)b -∞,求实数a 的取值范围. 【解答】解:(1)2()39f x x '=-,()6g x x '=,设()f x 与()g x 的交点坐标为0(x ,0)y ,则3200020093396x x x a x x ⎧-=+⎪⎨-=⎪⎩,解得:015x a =-⎧⎨=⎩或0327x a =⎧⎨=-⎩,a ∴的值为5或27-;(2)令32()39h x x x x =--,则()y h x =的图象在直线y a =的下方的部分对应点的横坐标(,)x b ∈-∞,2()3693(1)(3)h x x x x x '=--=+-,∴令()0h x '=,得:1x =-或3,列表:()h x ∴的极大值为(1)5h -=,极小值为h (3)27=-,又当x →+∞时,()h x →+∞,当x →-∞时,()h x →-∞, 如图所示:∴当5a >或27a -…时,满足题意,∴实数a 的取值范围为:(-∞,27](5,)-+∞.20.设满足以下两个条件的有穷数列1a ,2a ,⋯,n a 为(2n n =,3,4,⋯,)阶“期待数列”:①1230n a a a a +++⋯+=; ②123||||||||1n a a a a +++⋯+=.(1)分别写出一个单调递增的3阶和4阶“期待数列”;(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;(3)记n 阶“期待数列”的前k 项和为(1k S k =,2,3,⋯,)n ,试证:1||2k S …. 【解答】解:(1)数列12-,0,12为三阶期待数列,数列38-,18-,18,38为四阶期待数列.(Ⅱ)设该2013阶“期待数列”的公差为d , 1220130a a a ++⋯+=,∴120132013()02a a +=,120130a a ∴+=,即10070a =, 1008a d ∴=,当0d =时,与期待数列的条件①②矛盾,当0d >时,据期待数列的条件①②可得10081009201312a a a ++⋯+=, 100610051100622d d ⨯∴+=,即110061007d =⨯, *10071007(1007)(10061007n n a a n d n N -∴=+-=∈⨯,2013)n …,当0d <时,同理可得100710061007n n a -+=⨯,*(n N ∈,2013)n ….(Ⅲ)当k n =时,显然1||02n S =…成立; 当k n <时,根据条件①得:1212()k k k k n S a a a a a a ++=++⋯+=-++⋯+, 即1212||||||k k k k n S a a a a a a ++=++⋯+=++⋯+,12121212||||||||||||||||1k k k k n k k n S a a a a a a a a a a a +++∴=++⋯++++⋯+++⋯+++⋯+=…,1||(12k S k ∴=…,2,⋯,)n .。

2019-2020学年高三数学10月月考试题.doc

2019-2020学年高三数学10月月考试题.doc

2019-2020学年高三数学10月月考试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的考号、姓名、考场、座位号、班级在答题卡上填写清楚。

2.每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试卷上作答无效。

第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.=0330cos ( ) A.23B. 23-C.21D.21-2.已知复数z 满足i zi +-=1,则z 在平面直角坐标系中对应的点是( ) A.()1,1- B.()1,1- C.()1,1 D.()1,1--3.已知集合{}11|≤≤-=x x A ,{}02|2>-=x x x B ,则()=B C A U ( ) A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞) 4.已知向量()2,1=,()m ,4-=,若b a +2与a 垂直,则m =( ) A.-3 B.3 C.-8 D.85.正项等比数列{}n a 中,23=a ,6464=⋅a a ,则2165a a a a ++的值是( )A.4B.8C.16D.646.已知双曲线C :()0,012222>>=-b a by a x 的渐近线方程为x y 43±=,且其左焦点为(-5,0),则双曲线C 的方程为( )A .116922=-y x B .191622=-y x C .14322=-y x D .13422=-y x 7.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3B .38000cm 3C .32000cmD .34000cm8.右图程序框图输出S 的值为( ) A.2 B.6 C.14 D.309.将函数()()ϕ+=x x f 2sin 的图象向左平移8π个单位,所得到的函数是偶函数,则ϕ的一个可能取值为( ) A .43π B .4πC .0D .4π-10.下列三个数:2323ln-=a ,ππ-=ln b ,33ln -=c ,大小顺序是( ) A .b c a << B .c b a >> C .c a b >> D .b c a >>11.若直线2-=kx y 与抛物线x y 82=交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则=k ( )A.-1B.2C.2或-1D.1±512.定义在R 上的奇函数()x f 和定义在{}0|≠x x 上的偶函数()x g 分别满足()⎪⎩⎪⎨⎧≥<≤-=)1(1)10(12x x x x f x ,()()0log 2>=x x x g ,若存在实数a 使得()()b g a f =成立,则实数b 的取值范围是( )A .[]2,2-B .⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡-21,00,21 C .(][)+∞-∞-,22, D .⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--2,2121,2第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x ,则y x z -=的最小值是 .14.若()51-ax 的展开式中3x 的系数是80,则实数a 的值是 .15.已知四棱锥ABCD P -的顶点都在半径为2的球面上,底面ABCD 是正方形,且底面经过球心O ,E 是AB 的中点,⊥PE 底面ABCD ,则该四棱锥ABCD P -的体积于 .16.在数列{}n a 中,已知7,221==a a ,2+n a 等于1+⋅n n a a ()+∈N n 的个位数,则=2015a .三、解答题:解答时写出文字说明,证明过程和演算步骤. 17.(本题满分12分)已知向量()x x cos ,22sin 3+=,()x cos 2,1=,设函数()x f ⋅= (1)求()x f 的最小正周期;(2)在△ABC 中,c b a ,,分别是角A ,B ,C 的对边,若3=a ,f (A )=4,求△ABC 的面积的最大值.18.(本题满分12分)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,CD AB //,4,2===CD AD AB ,M 为CE 的中点.(1)求证:BM ∥平面ADEF ;(2)求平面BEC 与平面ADEF 所成锐二面角的余弦值.19.(本题满分12分)某公司对员工进行身体素质综合测试,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)按优秀、良好、合格三个等级分层,从中抽到50人,其中成绩为优秀的有30人. (1)求a 的值;(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选3人,记X 为抽取女员工的人数,求X 的分布列及数学期望.20.(本题满分12分)已知椭圆L :()012222>>=+b a b y a x 的一个焦点与抛物线y 2=8x 的焦点重合,点()2,2在L 上. (1)求L 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与L 有两个交点A ,B ,线段AB 的中点为M ,证明:OM 的斜率与直线l 的斜率的乘积为定值.21.(本题满分12分)已知函数()R a xax x x f ∈+-=,21ln (1)当2=a 时,求曲线()x f y =在1=x 处的切线方程; (2)当1>x 时,()0<x f 恒成立,求a 的取值范围请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分。

北京清华附中2019-2020学年度高三10月月考数学试卷(2019.10)

北京清华附中2019-2020学年度高三10月月考数学试卷(2019.10)

清华附中高三2019年10月月考试卷一.选择题1.已知集合{=卜上>2}, B = {x|(x-l)(x-3)<0},则/CIB=(A. {x|r>l}B. [x\2<x<3]C. {x|l<x<3)2.若角0的终边过点尸(3,-4),贝iJian(6 + 〃)=()D.3.已知函数y = y = k>g&x的图象如图所示,则()A. f)>\>aB. b >a>\C. a>\ >bD. a>b>]4.设函数y = /(x)的定义域为R,则“/(0)= 0”是“函数/(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C,充分必要条件D,既不充分也不必要条件5.已知cosa=',,贝Osin2a 的值为()A. 2B.NC.亚D..迎68 8 86.我国古代数学名著《算法统宗》中有如卜题,“远望炭巍塔七层,红光点点倍加增,共灯三百八十一, 诂问尖头儿盏灯?”意思是:一座7层塔共挂了 381盏灯,且相邻两层中的下一层灯数是上一层灯数的2 倍,则塔的顶层共有灯()A.1盏B.3部C.5盏D.9盏7. 象机社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,旦获胜场次比其他人都少,则木次比赛的参赛人数至少为()A.4B.5C.6D.7)D. {x|x>2^x<l}二、填空题9.已知函数y = /(x )的导函数有且仅有两个零点,其图象如图所示,则函数7 = /(冷在x = 取得极值.8.已如定义在R 上的函数/(x ) =, :晨:)<。

,若方程/㈤二六两个不相等的实数根,则“的取值范围是() A. --22B. 0«〃<一C. D.2IO.2-', 33 10gz5三个数中最大的数是11 .在△XBC 中9 8s/ 1L =劝,则3 =12 .去年某地的月平均气温yCC )与月份丫(月)近似地满足函数…+bsin 序+e )(°、6为常数,其中三个月份的月平均气温如表所示:X5 8 11 y133113则该地2月份的月平均气温约为 C,夕=. 13.在等腰梯形力BCD 中, 已知AB = 2, BC = 1, ZABC = 60°,点后和点〃分别在线段8c 和CZ )上,且“"前,DF =1DC ,贝。

2019_2020学年10月北京海淀区清华大学附属中学高三上学期月考数学试卷

2019_2020学年10月北京海淀区清华大学附属中学高三上学期月考数学试卷

A. 充分而不必要条件
C. 充分必要条件
”是“函数 为奇函数”的( ). B. 必要而不充分条件 D. 既不充分也不必要条件
5. 已知

,则
的值为( ).
A.
B.
C.
D.
6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百
八十一,请问尖头几盏灯?”意思是:一座 层塔共挂了 盏灯,且相邻两层中的下一层灯数
的解集为
,求实数 的取值范围.
20. 设满足以下两个条件的有穷数列

阶“期待数列”:




1 )分别写出一个单调递增的 阶和 阶“期待数列”;
2 )若某 阶“期待数列”是等差数列,求该数列的通项公式;
3 )记 阶“期待数列”的前 项和为
,试证:

A.
B.
C.
D.
8. 已知定义在 上的函数
则 的取值范围是( ).
A.
B.
,若方程 C.
有两个不相等的实数根, D.
二、填空题
(本大题共6小题,每小题5分,共30分。)
9. 已知函数
的导函数有且仅有两个零点,其图象如图所示,则函数

处取得极值.
10.
,,
三个数中最大的数字是

11. 在
中,

,则

12. 去年某地的月平均气温 ( )与月份 (月)近似地满足函数
17. 已知
的内角 , , 所对的边分别为 , , ,
1 )求
的值.
2 )若

的面积为 ,求边长 .
,且角 为锐角.
18. 已知函数 1 )当 2 )当

2019-2020中学高三上学期10月月考数学试题(解析版).docx

2019-2020中学高三上学期10月月考数学试题(解析版).docx

2019-2020中学高三上学期10月月考数学试题一、单选题A.{1,2,3,4} B.{1,2,3} C.{4,5} D .{1,4}【答案】A【解析】将阴影部分对应的集合的运算表示出来,然后根据集合AB 表示元素的范 围计算结果. 【详解】因为阴影部分是:A (C R B );又因为x (4—x )<0,所以x>4或x<0,所以B = {x|x )4或x<0},所以 C R B = {X |0<X <4},又因为 A = {1,2,3,4,51,所以 A (QB )= {1,2,3,4}, 故选:A. 【点睛】本题考查根据已知集合计算伽"图所表示的集合,难度较易.对于图中的阴影部 分首先要将其翻译成集合间运算,然后再去求解相应值.3.设a, b 是非零向量,是“a//b”的()4 3 . A. 1B. —1C.—I —I5 5【答案】D 【解析】【详解】由题意可得:忖=(¥ +3? = 5,且:乞=4一3几z 4-3/4 3 .据此有:旧-丁十一尹 本题选择D 选项.D.-3. —I52.若集合A = {1,2,3,4,5}傑合B = {x|x (4-x )<0}侧图中阴影部分表示()ZA.充分而不必要条件 C.充分必要条件【答案】A 【解析1 a-b =|a|-|Z?|cos^,Z?^ ,由已知得cos(a,b 〉= l,即仏巧=0,加/方.而当 a 〃Q 时,仏方)还可能是兀,此时a-b =-|®|j^|,故“a"=问”| ”是“a//b ”的充分 而不必要条件,故选A. 【考点】充分必要条件、向量共线.4. 设 a = log 4S,b = log 0A 8, c = 204,!S!l ()A.b<c<aB.c<b<aC.c<a<bD.b< a<c【答案】A【解析】根据指数函数、对数函数单调性比较数值大小. 【详解】因为 a = log 4 8 = ^-log 2 2 =扌’b = log 04 8 < log 041 = 0, c = 20'4< 20'5 = A /2 < 扌, 所以b<c<a , 故选:A. 【点睛】本题考查利用指、对数函数的单调性比较数值大小,难度一般•利用指、对数函数单调 性比较大小时,注意利用中间量比较大小,常用的中间量有:0,1.5. 若直线 lax-by + 2 = 0(a > 0,b > 0)被圆 x 2 + y 2+2x-4_y+ 1 = 0 截得弦长为 4,4 1一则—:的最小值是()a b1 1 A. 9B. 4C.-D.-24【答案】A 【解析】圆x2+ y 2 + 2x-4y + l = 0的标准方程为:(x+1) 2+ (y - 2) 2 =4,它表示以(-1, 2)为圆心、半径等于2的圆; 设弦心距为d,由题意可得22+d 2=4,求得d=0,可得直线经过圆心,故有-2a - 2b+2=0, 即a+b=l,再由a>0, b>0,可得B.必要而不充分条件 D.既不充分也不必要条件4 14 1I =(Ia ba b4Z? a4 ]当且仅当一=—时取等号,•••一 + 〒的最小值是9. a b a b故选:A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表 示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.① 一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一 个为定值;③三相等:含变量的各项均相等,取得最值.6.函数/(%) = x 2-cos%在-彳冷 的图像大致是()【解析】先判断奇偶性,然后通过计算导函数在特殊点的导函数值正负来判断相应结果. 【详解】因为/ (兀)定义域关于原点对称且=- cos (-%) = X 2 - cos % = /(%),所以/(X )是偶函数,排除A 、C ;又因为/,(x) = x (2cosx-xsinx),所以【点睛】 本题考查函数图象的辨别,难度一般•辨别函数图象一般可通过奇偶性、单调性、特殊 点位置、导数值正负对应的切线斜率变化等来判断.7.如图,长方体 ABCD-A.B^D, ^,AA l =AB^2,AD = l,^E,F,G 分别是 D0, AB, CC,的中点,则异面直线与GF 所成角的余弦值是71所以“护对应的切线斜率大于零,所以排除D,)(a+b) =5+ —+ ->5+2 a b=9故选:B.【答案】D 【解析】以DA,DC,DD [所在直线为x,y,z 轴,建立空间直角坐标系,可得4疋和GF 的坐标,进而可得cos^EGF,从而可得结论. 【详解】以DA, DC, DD,所在直线为X, % z 轴,建立空间直角坐标系, 则可得 4(l,0,2),E (0,0,l ),G (0,2,l ),F (l,l,0),设异面直线4E 与GF 所成的角为0,【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角主要方法有两种: 一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向 量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位 线等方法找出两直线成的角,再利用平面几何性质求解.& 在AABC 中,ZA, ZB, ZC 的对边分别为 a, b, c, cos 2— =,贝U ABC2 2c的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】Byk h + C【解析】在△ ABC 中,利用二倍角的余弦与正弦定理可将已知cos?—=——,转化为2 2c cosA=^-,整理即可判断△ ABC 的形状.sinC【详解】 亠亠 c A b + c在AABC 中,Vcos2—=-------- , 2 2cD.O则 cos 0 = |cos 4E, GF | =-lxl + 0 + (-l )x (-l )72x^2=0, 故选D..l + cosA = sinB + sinC=j_ sinB+j_2 2sinC 2 sinC 2sinB an sinB・°・ 1+cosA = 1,艮卩cosA = ----- ,sinC sinCcosAsinC = sinB = sin (A+C) = sinAcosC+cosAsinC,:.sinAcosC=0, *.* sin A#),cosC=0,・・・c为直角.故选:B.【点睛】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用, 属于中档题.9.若函数f(x) = ^x2-2x + alnx有两个不同的极值点,则实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档