梁的内力剪力和弯矩
梁的内力图—剪力图和弯矩图(23)
6kN
1
1
A 2mΒιβλιοθήκη 6kN m2 q 2kN m 3 4
5
B
2
34
5
C
3m
3m
FQ1 6kN M1 6 2 12kNm FQ2 6 13 7kN M 2 6 2 12kNm
FA 13kN
问题:最大内力的数
FB 5kN
FQ3 6 13 23 1kN
变化的(有的大、有的小)。
一、 梁的内力图—剪力图和弯矩图
1 、剪力方程和弯矩方程
由前面的知识可知:梁的剪力和弯矩是随截面位置
变化而变化的,如果将x轴建立在梁的轴线上,原点取 在梁左端,向右为正向, 坐标x表示截面位置,则FQ和M
就随x的变化而变化,V和M就是x的函数,这个函数式就 叫剪力方程和弯矩方程。
南充职业技术学院土木工程系建筑力学多媒体课件
任课 陈德先 教师
授课 12造价与建 班级 筑
授课 时间
2013/
学 时
4
课 剪力图和弯矩图 题
课型 新授课
教学 方法
讲练结合法
教学 熟练列出剪力方程和弯矩方程、并绘制剪力图和弯矩图; 目的 利用载荷集度、剪力和弯矩间的微分关系绘制剪力图和弯
矩图.
教学 剪力图和弯矩图;剪力、弯矩和荷载集度的微分关系及其 重点 应用.
l,求梁剪力、弯矩方程的微分,并画剪力、弯矩图。
q
解 :1.建立剪力、弯矩方程
A x
B
l
FQ x
ql ql 2/2
FQ (x) qx M (x) qx x qx2
22
2.对剪力、弯矩方程取微分
dM (x) dx
梁弯矩图梁内力图(剪力图与弯矩图)
简单载荷梁内力图(剪力图与弯矩图)注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5 word范文word范文word范文word范文word范文word范文word范文.word 范文注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
梁弯曲时横截面上的内力剪力与弯矩
第二节 梁弯曲时横截面上的内力--剪力和弯矩
一、用截面法求梁的内力
mALeabharlann BxmFl
a)
M
FB
M
B
F
b)
如图(7-3a)所示,为了求出
x FQ F c)
FQ′
M′
l-x d)
图7-3
梁横截面m-m上的内力,在 m-
FB
m
MB 处将梁断开,取左段梁为研究对
象,由平衡方程可求得
∑Fy=0 F – FQ =0
梁各指定截面的剪力和弯矩。
解 (1)求梁支座的约束力
取整个梁为研究对象,画受力图列平衡方程求解得
1 23 45
M
D
1
A
C
FAM 5 C
B
a △ △ C△ △
FB
2a
2a 2a
图7-5
∑MB( F )=0
-FA×4a-MC+q×2a×5a=0
7qa
得
FA= 4
∑Fy=0 FB+FA-q×2a=0
qa
3-3截面:取3-3截面左段梁计算,得
FQ3
q 2a
FA
2qa
7qa 4
qa 4
M 3 q 2a a 2qa2
4-4截面:取4-4截面右段梁计算,得
FQ4
FB
qa 4
M
4
FB
2a M
C
qa2 2
3qa2
5qa2 2
5-5截面:取5-5截面右段梁计算,得
FQ5
FB
qa 4
梁的内力——剪力和弯矩
上的内力来代替,如图4-7(b)所示。根据静力平衡条件,在
截面m-m上必然存在着一个沿截面方向的内力FS。由平衡方程
∑Y=0
FA-FS=0
得 FS=FA
FS称为剪力,它是横截面上分布内力系在截面方向的合力。
由图4-7(b)中可以看出,剪力FS和支座反力 FA组成了一个力偶,因而,在横截面m-m上还 必然存在着一个内力偶M与之平衡,由平衡方
∑Y=0 FB-FS3=0
∑MO=0 FB×1m-M3=0
FS3=-FB=-10kN
M3=FB×1m=10kN·m
计算结果明,FS3的实际方向与假设的相反,为 负剪力;M3为正弯矩。 从上述例题中可以总结出如下规律:
1) 梁的任一横截面上的剪力,在数值上等于 该截面左边(或右边)梁上所有外力在截面方 向投影的代数和。截面左边梁上向上的外力或 右边梁上向下的外力在该截面方向上的投影为 正,反之为负。
图4-7
为了使无论取左段梁还是右段梁得到的同一截面上的FS和M不仅 大小相等,而且正负号一致,需要根据梁的变形来规定FS和M的 符号。
1 剪力的符号规定
梁截面上的剪力对所取梁段内任一点的矩为顺时针方向转动时为 正,反之为负,如图4-8(a)所示。
2 弯矩的符号规定 梁截面上的弯矩使所取梁段上部受压、下部受拉时为正,反之为 负,如图4-8(b)所示。 根据上述正负号的规定,在图4-7(b)、(c)两种情况中,横 截面m-m上的剪力FS和弯矩M均为正。
程
∑MO=0
M-FAx=0
得 M=FAx
M称为弯矩,它是横截面上分布内力系的合力
偶矩。
1.2剪力和弯矩的符号规定
在上面的讨论中,如果取右段梁为研究对象,同样也可求得横截 面m-m上的剪力FS和弯矩M,如图4-7(c)所示。但是,根据 力的作用与反作用定律,取左段梁与右段梁作为研究对象求得的 剪力FS和弯矩M虽然大小相等,但方向相反。
第四章梁的内力——剪力和弯矩
图4-4 梁的类型
这三种梁的共同特点是支座反力仅有三个,可由静力平衡 条件全部求得,故也称为静定梁。
§4.2 梁的内力——剪力和弯矩
2.1 截面法求梁的内力
求梁任一截面内力采用截面法 。
P m
A n
YA ()
QM
c
P
YA
M
c
() Q
()
在切开的截面m-n上必
B
然存在两个内力分量: YB 内力Q和内力偶矩M。
P
A
(a)
B C
YA
YA
解 (1)求支座反力
pb
l
(b)
由
MB 0
求图 得YA
Pbpla l
由
M A (c)0
求图 得YB
Pa l
pab
l
图4-10 例题4-3图
(2)分段列剪力方程和弯矩方程
由于C处作用有集中力P,AC和CB两段梁的剪力方程和弯 矩方程并不相同。因此,必须分别列出各段的剪力方程和 弯矩方程:
二阶导数的几何意义是图形斜率的变化率即图形的凸凹 向。弯矩图上一点处的凸凹方向可由梁上该点处荷载集
度q(x)符号来决定。
表4-1 梁的荷载,剪力图,弯矩图相互关系
荷
q=0
载 (无分布荷载梁段)
q>0 q<0
(均布荷载梁段)
集中力 作用处( 点)
P C
集中力偶 作用处( 点)
m C
Q图
水平线
M图
(3)支座简化——主要简化为以下三种典型支座:
(a)活动铰支座(或辊轴支座),这种支座只限制梁在 沿垂直于支承平面方向的位移,其支座反力过铰心且垂直 于支承面,用YA表示。
梁 弯矩图 梁 内力图 (剪力图与弯矩图)
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
平面弯曲—梁的内力(建筑力学)
∑M1=0 M1+FP×a=0 M1=-FP a= -100×1.5 =-150kN·m (负弯矩)
弯曲内力
(3)求2-2截面上的剪力和弯矩 ∑Fy=0 -FQ2-FP+FAy =0 FQ2=25kN (正) ∑M2=0 M2+FP×a=0 M2=-150kN·m (负)
弯曲内力
利用截面法求内力时应注意以下几点: 1)为了简化计算,通常取外力比较少的一侧来研究。 2)作所取隔离体的受力图时,在切开的截面上,未知 的剪力和弯矩通常均按正方向假定。 3)在列梁段的静力平衡方程时,要把剪力、弯矩当作 隔离体上的外力来看待。因此,平衡方程中剪力、弯矩的 正负号应按静力计算的习惯而定,不要与剪力、弯矩本身 的正、负号相混淆。
=-15×1×2.5-30×3 =-127.5kN·m
计算结果为负,说明1-1截 面上弯矩的实际方向与图中 假定的方向相反,即1-1截面 上的弯矩为负值。
弯曲内力
(2)求2-2截面上的剪力和弯矩
取2-2截面的右侧为隔离体。
∑Fy =0 FQ2-FP-q×1=0 FQ2= FP+q×1 =30+15×1=45kN (正剪力)
弯曲内力
例10-3 直接用规律求图示简支梁指定截面上的剪力和弯矩。 已知:M=8kN·m,q=2kN/m
解 (1)求支座反力 FAy=1kN(↓) FBy=5kN(↑)
(2)求1-1截面上的剪力和弯矩。
取该截面的左侧为隔离体 FQ1=-FAy =-1kN
M1=8kN·m
弯曲内力
(3)求2-2截面上的剪力和弯矩。 取该截面的右侧为隔离体
FQ2=q×2-Fby =(2×2-5)kN=-1kN
梁弯矩图梁内力图(剪力图与弯矩图)
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
.\2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
工程力学梁的内力及其求法
取梁分析,受力如图b
? MC ? 0
解得
? MB ? 0
FB
l
?
F
l 2
?
0
F FB ? ? 2
?? ?
3l , ? FC l ? F 2 ? 0
F (a) A
l/2
C l/2
F (b) A
C FC
D
B
l/2
B FB
解得
FC
?
3F 2
(2)计算D截面上的剪力 FSD和弯矩MD
? Fy ? 0 , FC ? F ? FSD ? 0
F
(a) A
CLeabharlann DB得FSD
?
FC
?
F
?
F 2
l/2
l/2
l/2
对截面D的形心O取矩
F (c) A
C
D
F SD MD
? MO ? 0,
?
FC
l 2
?
Fl
?
MD
?
0
FC
MD D
B
F SD
FB
l Fl
得
MD
? ? Fl ? FC
?? 2
4
(上侧纤维受拉)
简便法:
(1) 横截面上的剪力,在数值上等于该截面任意一侧(左侧或右侧)脱离体 上所有外力沿该截面投影的代数和。如果外力对截面有顺时针转动的趋势则为 正,反之为负。
§9-2 梁的内力及其求法
一、梁的剪力和弯矩
(a) A FA
F m
m x
l
(b) A
FS M
FA F
(c)
M
FS
梁在竖向荷载作用下,其横截面上的内力有剪 力和弯矩。
梁的内力 剪力弯矩方程 剪力弯矩图
(3)若某截面处FS=0
dF S dx
q(x)
dM dx
FS
d M dx
2
2
q(x)
则该截面上M取极值:当q>0, M取到极小值 当q<0, M取到极大值 (4)集中力F作用处,FS突变,跳跃值为F,M有尖点; q>0 q<0
集中力偶M作用处,M突变,跳跃值为M, FS不受影响。 F M
例题
例 题 2
2qa
A
§9 变形体静力学概述 及一般杆件内力分析
qa2 q
B C
解: 1.求约束力
FB q 2 a a 2 qa 3 a qa 2a 7 2 qa ( )
2
D
a
3 2 qa
FB a
a
a 2
FD
F D 4 qa
7 2
qa
1 2
qa ( )
D
FD
FD
F Ax 1 2 2 ( kN )( )
A
FAx
FAy
2m
F Ay 5 3 2 kN ( )
例题
例 题 4
5kN B
§9 变形体静力学概述 及一般杆件内力分析
4kN· m C
2.作内力图 D 3kN 轴力图: AB段 F N 2 kN
1m
1m
(F S )
1 qa
2
2.作内力图
1 2 qa
M
7 2
1 4 qa
2
B
2 qa
2
2qa (M)
qa
8
材料力学第五章梁的内力-剪力和弯矩
弯矩:M
剪力:Q
20
二、剪力和弯矩的正负号规定
①剪力Q:使研究对象有顺时针方向转动趋势的剪力为正;反 之为负。
Q(+)
Q(–)
Q(+)
Q(–)
②弯矩M:使梁变成下凸上凹形的弯矩为正;使梁变成上凸 下凹的弯矩为负。
M(+)
M(+)
M(–)
M(–)
21
[例1].已知:如图,P,a,l。
x
Q(x) RA l
(0 x a) (0 x a)
aCb
RA
Pb
Q
l
+
RB
Pa
Q(x) RB l
(a x l)
Pa M(x) RB (l x) l (l x)
(a x l)
-
x
Pa
M
l
Pab
l
从图中不难看出: 在集中力P作用处,Q图有突变,
+
且突变值等于P,M图有尖角 31
28
[例]
q
悬臂梁受均布载荷作用。
x
l
q
试写出剪力和弯矩方程,并
画出剪力图和弯矩图。
解:任选一截面x ,写出
M x
剪力和弯矩方程
x
Qx=qx
0 x l
Q
Qx
ql
M x=qx2 / 2 0 x l
依方程画出剪力图和弯矩图
x
ql2 / 2 由剪力图、弯矩图可见。最
M
ql 2 / 8
大剪力和弯矩分别为
M 集中 力偶
(2)、载荷简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:
集中力、集中力偶和分布载荷。
梁的内力图-剪力图和弯矩_OK
2021/9/10
12
2021/9/10
返回 13
返回
(2) 绘制剪力图( 图4b)。看荷载图,跟集中力、均布荷载 走,绘制过程见表4-5。
2021/9/10
14
返回
(3) 绘制弯矩图(图c)。有力偶,跟剪力图走,绘制过程 见表4-6。 (4) FS 图、M 图均自行封闭,绘图正确。
2021/9/10
2021/9/10
5
返回
记住:梁的两端无集中力偶作用,弯矩必为零。这 种通过对特定梁的内力图的讨论,探究内力图的一 般规律,并用该规律简捷绘制梁的内力图的方法, 是工作中分析问题、解决问题的一种常用方法。
三、 梁内力图的绘制
2021/9/10
6
返回
[ 观察与思考] 试根据梁内力图的规律,判别下图 所示各梁的剪 力图和弯矩图是否正确,若有错请说明原因。
通过观察本例 可以发现:因为该外伸梁结构的几何 形状、受到的竖向荷载均左右相同,具有对称性, 所以弯矩图在对称位置的弯矩数值和符号相等,具 有对称性(工程上把这种对称称为正对称),剪力 图在对称位置的剪力数值相等、符号相反,也具有 对称性(工程上把这种对称称为反对称)。土木工 程中对称结构使用非常广泛,一方面对称美符合人 们的审美要求,另一方面结构受力合理,不仅可以 简化计算,而且也可以简化设计计算和提高施工的 效率。
2021/9/10
8
返回
2. 梁内力图的绘制
例1:如图a 所示外伸梁,已知F=5 kN,q=4 kN/m,
试绘制梁的内力图。
2021/9/10
9
2021/9/10
返回 10
返回
(3) 绘制弯矩图(图c)。无力偶,跟剪力图走,绘制过程见表4-4。
梁弯曲时横截面上的内力剪力和弯矩
解 (1)求梁支座的约束力
取整个梁为研究对象,画受力图列平衡方程求解得
1 23 45
M
D
1
A
C
FAM 5 C
B
a △ △ C△ △
FB
2a
2a 2a
图7-5
∑MB( F )=0
-FA×4a-MC+q×2a×5a=0
7qa
得
FA= 4
∑Fy=0 FB+FA-q×2a=0
qa
得
FB= 4
(2)求各指定截面上的剪力和弯矩
1-1截面:由1-1截面左段梁上外力的代数和求得该截面的
剪力为
FQ1= -qa
由1-1截面左段梁上外力对截面形心力矩的代数和求得该
截面的弯矩为
M
1
qa
a 2
qa2 2
2-2截面: 取2-2截面左段梁计算,得
FQ2 q 2a 2qa
M 2 q 2a a 2qa2
M
5
F B
2a
qa2 2
由以上计算结果可以看出:
1) 集中力作用处的两侧临近截面上的弯矩相同,但剪力
不同,说明剪力在集中力作用下,产生了突变,突变的幅值
等于集中力的大小。 2)集中力偶作用处的两侧临近截面上的剪力相同,说明
弯矩在集中力偶作用下的作用截面上和集中力偶的作用截面上剪
左侧面
梁段
右侧面 左侧面
FQ
FQ
FQ
dx a)
左侧面
右侧面 左侧面
M
M
M
dx b)
图7-4
取负号。取右段梁
右侧面
FQ
为研究对象时,向
dx
梁的内力——剪力与弯矩
(b)
(a)
(c)
图5-6
由 MO 0 ,得
M F1(x a) FAx 0
M FAx F1(x a) M 称为横截面 m m 上的弯矩,它有使梁的横截面 m m 产生转动而使梁弯 曲的趋势,是与横截面垂直的分布内力系的合力偶矩。剪力 FS 与弯矩 M 是 平面弯曲时梁横截面上的两种内力。
材料力学
由平衡方程 Fy 0 ,得
FA F1 FS 0 FS FA F1
FS 称为横截面 m m 上的剪力。剪力 FS 有使 梁沿横截面 m m 被剪断的趋势,是与横截面 相切的分布内力系的合力。若把左部分上的所
有外力和内力对截面 m m 的形心 O 取矩,其 力矩总和应等于零。
当保留右部分时,如图 5-6(c)所示,同样可以求得剪力 FS 与弯矩 M 。 剪力 FS 与弯矩 M 是截面左、右两部分间的相互作用力。因此,作用于左、 右两部分上的剪力 FS 与弯矩 M 大小相等、方向相反。
计算剪力 FS 和弯矩 M 时应注意其正负号规定。
(a)
(b) 图5-7
(c)
(d)
剪力的正、负号规定为:凡使一微段梁发生左侧截面向上、右侧截面向 下相对错动的剪力为正,亦可规定为:凡作用在截面左侧向上的外力或作用 在截面右侧向下的外力,将使该截面产生正的剪力。简单概括为“左上或右 下,剪力为正,反之为负”。
(3)求 2 2 截面上的剪力 FS2 、弯矩 M2 。根据 2 2 截面右侧的外力来 计算,可得
FS2 (q 1.5 m) FB (121.5 29) kN 11 kN
M2
(q
1.5
m)
1.5 2
m
FB
1.5
m
30
kN
梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)
X2
40 kN m
A
35kN
B
FS x1 20kN
M x1 20 x1
0 x1 1 0 x1 1
1m
15
4m
2.5
25kN
FS x2 25 10 x2
25
2 x2 M x2 25 x2 10 2
20
20
kN
0 x2 4
F=8kN
2、计算1-1
截面的内力 F A
3、计算2-2
FS1
q=12kN/m
M 1 F F F 7kN S1 A M1 FA 2 F (2 1.5) 26kN m
FS2 q 1.5 FB 11kN
FB
截面的内力
M2
FS2
M 2 FB 1.5 q 1.5
M >0
M<0
剪力:使脱离体有顺时针转动趋势的剪力为正,反之为负; 弯矩:使脱离体产生向下凸变形的弯矩为正,反之为负。
6.2
例 题
试确定截面C及截面D上的剪力和弯矩
2 Fl
F
A
l
FCs
C
l
D
B
截面法求解
2 Fl
D
FCs F
C截面
F
B
M C Fl
FDs F
MC C
FDs
MD
D
l
F
B
D截面
2q1 x FA 2 x
x
l 2m a 0 .6 m
2 l a M C FA l a q
2
0
2q1 x 1.4 2 1.4 q 0 2 x 2
4 梁的内力-剪力和弯矩
FSA右
YA FSA右 0 qa 2 M A右 0
3 FSA右 YA qa 2 M A右 qa 2
YA
Y 0
FSB左
YA FSB左 0
3 FSB左 YA 2 qa M 1 qa 2 B左 2
M B 0 qa 2 YAa M B左 0
qa 2
(2)计算各截面内力 A
a YA A
qa
2
B
q C a YB
3 Y A qa 2 5 YB qa 2
MB左 B a
MB右 B
q
C
a FSB左 FSB右
Y 0
FSB右 qa 0 2
YA
A
2
A
B
3 Y A 2 qa (负号表明力方向与标注相反) 5 YB qa 2
qa 2
(2)计算各截面内力 A
a A右截面 YA
qa MA右
2
B
q C a YB
3 Y A qa 2 5 YB qa 2
A
qa
2
MB左 B a
A
YA
Y 0 MA 0
剪力:与横截面相切的 内力FS 称为横截面I―I 上的剪力。 弯矩:内力偶矩称为横 截面I―I上的弯矩。
FS
FS
剪力、弯矩的正负号规定:使梁产生顺时针转动的 剪力规定为正,反之为负;使梁的下部产生拉伸而 上部产生压缩的弯矩规定为正,反之为负。
FS
FS
FS
FS
【例题4.1】 外伸梁如图所示, 已知均布荷载q 和集 中 力 偶 M =qa2, 求指定截面1—1、2—2、3—3 的内 力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 梁的内力——剪力和弯矩
例 计算横截面E、横截面A+与 D-的剪力与弯矩。
FAy 2F FBy 3F
解:
F
y
0, FSE FAy 0
FSE FAy 2F
l M E M e FAy 0 2
l M 0 , M F E Ay M e 0 C 2
4.2 梁的内力——剪力和弯矩
4.2.1 截面法求梁的内力
FS-剪力 M-弯矩
剪力-作用线位于所切横截面的内力 弯矩-矢量位于所切横截面的内力偶矩
4.2 梁的内力——剪力和弯矩 符合的规定:
使微段沿顺时针方 向转动的剪力为正
使微段弯曲呈凹 形的弯矩为正
使横截面顶部受 压的弯矩为正
4.2 梁的内力——剪力和弯矩
4.1 工程实际中的受弯杆
4.1.1 梁的受力与变形特点 1. 受力特征 外力的作用线垂直于杆轴线(即横向力)或外力 偶位于轴线平面内。 2. 变形特征 变形前为直线的轴线,变形后成为曲线。这种变 形形式称为弯曲。 凡是以弯曲变形为主要变形的杆件称为梁。
4.1 工程实际中的受弯杆
4.1.2 平面弯矩的概念 工程中常见梁的横截面 往往至少有一根纵向对称轴, 该对称轴与梁轴线组成一全 梁的纵向对称面,当梁上所 有外力(包括荷载和反力)
均作用在此纵向对称面内时,
梁轴线变形后的曲线也在此 纵向对称面内,这种弯曲称
为平面弯曲。
4.1 工程实际中的受弯杆
4.1.3 梁的简化——计算简图的选取
(1) 梁的简化 通常取梁的轴线来代替梁,梁的长度称为跨度。。
1.弯曲变形和平面弯曲 A B
q
A B
4.1 工程实际中的受弯杆
(2)载荷类型:集中力、力偶、分布载荷 (3) 支座的类型
剪力与弯矩计算
FS-剪力 M-弯矩
Fy 0 , FAy F1 FS 0
故 FS FAy F1 故 M FAybF1 ( ba )
n i 1
M C 0,
M F1 ( b a ) FAyb 0
FS ( Fi )一侧
i 1 n
M ( mCi )一侧
4.3 剪力图与弯矩图
例 4.3 建立剪力与弯矩方程,画剪力与弯矩图
FAy bF l FBy aF l
解:1. 支反力计算 2. 建立剪力与弯矩方程
AC 段 bF FS1 FAy , (0 x1 a ) l bF M 1 FAy x1 x1 , (0 x1 a ) l CB 段 aF FS2 FBy , (0 x2 b ) l aF M 2 FBy x2 x2 , (0 x2 b ) l
在保留梁段上,方向与切开截面正 FS 相反 的外力为正,与正 M 相反的外力偶矩为正
4.2 梁的内力——剪力和弯矩
计算方法与步骤
假想地将梁切开,并任选一段为研究对象
画所选梁段的受力图,FS 与 M 宜均设为正
由 SFy = 0 计算 FS 由 SMC = 0 计算 M,C 为截面形心
FSA FAy 2F
M A M e FAy Δ Fl
FSD F
M D F 00
4.2 梁的内力——剪力和弯矩
4.2.2 直接由外力求截面内力的法则
1.剪力
FS
i i 1左(右)
F
n
即:某截面的剪力等于该截面以左(或右)所有横向外力 的代数和。 如取左侧段梁,则向上的 力为正,向下的力为负; 左上右下为正
以平行于梁轴的横坐标x表示横截面的位置,以纵
坐标表示相应截面上的剪力和弯矩.这种图线分别称为 剪力图和弯矩图
4.3 剪力图与弯矩图 三、作图步骤
1 求支反力: 2 找控制面将梁分段 1、集中力作用点两侧截面
2、集中力偶作用点两侧截面
3、均布荷载起始和终点处截面
建立坐标系.剪力图纵坐标以向上为正;弯矩图纵坐标在 3 机电类中常以向上为正,在土建类中常以向下为正。 4 由前述“直接由外力求截面内力的法则”计算剪力、弯矩
第4章 梁的内力——剪力和弯矩
4.1 工程实际中的受弯杆 4.2 梁的内力——剪力和弯矩 4.3 剪力图与弯矩图 4.4 荷载、剪力和弯矩间的关系 4.5 按叠加原理作剪力图和弯矩图
4.1 工程实际中的受弯杆 一、实例
4.1 工程实际中的受弯杆
4.1 工程实际中的受弯杆
4.1 工程实际中的受弯杆
为正,逆时针的外力偶为负
如取右侧梁段:则逆时针转向的外力偶 为正,顺时针的外力偶为负
左顺右逆为正
4.3 剪力图与弯矩图 一、剪力方程和弯矩方程
用函数关系表示沿梁轴线各横截面上剪力和弯矩
的变化规律,分别称作剪力方程和弯矩方程.
1.剪力方程 FS= FS(x) M= M(x)
2.弯矩方程
二、剪力图和弯矩图
可动铰支座,垂直于支承平面的支反力 FR
固定铰支座,支反力 FRx 与 FRy 固定端,支反力 FRx , FRy与矩为 M 的支反力偶
4.1 工程实际中的受弯杆
4.1.4 梁的基本形式 常见静定梁
简支梁:一端固定铰支、另一端可动铰支的梁 悬臂梁:一端固定、另一端自由的梁 外伸梁:具有一个或两个外伸部分的简支梁 静不定梁 约束反力数超过有效平衡方程数的梁
4.3 剪力图与弯矩图
(2)列出剪力方程和弯矩方程: 以左端A为原点,并将x表示在图上。
ql qx 0 x l 2 x ql qx 2 M x YAx qa x 0 x l 2 2 2 Q ( x) F YA qx S
(3)作剪力图和弯矩图
如取右侧段梁,则向上的
力为负,向下的力为正。
4.2 梁的内力——剪力和弯矩
2.弯矩
n m
M
Fi ai M k i 1 左(右) k 1 左(右)
即某截面的弯矩等于该截面以左(或右)外力对所求截面处 形心的力矩之和。 不论取左侧或右侧梁,所有向上的外力 的力矩为正,而向下的外力的力矩为. 如取左侧梁段:则顺时针转向的外力偶
5 由剪力FS(x)和弯矩M(x)的表达式按比例作图。
4.3 剪力图与弯矩图
例4.2 作图4-9(a)所示简支梁受均布荷载的剪力图和弯矩图。
q=56.9kN/m A B
( )
YA
YB
解 (1)求支座反力
( )
ql 2
YB 2
( )
ql 2 =177.5kN