网格絮凝池及设计计算审批稿

合集下载

折板絮凝池设计与计算书

折板絮凝池设计与计算书

折板絮凝池设计与计算絮凝池分为4个 1、 设计参数(1)设计水量)%6(700003算水厂自用水量按dm Q =(2)絮凝时间min 12=t(3)水深m H 5.4= 2、设计与计算(1)每个絮凝池流量h m d m Q 3392.77218550406.170000==⨯= (2) 每个絮凝池容积358.154601292.77260m Qt W =⨯==(3)每个池子面积235.345.458.154m H W f ===(4)每个池子净宽为了与沉淀池配合,絮凝池净长度m L 8.4\=,则池子净宽度 m Lf B 2.78.435.34\===(5)絮凝池的布置絮凝池的絮凝过程分为三段:第一段s m v 3.01=第二段s m v 2.02=第三段sm v 1.03=将絮凝池分为六格,每格的净长度为0.8m ,每两格为一絮凝段,第一、二格采用单通道异波折板,第三、四格采用单通道同波折板,第五、六格采用直板(6)折板尺寸及布置折板采用钢丝水泥板,折板宽度为0.5m ,厚度为0.035m ,折角90°,折板净长度0.8m 。

(7)絮凝池长度L 和宽度B 考虑折板所占宽度为m 04.060sin 035.0=ο,絮凝池的实际宽度取m B 32.7= 考虑隔板所占长度为0.2m ,絮凝池实际长度取5.8m ,超高0.3m 。

(8)各格折板之间的间距及实际流速 第一、二格m L v Q b 89.036008.03.092.77211=⨯⨯== 取0.90m 第二、三格m L v Q b 34.136008.02.092.77222=⨯⨯==取1.35m 第四、五格m L v Q b 68.236008.01.092.77233=⨯⨯=== 取2.65m s m 17.036008.06.192.772b 1≈⨯⨯==LQ v 谷实谷s m 30.036008.090.092.772b 11=⨯⨯==L Q v 实峰s m 20.036008.035.192.772b 22=⨯⨯==L Q v 实s m 11.036008.065.292.772b 33=⨯⨯==L Q v 实(9)水头损失h第一、二格采用单通道异波折板 j j h h h n h nh h ++=+=∑)(21gv v h 222211-=ξ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=g v F F h 212122122ξgv h j 2223ξ=式中 h ∑——总水头损失,mh ——一个缩放的组合水头损失,m j h ——转弯或空洞的水头损失,m n ——缩放组合的个数21,h h ——渐放段和渐缩段的水头损失,m 21,ξξ ——渐放段和渐缩段的阻力系数 21,F F --------相对峰和谷的断面面积,m 2 21,v v ——峰速和谷速,m/s0v ---------转弯或孔洞处流速,m/s 3ξ----------转弯或空洞的阻力系数 计算如下:①第一格通道数为4,单通道的缩放组合的个数为4个,1644=⨯=n 个②1.0,5.021==ξξ 上转变8.13=ξ,下转变成孔洞0.33=ξ ③s m v 3.01=④sm v 17.02=⑤2172.08.090.0m F =⨯=⑥[]2228.18.0)35.02(90.0m F =⨯⨯+= ⑦上转弯、下转弯各2次,取转弯高为1m s m v 27.018.0360092.7720=⨯⨯=⑧渐放段水头损失 m g v v h 322222111056.181.9217.03.05.02-⨯=⨯-⨯=-=ξ⑨渐缩段水头损失m gv F F h 32221221221059.381.923.028.172.01.0121-⨯=⨯⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=ξ⑩转弯或空洞的水头损失 m g v h j 0357.081.9227.0)0.38.1(2222203=⨯+⨯=⨯=ξm h h h n h nh h j j 12.01057.3)1059.31056.1(16)(23321=⨯+⨯+⨯=++=+=∑---第二格的计算同第一格第三格为单通道同波折板j j h gv n h nh h +=+=∑22式中 ξ——每一转弯的阻力系数 n ——转弯的个数 v ——板间流速,m/s 计算如下①第三格通道数为4,单通道转弯数为7,n=4*7=28个 ②折角为90°,6.0=ξ ③sm v 20.0=m h g v n h nh h j j 093.01057.381.9220.0282222=⨯+⨯=+=+=∑- 第四格的计算同第三格 第五格为单通道直板gv n nh h 22==∑式中 ξ——每一转弯的阻力系数 n ——转弯的个数 v ——平均流速,m/s 计算如下:①第五格通道数为3,两块直板180°,转弯次数n=2,进口、出口孔洞2个②180°转弯3=ξ,进出孔口6.1=ξ ③sm v 11.0=m g v n nh h 006.081.9211.0)6.13(2222=⨯+⨯===∑ (10)絮凝池的各段停留时间 第一、二格水流停留时间: s Q V V t b 00.121215.0248.05.0035.05.432.78.011=⨯⨯⨯-⨯⨯=-=第三、四格时间均为s t 00.1212= 第五、六格水流停留时间; s Q V V t b 66.121215.028.05.3035.05.432.78.013=⨯⨯⨯-⨯⨯=-=(11)絮凝池各段的G 值 tgh G μρ1=水温C T 020=, Pa 3101-⨯=μ 第一段(异波折板)13164.98200.121101212.081.91000--=⨯⨯⨯⨯⨯⨯=s G 第二段(同波折板) 13203.86200.1211012093.081.91000--=⨯⨯⨯⨯⨯⨯=s G 第三段(直板) 13200.22266.1211012006.081.91000--=⨯⨯⨯⨯⨯⨯=s G 絮凝的总水头损失219.0=∑h ,絮凝时间min 12.1232.727==s t 431023953032.72732.727101219.081.91000⨯>=⨯⨯⨯⨯⨯=∑=-t t h g GT μρ斜管沉淀池 1、 设计参数采用4个池子,每个设计水量是0.2153m /s , 表面负荷q=10 m/(m ³/h)=2.8mm/s采用上向流斜管沉淀池,水从斜管底部流入,沿管壁向上流动,上部出水,泥渣由底部滑出。

絮凝反应池网格设计计算书

絮凝反应池网格设计计算书

絮凝反应池网格设计计算书一、设计原则要求(1)网格絮凝池流速一般按照由大到小进行设计。

(2)反应时间10~30min,平均G 值20~70s ,GT 值10~105 ,以保证絮凝过程的充分和完善。

(3)为使絮粒不致被破坏或产生沉淀,絮凝池内流速必须加以控制,控制值随絮凝池形式而异。

(4)絮凝池内的速度梯度G由进口至出口逐渐减小,G值变化范围100~15110。

s-以内,且GT 2×4二、本絮凝池设计水量为100000t/d,厂区自用水量为7%,分2座,每座絮凝池=100000(1+0.07)/2=535000t/d=2229t/h=0.619m³/s。

单组分2组。

则Q总流量为0.619/2=0.3095m³/s=0.31 m³/s。

三、竖井隔墙过孔流速的计算如下表(以施工图标注尺寸为据)四、内部水头损失计算1-10格为前段,其竖孔之间孔洞流速为0.32-0.25m/s,过网流速为0.3038m/s,(0.3113)。

网格孔眼尺寸采用45 mm×45 mm或80 mm×80 mm两种规格进行计算比较,开孔比均约为39.4%,(38.45%);该段水头损失约为0.3056 m,(0.31277);G值约为92.724 s,(93.81).11-20格为中段,其竖孔之间孔洞流速为0.2-0.15m/s,过网孔流速为0.21233m/s。

网格孔眼尺寸采用105 mm×105 mm,开孔比均约为52.14%;该段水头损失约为0.084646 m;G值约为48.01 s.21-30格为后段,其竖孔之间孔洞流速为0.14-0.11m/s,不需设置网格。

该段水头损失约为0.026454 m;G值约为25.86 s.整个絮凝反应池的水头损失合计约为0.4167 m,(0.42387);平均G值约为61.04s,(61.57);GT=67922,(68504.2);符合设计条件要求。

网格絮凝池设计计算

网格絮凝池设计计算

网格絮凝池设计计算一、已知条件设计规模:处理水量为60000t/d二、已知水质条件常年平均浊度:60NTU 常年平均水温:16℃三、网格絮凝池的设计计算由已知水质条件,常年平均浊度为60度,常年平均水温为16℃,符合网格絮凝池的使用条件:原水水温为:4.0~34.0℃ 原水浊度为:25~2500度以此,此水质可以使用网格絮凝池对原水絮凝。

3.1 设计处理水量Q :)1(1ξ+⨯=Q Q 式中:Q :设 计处理流量(m ³/d) 1Q :设计规模(m ³/d)ζ:水厂的自用水系数,一般取:5%~10%,设计中取对于一般的水厂取5%,本设计采用5%。

则设计处理水量Q 为:s m h m d m Q Q /729.0/2625/63000)05.01(60000)1(3331===+⨯=ξ+⨯=3.2 单池设计处理水量2Q : NQQ =2 式中: Q :设计处理流量(m ³/d) 2Q :单池设计流量(m ³/d)N :絮凝池的数量,本设计取N=2则单池设计处理流量2Q 为:s m h m d m Q /365.0/5.1312/315002630003332====3.3 絮凝池的有效容积V :602TQ V =式中: 2Q :单池设计处理流量(m ³/h)T :絮凝时间(min),按《室外给水设计规范》(GB50013-2006)要求,絮凝时间一般宜为12~20min ,用于处理低温低浊水时,絮凝时间可适当延长。

本设计中采用16min 则: 3235060165.131260m T Q V =⨯== 3.4 絮凝池的面积A :'H VA =式中: V :单池的有效容积(m ³)H ’:有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0~3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。

本设计考虑使用斜管沉淀池,因此采用4.2m 。

网格絮凝斜管沉淀池计算案例

网格絮凝斜管沉淀池计算案例
0.070
0.013
.

0.10
.
.
i=
槽内起点水深:h1=ℎ
0.040m2
.
0.152
51.41
0.00048
.
0.00048
5.3
0.10
超负荷 30%时出水槽内流量 Q=0.01215×1.3=0.01579m3/s,集水总槽内流速
取 0.3m/s,槽宽 b=0.2m。
.
槽内终点水深:h4=
池子总高度为:0.3+1.5+1.5+0.6+0.87=4.8m。
(3)参数复核
1)雷诺数:
水力半径 R=d/4=30/4=7.5mm
运动粘度=0.01cm2/s(t=20℃)
Re=0.75*0.2/=0.75*0.2/0.01=15
2)沉淀时间:
T=l/ =1000/2.373=421s=7.02min
絮凝池的反应过程共分为三段,第一段放置密型网格,过栅流速设置为
0.25m/s,第二段放置疏型网格,过栅流速设置为 0.22m/s,第三段放置栅条。第
一段过孔流速为 0.3~0.2m/s,第二段过孔流速为 0.2~0.15m/s,第三段过孔流速为
0.15~0.1m/s。
以下为絮凝过程中不同段的竖井隔墙上孔洞尺寸及过孔流速,共 15 个竖井,
(4)排水渠计算
集水槽坡降为 0.15,水面坡降为 0.035m。
排水渠底的标高在集水槽的基础上降低 0.2m,宽度设置为 0.4m。
七、排泥方式及计算
沉淀池日排泥量为 472.23m3/d,则每小时为 19.68m3/h。设置每小时排泥一
次。设置排泥管的管径为 DN200mm,管道横截面为 0.0314 m2,穿孔管长度为

网格絮凝池计算书

网格絮凝池计算书

③网格总水头损失为∑h总0.18m (13)过水洞水头损失第一档单格过水洞水头损失h1=0.0096m 第一档内通过孔洞的总水头损失为∑h1=0.1147第二档单格过水洞水头损失h2=0.0044m 第二档内通过孔洞的总水头损失为∑h2=0.0530第三档第一种孔洞单格过水洞水头损失h3=0.0015m 第三档第二种孔洞单格过水洞水头损失h4=0.0015m 第三档第三种孔洞单格过水洞水头损失h5=0.0015m 第三档第四种孔洞单格过水洞水头损失h6=0.0015m 第五档内通过孔洞的总水头损失为∑h5=0.0122过水洞总数头损失为∑h总0.18m (14)GT 值校核絮凝池总水头损失为h0.36m G 值计算式为50.89s -1GT=69166.56满足要求设计采用的排泥管管径为DN150mm(15)污泥斗尺寸:每个网格配一个泥斗,泥斗上部尺寸1100×1100mm×mm泥斗深h1.00m (16)絮凝池尺寸8.9×6.3m×m二、斜管沉淀池计算1、已知条件设计用水量Q=437.50m 3/h=0.12m 3/s液面上升流速v= 2.00mm/s 颗粒沉降速度u 0=0.40mm/s 采用蜂窝六边形塑料斜管,板厚b=0.40mm 管的内切圆直径d=32.00mm 斜管倾角60.00°沉淀池有效系数φ=0.952、设计计算(1)清水区净水面积A`=Q/v60.76m 2 (2)斜管部分面积A=A/φ63.96m 2沉淀池中间设置一道宽350mm 的隔墙,底端与斜管底端水平,顶端与集水槽底端相平,尺寸为8900x350x1790mm×mm×mm 斜管部分平面尺寸:宽度B`=7.20m ,长度L`=8.90m则斜管面积为A=64.08m 2 (3)进水方式由边长一侧流入,该边长度与絮凝池宽度相同L=8.90m(4)管内流速v2.31m 考虑到水量波动,设计采用v 0= 2.50mm/s (5)管长l①有效管长l 476.57mm ②过渡段长度l `=250.00mm ③斜管总长L =l+l`726.57mm ④取斜管总长L`=1000.00mm (6)池长调整B=9.40m 斜管支承系统采用钢筋混凝土柱、小梁及角钢架设 (7)管内沉淀时间t=400.00s= 6.67min①超高h1=0.80m ②清水区高度h2= 1.00m ③斜管区高度h3=0.87m ④配水区高度(按泥槽顶计算)h4= 1.78m ⑤排泥桁车排泥,排泥高度h 5=0.75m ⑥有效池深H`=h2+h3+h4= 3.65m ⑦滤池总高H=h1+H`+h5=5.20m (8)进口配水采用穿孔墙配水,进口流速为v=0.07m/s 墙长L=7.20m 进口孔眼总面积s= 1.74m 2设置进口边长0.15m的方形喇叭孔眼,孔眼个数n=77.16个,约为78个出口流速为v`=0.05m/s=θdu u v o θθcos sin 33.100-=。

网格絮凝—平流沉淀池与清水池叠合工艺设计总结

网格絮凝—平流沉淀池与清水池叠合工艺设计总结

网格絮凝—平流沉淀池与清水池叠合工艺设计总结近年来,网格絮凝技术在国内外受到广泛关注,并得到了长足发展。

网格絮凝技术是一种运用固定网格、旋流器等复杂结构,采用水流磨损的方式对污水中的污染物进行处理,从而达到污染物的减量控制和标准排放的理念。

网格絮凝技术具有较强的污染物去除能力,尤其是对低浓度悬浮性污染物能够达到良好的去除效果,所以它在污水处理和资源化利用方面具有一定的重要意义。

结合实际应用,本文介绍了采用网格絮凝技术的平流沉淀池和清水池叠合工艺的设计总结,具体包括了技术原理、组成及结构示意图、叠合工艺分析和设备参数,以及运行调试记录等。

以此可以从多个方面对网格絮凝技术进行简要总结,帮助有需要的人更好地理解并使用网格絮凝技术。

一、技术原理网格絮凝技术是一种高效、经济、优良的污水处理技术,主要是通过在污水处理池中安装一定网格和旋流器,使污水形成自然旋流,污染物在动态流动中沉积,从而达到有效的去除。

网格絮凝技术和其他污水处理技术相比,除了有比较高的污染物去除效率外,同时还具有可操作性强、投资少、安装快、维护简便、运行工况稳定等特点,常用于处理悬浮性污染物,也可用于处理有机物、氮磷钝化物及某些分子量较大的有机物。

二、组成及结构示意图网格絮凝池的组成主要包括水入口、水出口、定位螺旋槽、螺旋回流段、螺旋槽室、旋流器系统、网格室等部分。

其结构示意图如图1所示,定位螺旋槽及旋流器系统是网格絮凝技术的两个主要组成部分,它们分别起到了在网格絮凝技术中的动静力效应及获得自然旋流的作用,从而促进污染物的沉积。

三、叠合工艺分析采用叠合工艺来实现网格絮凝技术,其工艺分析如下:(1)水入口和污水处理池:首先,将污水通过水入口进入污水处理池,利用水流的动力,将污染物均匀地分散在池水中,从而减少其污染物的沉积;(2)定位螺旋槽:定位螺旋槽是整个叠合工艺中最重要的部分,它通过定位螺旋槽的螺旋段,将污水按照一定的旋流路径进行运动;(3)旋流器系统:旋流器系统起到了获得自然旋流的作用,从而促进污染物的沉积和去除;(4)网格室:网格室起到了阻挡悬浮物的作用,从而达到有效的污染物去除。

网格絮凝池设计计算

网格絮凝池设计计算
h =0.120+0.117=0.237m
停留时间t = =307.63s
水温20℃
G = = =86.53
(2)中段
h =0.026+0.045=0.071m
停留时间t = =246.10s
G = = =52.95
(3)后段
h =0.019m
t =922.89-307.63-246.10=368.16s
0.24
0.22
0.22
格编号
13
14
15
16
17
18
孔洞高×宽
1.60×1.86
1.60×1.86
1.90×1.86
1.90×1.86
2.28×1.86
2.28×1.86
流速
0.20
0.20
0.18
0.18
0.16
0.16
格编号
19
20
21
22
23
24
孔洞高×宽
2.56×1.86
2.56×1.86
本设计前段设置3层网格,中段设置两层网格,末端不设。
水流经过每个的竖井流速v 取0.12 m/s,由此得单格面积:
f=Q/ v =0.0563/0.12=0.47 m
设计单格为正方形,边长采用0.7m,因此实际每格面积为0.49 m ,由此得到分格数为n=15.01/0.49=30.6格。为方便施工,取格数为30格。
1.3 网格絮凝池设计计算
3.5.2 设计参数
絮凝池设计(近期)2组,每池设计流量为:
Q= m /d=0.0563 m /s。
絮凝时间t=16min,设计有效水深h=3.6m。
3.5.3 设计计算
絮凝池的有效容积V:V=Qt=0.0563×16×60=54.048 m

网格絮凝池设计计算

网格絮凝池设计计算

网格絮凝池设计计算一、 已知条件设计规模:处理水量为60000t/d二、 已知水质条件常年平均浊度:60NTU 常年平均水温:16C三、 网格絮凝池的设计计算由已知水质条件,常年平均浊度为 60度,常年平均水温为16C ,符合网格 絮凝池的使用条件:原水水温为:4.0〜34.0C 原水浊度为:25〜2500度以此,此水质可以使用网格絮凝池对原水絮凝。

3.1设计处理水量Q :Q =Q i (1)式中:Q :设计处理流量(m3d )Q i :设计规模(m3d )I 水厂的自用水系数,一般取:5%〜10%,设计中取对于一般的 水厂取5%,本设计采用5%。

则设计处理水量Q 为:•3 3 3Q =Q i (1) =60000 (1 0.05) = 63000m /d=2625m /h =0.729m /s3.2单池设计处理水量Q 2 :Q 2:单池设计流量(m3d )式中: Q :设计处理流量(m3d )Q 2NN :絮凝池的数量,本设计取N=2则单池设计处理流量Q 2为:63000 333Q 231500m 3/d =1312.5m 3/h =0.365m 3/s23.3絮凝池的有效容积V :60式中: Q2 :单池设计处理流量(m^h )T :絮凝时间(min ),按《室外给水设计规范》(GB50013-2006)要 求,絮凝时间一般宜为12〜20min ,用于处理低温低浊水时,絮凝时间可 适当延长。

本设计中采用16mi n3.4絮凝池的面积A :式中: V :单池的有效容积(m3H':有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0〜3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。

本设计考虑使用斜管 沉淀池,因此采用4.2m 。

则:A = — 350 = 83.33m 2H' 4.2 3.5絮凝池的池高H :H=H +h+ h式中:H':絮凝池的有效水深(m )h :絮凝池的超咼(m ),—般取0.3m h '泥斗的高度,取0.6m则: H=H +h + h' = 4.2+0.3+0.6= 5.3m 3.5絮凝池的分格面积f :式中:f :絮凝池的分格面积(m2则:601312.5 1660= 350m 3A =—H'Q■. o :竖井流速(m/s ),按《室外给水设计规范》(GB50013-2006)要求,絮凝池每格的竖井流速为:前段和中段为: 0.12〜0.14m/s ;末端为:0.1〜 0.14m/s 。

网格絮凝池与改型网格絮凝池的工艺设计探讨

网格絮凝池与改型网格絮凝池的工艺设计探讨

( 略) 后
3 设计理论依据
31 新建网格絮凝池设计理论依据 《 . 给水排水工
32 改造 网格絮凝池设计理论依据 《 . 给水排水工
程快速设计手册》 中网格絮凝池的设计要求
( 絮凝时间一般为 1 一5 m n 1 ) O 1 i;
程快速设计手册》 中改型网格絮凝池的设计要求 (全池分为尺寸相同的 3 6 1 ) - 格。
h rci l n ne n f c n t oy ds c tr n o a c ocln od a te pat a e g er g eeti eter ei re o flt e f cuetp nat e f c ue tp n . df d ltc o c ln o d i i l
【 要】 结合工程设计实践与实际运行效果的对比, 摘 对网格絮凝池与改型网格絮凝池理论设计规范中
的设计要求与实际工程效果之间的差距提出探讨 。
【 关键词】网格絮凝; 网格絮凝池; 絮凝时间; 流速激 果 【 中圈分类 ̄]Q 8 T 05 【 文献标识码】B 【 文章编 ̄ ]0666 (060-040 - 0-7 420 )4 06-3 1 -
( 絮凝 时间 4 1 a , 2 ) - 0 r n 一般 取 6 8 mn 流量 i — i,
( 絮凝池分格大小按竖向流速确定 ; 2 ) (絮凝池分格数按絮凝时间计算 , 3 ) 多数分成 8 1 格; 8 可大致按分格数均分成 3 , 中前段各格 段 其 为 3 5m n 中段 3 5 m n末段 4 5m n — i, — i, — i;
【 b ta t I c od n e wt o p r o fte e gn e n ein a d te pa t a A s c 】 n acra c i c m ai n o h n ier g d s n rc cl r h s i g h i

网格絮凝池设计计算(水厂)

网格絮凝池设计计算(水厂)

设计计算一、已知条件水厂的设计规模为220003m /d ,自用水系数为10%,絮凝池分为两组,则每组的设计规模为:33322000 1.1/212100m /d 504.167m /h 0.140m /s ⨯===絮凝时间:15min T =絮凝池分为三段,前段放密网格,过网流速1=0.25m/s v 网,竖井平均流速1=0.13m/s v 井,絮凝时间14min t =;中段放疏网格,过网流速2=0.22m/s v 网,竖井平均流速2=0.13m/s v 井,絮凝时间24min t =;末端不放网格,竖井平均流速3=0.12m/s v 井,絮凝时间35min t =。

二、设计计算1、每组絮凝池设计流量:33322000 1.1/212100m /d 504.167m /h 0.140m /s Q =⨯===2、 絮凝池容积W :30.01401360109.2m W Q T =⨯=⨯⨯=3、 絮凝池平面面积A :絮凝池的有效水深=4.1m H 有效,则2/=26.634m A W H =有效一阶段絮凝池单个竖井的平面面积2/0.140/0.13 1.077m f Q v ===井,取竖井平面为正方形,则一阶段单个竖井边长为 1.04m L ==,取 1.1m L =则单个竖井的实际面积为2' 1.21m f =。

二阶段絮凝池单个竖井的平面面积2/0.140/0.13 1.077m f Q v ===井,取竖井的平面为正方形,则二阶段单个竖井边长 1.04m L ==,取 1.1m L =则单个竖井的实际面积为2' 1.21m f =。

三阶段絮凝池单个竖井的平面面积2/0.140/0.12 1.167m f Q v ===井,取竖井的平面为正方形,则二阶段单个竖井边长21.04m=1.08m L =,取1.1m L =则单个竖井的实际面积为2' 1.21m f =。

4、竖井的个数:一阶段竖井个数11/'0.140604/(1.21 4.1) 6.9n A f ==⨯⨯⨯=,取为7个 二阶段竖井个数22/'0.140604/(1.21 4.1) 6.9n A f ==⨯⨯⨯=,取为7个 三阶段竖井个数33/'0.140605/(1.21 4.1)8.7n A f ==⨯⨯⨯=,取为8个 校核:一阶段絮凝池实际絮凝时间1 1.217 4.1/(0.14060) 4.13min T =⨯⨯⨯= 二阶段絮凝池实际絮凝时间2 1.217 4.1/(0.14060) 4.13min T =⨯⨯⨯= 三阶段絮凝池实际絮凝时间1 1.218 4.1/(0.14060) 4.72min T =⨯⨯⨯= 总絮凝时间:12312.98min T T T ++=5、竖井网格的布置选用塑料斗状网格,断面为倒V 型。

设计计算说明书(絮凝池) - 副本

设计计算说明书(絮凝池) - 副本

絮凝池设计计算
絮凝:完成凝聚的胶体在一定的外力扰动下相互碰撞、聚集,以形成较大絮状颗粒的过程。

絮凝设备的基本要求是,原水与药剂经混合后,通过絮凝设备应形成肉眼可见的大的密实絮凝体。

絮凝池形式较多,概括起来分成两大类:水力搅拌式和机械搅拌式,水力搅拌式又分为隔板絮凝池和折板絮凝池。

各种絮凝池对比如下:
本厂每套系统设计水量为3.5万吨,若设计成隔板絮凝池为了满足起端流速的设计要求隔板之间净距将小于0.5m,不便于施工和检修;网格(栅条)絮凝池单池能力以1.0 ~2.5万m3/d为宜;机械絮凝池更适合于大型水厂使用且造价较高,综上所述,从技术性和经济性考虑使用折板絮凝池。

絮凝池设计计算方案

絮凝池设计计算方案

絮凝池设计计算方案絮凝池是水处理工艺中的重要组成部分,其设计计算方案对于提高水处理效果、降低能耗和减少维护成本具有重要意义。

本文将介绍絮凝池的设计计算方案,包括絮凝池的构造、设计参数、絮凝动力学模型以及实际工程中的应用案例。

一、絮凝池构造絮凝池通常采用平推流式或竖流式构造,其中平推流式构造更为常见。

絮凝池由入口段、反应段和出口段组成。

入口段的作用是降低水流速度,使水流能够充分混合;反应段是絮凝池的核心部分,用于完成絮凝过程;出口段则需对絮凝效果进行检测,确保出水质量符合要求。

二、设计参数1.水力停留时间:水力停留时间是絮凝池设计的重要参数之一,它决定了水流在絮凝池中的停留时间。

停留时间过短会影响絮凝效果,过长则会导致能耗增加。

通常根据实际工程经验确定水力停留时间。

2.池体尺寸:池体尺寸主要由水力停留时间和流量决定。

反应段的长度通常在10~20倍水力半径范围内,水力半径可通过经验公式计算得到。

3.流量:流量是絮凝池设计的基本参数之一。

根据原水水质和处理要求,确定合适的流量。

4.混合强度:混合强度决定了原水在进入絮凝池后的初始混合效果。

混合强度过高会导致能耗增加,过低则会影响后续絮凝效果。

三、絮凝动力学模型絮凝动力学模型是预测絮凝过程的重要工具。

该模型基于微粒生长动力学理论和实验研究,可对絮凝过程进行定量描述。

常用的絮凝动力学模型包括:1.微粒生长动力学模型:该模型认为絮凝过程是由微粒生长引起的,微粒生长速率与微粒的碰撞频率成正比。

2.碰撞效率模型:该模型认为絮凝效率取决于微粒的碰撞效率。

碰撞效率与微粒尺寸、流速和混合强度等因素有关。

3.动力学方程:动力学方程描述了絮凝过程中微粒浓度的变化规律。

常用的动力学方程包括Richardson-Zaki方程、Laplace方程等。

四、实际工程中的应用案例1.某城市污水处理厂采用平推流式絮凝池,设计流量为1000m³/h,水力停留时间为15min。

入口段设有均匀布水装置,使水流能够充分混合。

网格絮凝池及设计计算

网格絮凝池及设计计算

网格(栅条)絮凝池网格絮凝池的二平面布置和穿孔旋流絮凝池相类似,由多格竖井串联而成.絮凝池分成许多面积相等的方格,进水水流顺序从一格留到下一格,上下对焦交错流动,直到出口。

一、使用条件1.原水水温为4。

0~34.0℃、浊度为25~2500度.2.单池处理的水量以1~2。

5万m³/d较合适,以免因单格面积过大而影响效果。

水厂产水量大时,可采用2组或多组池并联运行。

采用网格或栅条的絮凝池效果相接近,但栅条加工比较方便,用料也省。

3.适用于新建也可用于旧池改造.二、设计要求1.絮凝时间一般为10~15min;2.絮凝池分隔大小按竖向流速确定;3.絮凝池分格数按絮凝时间计算,多数分成8~18格:可大致按分格数均分成3段,其中前段各格为3~5mim,段端3~5min,末段4~5min;4.网格或栅条数前段较多,中断较少,末段可不放,但前段总数宜在16层以上,中断在8层以上上下两层间距为60~70cm;5.每格的竖向流速,前段和中段0。

12~0。

14m/s,末段0。

1~0。

14m/s;6.网格或栅条的外框尺寸等于每格池的净尺寸。

前段栅条缝隙为50mm,或网格孔眼为80×80mm,中段分别为80mm和100×100mm;7.各格之间的过水孔洞应上下交错布置,孔洞计算流速,前段0。

3~0。

2m/s,,中段0。

2~0.15m/s,末段0。

1~0。

14m/s,各过水孔面积从前段向末段逐步增大。

所有过水孔须经常处于淹没状态,因此上部孔洞标高应该考虑沉淀池水位变化时会不会露出水面;8.网孔或过栅流速,前段0。

25~0。

30m/s,中段0.22~0。

25m/s;9.一般排泥可用长度小雨5m、直径150mm~200mm的穿孔排泥管或单斗底排泥,采用快开排泥阀;10.网格或栅条材料不可用木料、扁钢、钢筋混凝土预制件等.木板条厚度20~25mm,钢筋混凝土预制件厚度30~70mm。

三、计算网格絮凝池计算公式如下表网格絮凝池计算公式表【例】网格絮凝池计算.设计规模为6000m³/d,絮凝池分两组,可以单独工作. 【解】设水厂自用水量为5%,则设计流量为:Q=6000×1。

网格絮凝池设计计算

网格絮凝池设计计算

网格絮凝池设计计算一、已知条件设计规模:处理水量为60000t/d二、已知水质条件常年平均浊度:60NTU 常年平均水温:16℃三、网格絮凝池的设计计算由已知水质条件,常年平均浊度为60度,常年平均水温为16℃,符合网格絮凝池的使用条件:原水水温为:4.0~34.0℃ 原水浊度为:25~2500度以此,此水质可以使用网格絮凝池对原水絮凝。

3.1 设计处理水量Q :)1(1ξ+⨯=Q Q 式中:Q :设 计处理流量(m ³/d) 1Q :设计规模(m ³/d)ζ:水厂的自用水系数,一般取:5%~10%,设计中取对于一般的水厂取5%,本设计采用5%。

则设计处理水量Q 为:s m h m d m Q Q /729.0/2625/63000)05.01(60000)1(3331===+⨯=ξ+⨯=3.2 单池设计处理水量2Q : NQ Q =2 式中: Q :设计处理流量(m ³/d) 2Q :单池设计流量(m ³/d)N :絮凝池的数量,本设计取N=2则单池设计处理流量2Q 为:s m h m d m Q /365.0/5.1312/315002630003332====3.3 絮凝池的有效容积V :602TQ V =式中: 2Q :单池设计处理流量(m ³/h)T :絮凝时间(min),按《室外给水设计规》(GB50013-2006)要求,絮凝时间一般宜为12~20min ,用于处理低温低浊水时,絮凝时间可适当延长。

本设计中采用16min 则: 3235060165.131260m T Q V =⨯==3.4 絮凝池的面积A :'H VA =式中: V :单池的有效容积(m ³)H ’:有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0~3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。

本设计考虑使用斜管沉淀池,因此采用4.2m 。

网格絮凝池设计计算

网格絮凝池设计计算

网格絮凝池设计计算一、已知条件设计规模:处理水量为60000t/d二、已知水质条件常年平均浊度:60NTU 常年平均水温:16℃三、网格絮凝池的设计计算由已知水质条件,常年平均浊度为60度,常年平均水温为16℃,符合网格絮凝池的使用条件:原水水温为:4.0~34.0℃ 原水浊度为:25~2500度以此,此水质可以使用网格絮凝池对原水絮凝。

3.1 设计处理水量Q :)1(1ξ+⨯=Q Q 式中:Q :设 计处理流量(m³/d) 1Q :设计规模(m³/d)ζ:水厂的自用水系数,一般取:5%~10%,设计中取对于一般的水厂取5%,本设计采用5%。

则设计处理水量Q 为:s m h m d m Q Q /729.0/2625/63000)05.01(60000)1(3331===+⨯=ξ+⨯=3.2 单池设计处理水量2Q : NQQ =2 式中: Q :设计处理流量(m³/d) 2Q :单池设计流量(m³/d)N :絮凝池的数量,本设计取N=2则单池设计处理流量2Q 为:s m h m d m Q /365.0/5.1312/315002630003332====3.3 絮凝池的有效容积V :602TQ V =式中: 2Q :单池设计处理流量(m³/h)T :絮凝时间(min),按《室外给水设计规范》(GB50013-2006)要求,絮凝时间一般宜为12~20min ,用于处理低温低浊水时,絮凝时间可适当延长。

本设计中采用16min 则: 3235060165.131260m T Q V =⨯== 3.4 絮凝池的面积A :'H VA =式中: V :单池的有效容积(m³)H’:有效水深(m ),絮凝池与平流沉淀池配套时,池高可采用3.0~3.4m ;絮凝池与斜管沉淀池配套时,可采用4.2m 左右。

本设计考虑使用斜管沉淀池,因此采用4.2m 。

絮凝池设计计算方案

絮凝池设计计算方案

絮凝池的合理设计前言完成絮凝过程的絮凝池(一般常称反应池),在净水处理中占有重要的地位。

天然水中的悬浮物质及肢体物质的粒径非常细小。

为去除这些物质通常借助于混凝的手段,也就是说在原水中加入适当的混凝剂,经过充分混和,使胶体稳定性被坏(脱稳)并与混凝剂水介后的聚合物相吸附,使颗粒具有絮凝性能。

而絮凝池的目的就是创造合适的水力条件使这种具有絮凝性能的颗粒在相互接触中聚集,以形成较大的絮凝体(絮粒)。

因此,絮凝池设计是否确当,关系到絮凝的效果,而絮凝的效果又直接影响后续处理的沉淀效果。

当然,为了获得良好的絮凝效果,混凝剂的合理选择是重要的,但是也不能忽视絮凝池设计的重要性。

在生产实践中,不少水厂由于改进了絮凝池的布置,从而提高了出水水质,降低了药耗,或者增加了制水能力。

在混凝沉淀的设计中,也出现了宁可延长一些反应时间以缩短沉淀时间的看法。

这些都说明絮凝反应在净水处理中的重要作用。

近年来,由于高效能沉淀以及过滤装置的出现,使水厂的平面布置(包括构筑物尺寸及占地面积)大为缩小。

相对来说絮凝池所占比例就有所增加。

例如,在原平流式沉淀池中,絮凝只占较小的体积。

然而在斜管沉淀池中,絮凝部分的体积几乎与沉淀部分的体积相仿。

为此,国内不少同志在这方面进行着如何改进絮凝构筑物的研究,并提出了不少设想。

对设计工作者来说,亦迫切要求有一个科学的评价方法,以解决如何合理选择絮凝形式的问题。

絮凝反应是一个很复杂的过程,它不仅受絮凝池水力条件的控制,而且还与原水性质、混凝剂品种和加药量以及混和过程都有密切关系。

从目前国内外的研究情况来看,尚没有一个能定量地反映絮凝过程的完整数学模式,甚至作为定性分析,也还存在不少问题。

这些情况就给具体设计工作者带来很多困难。

严格地说,目前不少絮凝池的设计,仅是水力的验算,并没有对絮凝过程作完整的分析。

因此,往往出现即使原水的絮凝性质很不相同,而其絮凝池的布置却完全相同的情况。

根据规范或设计手册规定的设计数据,进行水力计算,是目前絮凝池设计中应用最广泛的方法。

絮凝沉淀池计算书-絮凝沉淀池设计计算

絮凝沉淀池计算书-絮凝沉淀池设计计算

1.设计规模设计规模:Q=10万m3/d水厂自用水系数δ=5%2.格栅间格栅间两座,单座规模5万m3/d,水厂自用水系数δ=5%,单格设计水量Q=5×10000×1.05÷24÷3600=0.608m3/s。

栅条间歇:b=0.005m,栅前水深:h=4.25m,格栅齿耙厚:S=2mm,齿耙宽:30mm,间歇:70mm,格栅倾角:α=80°(1)设过栅流速v=0.20m/s栅条间歇数n=Q×(sinα) 0.5/(b×h×v)=0.608×(sin80)0.5/(0.005×4.25×0.15)=142,取150栅槽宽B=S(n-1)+bn=0.002×(150-1)+0.005×150=1.048m,取1.2m则实际栅条间歇数n=(B+S)/(b+S)=(1.2+0.002)/(0.005+0.002)=172实际过栅流速v= Q×(sinα) 0.5/(b×h×n)=0.17 m/s(2)过栅水头损失计算h0=ξ×v2/2g×sinα=β(S/b)×v2/2g×sinα=2.42×(2/5)×0.172/(2×9.81)×sin80=0.0015mh1=h0×k=0.0005×3=0.0045m3.混合(1)池体设计采用两组机械混合池,每组分为串联的两格进行两级混合,每组处理水量为Q组=5×10000×1.05÷24÷3600=0.608m3/s。

每级混合时间均为30s,混合时间T总计60 s,G值取500s-1×T/2=18.24 m3单格池体有效容积W=Q组有效水深h采用4m,单格混合池面积=W/h=4.56 m2单格尺寸L×B=2.2m×2.2m混合池壁设四块固定挡板,每块宽度0.25m(2)主要设备选用2套混合机械搅拌器,搅拌器直径D=1.0m,每级搅拌器提升量需保证每级混合池中处理水被提升3次。

一大型净水厂网格斜管絮凝沉淀池设计计算方法

一大型净水厂网格斜管絮凝沉淀池设计计算方法

净水厂网格斜管絮凝沉淀池设计计算方法胡江博(陕西金水桥工程设计有限责任公司,陕西,西安,710000)【摘要】本文以一净水厂为例,对净水厂网格絮凝池和斜管沉淀池的设计计算方法进行了说明,为以后城镇供水项目设计人员提供了相关参考。

【关键词】净水厂;网格絮凝池;斜管沉淀池;设计计算在给水处理中,网格絮凝池和斜管沉淀池是水处理时常用的构筑物。

在城镇供水项目中,单池处理水量在1.0万~2.5万m3/d时,宜采用网格絮凝池和斜管沉淀池综合设计。

本文以西北地区一大型净水厂为实例,对以上两种常用构筑物进行设计计算分析,此水厂设计供水规模4.0万m3/d,水厂自用水量5%。

构筑物分两组设计,每组可独立运行,单组的处理水量为2.1m3/d,即0.243 m3/s。

一、网格絮凝池及过渡段设计计算(一)絮凝池有效容积V=QT=0.243×18×60=262.44 m3式中:Q-单个絮凝池处理水量(m3/s);V-絮凝池的有效容积(m3);T-絮凝时间(s),规范要求12~20min。

(二)絮凝池面积A=V/H=262.44/4=65.61m2式中:A-单个絮凝池面积(m2);V-絮凝池的有效容积(m3);H-有效水深(m)。

(三)单格面积f=Q/V=0.243/0.12=2.03m2式中:f-单格面积(m2);Q-单个絮凝池处理水量(m3/s);v-竖井内流速(m/s),规范要求0.10~0.14m/s。

假设栅格为正方形,尺寸1.45m×1.45m,每格实际面积为2.10m2,计算出分格数为:n=65.61/2.10=31.24,取整数n=32。

每组池子布置4行,每行分8格,栅格混凝土厚度取0.2m,每个池子净尺寸为:L=6.4m,B=13.0m。

(四)实际絮凝时间t=nfH/Q=32×2.1×4/0.243=18.43min式中:t-实际絮凝时间(min);n-栅格个数;f-单格实际面积(m2);H-有效水深(m);Q-处理水量(m3/s)。

反应池计算书

反应池计算书

设计文件首页TY0710-10-0110-01网格絮凝反应器设计书 首 页成都化工股份有限公司年产4万吨氢氧化钾及配套装置异地搬迁技改项目详细设计四川天禹惠通环保工程有限公司取水站图号 DWG. NO.分项名称SUBPROJECT 项目名称PROJECT设计阶段 STAGE合同号第 1 张 共 3 张 SHEET OFCONT.NO.网格絮凝反应器设计书一、计算依据1、《室外给水设计规范》(GB50013-2006)2、《栅条、网格絮凝池设计标准》(CECS05:88)3、《给水排水设计手册》二、设计水量1、Q=m3/h=m3/s 絮凝时间t=min 分组数:2每组池数:1共2池0每池流量:三、计算2、絮凝池有效容积:V = Qt=0.0764*11.5*60=m33、絮凝池有效面积:有效池深h=mA1=V/h=52.8/4.2=m24、竖井计算:竖井平均流速:v1=m/s单格面积:f=Q/v1=0.0764/0.12=采用格宽为m需要格数为: n=格实际絮凝时间为:t= 0.8*0.8*4.2*20/0.0764=min5、过水洞流速进口流速:v i=0.3m/s出口流速:v o=0.1m/s 各格过水洞流速分布如下:0.509H(m)0.320.350.380.420.480.55S(m2)0.2550.2780.3060.3400.3820.437W(m)0.80.80.80.80.80.80.80.2250.2000.1750.150v 0.3000.2750.25011.7290.640.804.212.50.120.636574205500.15280.076452.7111.56、内部阻力计算前段:1-6格,流速:0.25~0.3m/s网格眼孔为80X80mm, 取v 2前=m/s净空断面:A2=0.0764/0.27=m2每个网格的网眼数:0.283/0.08^2=前段共设16块,n=16,阻力系数取:1.0前段阻力为:h1前=n.ξ1.v 2/2g=m 中段:7-14格,流速:0.22~0.2m/s网格眼孔为100X100mm, 取v 2中=m/s净空断面:A2=0.0764/0.22=m2每个网格的网眼数:0.347/0.1^2=中段共设8块,n=8,阻力系数取:1.0前段阻力为:h1前=n.ξ1.v 2/2g=m0.6110.7640.1250.1000.2829440.05940.760.950.270.80.80.220.3472350.0197。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网格絮凝池及设计计算 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】
网格(栅条)絮凝池
网格絮凝池的二平面布置和穿孔旋流絮凝池相类似,由多格竖井串联而成。

絮凝池分成许多面积相等的方格,进水水流顺序从一格留到下一格,上下对焦交错流动,直到出口。

一、使用条件
1.原水水温为~℃、浊度为25~2500度。

2.单池处理的水量以1~万m3/d较合适,以免因单格面积过大而影响效果。

水厂产水量大时,可采用2组或多组池并联运行。

采用网格或栅条的絮凝池效果相接近,但栅条加工比较方便,用料也省。

3.适用于新建也可用于旧池改造。

二、设计要求
1.絮凝时间一般为10~15min;
2.絮凝池分隔大小按竖向流速确定;
3.絮凝池分格数按絮凝时间计算,多数分成8~18格:可大致按分格数均分成3段,其中前段各格为3~5mim,段端3~5min,末段4~5min;
4.网格或栅条数前段较多,中断较少,末段可不放,但前段总数宜在16层以上,中断在8层以上上下两层间距为60~70cm;
5.每格的竖向流速,前段和中段~s,末段~s;
6.网格或栅条的外框尺寸等于每格池的净尺寸。

前段栅条缝隙为50mm,或网格孔眼为80×80mm,中段分别为80mm和100×100mm;
7.各格之间的过水孔洞应上下交错布置,孔洞计算流速,前段~s,,中段~s,末段~s,各过水孔面积从前段向末段逐步增大。

所有过水孔须经常处于淹没状态,因此上部孔洞标高应该考虑沉淀池水位变化时会不会露出水面;
8.网孔或过栅流速,前段~s,中段~s;
9.一般排泥可用长度小雨5m、直径150mm~200mm的穿孔排泥管或单斗底排泥,采用快开排泥阀;
10.网格或栅条材料不可用木料、扁钢、钢筋混凝土预制件等。

木板条厚度20
~25mm,钢筋混凝土预制件厚度30~70mm。

三、计算
网格絮凝池计算公式如下表
网格絮凝池计算公式表
【例】网格絮凝池计算。

设计规模为6000m3/d,絮凝池分两组,可以单独工作。

【解】设水厂自用水量为5%,则设计流量为:
Q=6000×=63000m3/d=3/s
因分成2池,所以每池流量为3/s
设絮凝时间为10min,得到絮凝池的有效容积为
V=×10×60=3
设平均水深,得池的面积为:
A==
竖井流速取,得单格面积为:
F==
设每格为方形,边长采用,因此每格面积为,由此得分格数为:
n==
为配合沉淀池尺寸,采用25格
实际絮凝时间为:
t=×××=615s=
池的平均有效深度为,取超高,泥斗深度,得池的总高度为:
H=++=。

相关文档
最新文档