第四章_流动阻力与水头损失
流体力学第四章 流动阻力及能量损失
d
d
d
d1 d2
d
S2
S1
S1
【例】 有一长方形风道长 l 40m,截面积A= 0.5×0.8m2
,管壁绝对粗糙度 K= 0.19mm,输送t=20℃的空气,流
量Q 21600m3/h,试求在此段风道中的沿程损失。
【解】 平均流速
当量直径
V Q 21600 15 A 3600 0.5 0.8
and 2(If λ=0.02) ?
【例 】 圆管直径 d m20m0,管长 l 10m0,0输送运动黏度
cm2/s的石油1,.6流量
m3/h,求沿Q程损 1失44。
【解】 判别流动状态
Vd 1.270.2
Re
1587.5 2000
1.6104
为层流
式中 V
4Q
d 2
4 144 36003.14 0.22
第四章 流动阻力及水头损失
本章主要研究恒定流动时,流动阻力和水 头损失的规律。对于粘性流体的两种流态—— 层流与紊流,通常可用下临界雷诺数来判别, 它在管道与渠道内流动的阻力规律和水头损失 的计算方法是不同的。对于流速,圆管层流为 旋转抛物面分布,而圆管紊流的粘性底层为线 性分布,紊流核心区为对数规律分布或指数规 律分布。对于水头损失的计算,层流不用分区, 而紊流通常需分为水力光滑管区、水力粗糙管 区及过渡区来考虑。
式中: ——沿程阻力系数。 •物理意义:圆管层流中,沿程水头损失与断面平均流速的一次
方成正比,而与管壁粗糙度无关。 •适用范围: 1.只适用于均匀流情况,在管路进口附近无效。 2.推导中引用了层流的流速分布公式,但可扩展到紊流,紊流 时l值不是常数。
四、圆管流的起始段
图中起始段长度l’:从进
流动阻力与水头损失 工程流体力学.ppt
uz t
uz x
dx dt
uz y
dy dt
uz z
dz dt
f 1 p 2u u +u • u
dt
质量力 压差力
粘性力
当地加 速度力
迁移加速度
§4-4 相似原理与量纲分析
一、量纲基本概念
单位(unit) :量度各种物理量数值大小的标准量,称单位。如长度
单位为m或cm等。——“量”的表征。
工程流体力学
第四章 流动阻力与水头损失
§4-1管路中流动阻力产生的原因及分类
一、阻力产生的原因 1)流体质点与管壁之间的摩擦撞击 2)管壁的粗糙度,引起涡流 3)管路的长度
湿周 R
水力半径
=2R
A Rh X
§4-1管路中流动阻力产生的原因及分类
一、流动阻力的分类
沿程水头损失 水头损失
局部水头损失
vc ——上临界流速
O
lgvc lgvc’ lgv
层 流: 过渡流: 紊 流:
v vc
vc v vc
v vc
临界雷诺数 雷诺数 Re vd
υ
Re c 2000 ——下临界雷诺数 Rec 14000 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: 过渡流: 紊 流:
Re Re c Re c Re Rec Re Rec
如:速度:dim v=LT-1;加速度dim a=LT-2;力dim F=MLT-2;
动力粘度dim =ML -1 T-1
• 量纲公式:
dim q LTM
• 量纲一的量(无量纲数、纯数,如相似准数):=0,=0,=0,即
dim q=1,如、及组合量Re等。
Re vd ,
流动阻力和水头损失
加强设备维护:定期对管道和设备进行清洗和维护,保 持其良好的运行状态,以减少流动阻力和水头损失。
流动阻力和水头损失的 应用领域
水利工程领域的应用
添加 标题
水力发电:流动阻力和水头损失是水力发电的重要因素,通过优化水力发电站的设计和运行,可以降低流动 阻力和水头损失,提高发电效率。
添加 标题
动阻力
水头损失的测量方法
压差计法:通过测量管道进出口压差来计算水头损失 流速仪法:通过测量管道内流速来计算水头损失 能量方程法:通过建立能量方程来计算水头损失 示踪剂法:通过在水中加入示踪剂来测量水头损失
流动阻力和水头损失的联合测量方法
测量原理:基于伯努利方程和流动阻力公式 测量步骤:准备测量仪器、进行测量、记录数据 测量仪器:压力计、流量计、温度计等 注意事项:确保测量仪器的准确性和可靠性,选择合适的测量位置
灌溉工程:在灌溉工程中,流动阻力和水头损失会影响灌溉水的流量和灌溉效率。通过改进灌溉系统设计和 运行方式,可以降低流动阻力和水头损失,提高灌溉效率。
添加 标题
水利枢纽工程:水利枢纽工程是调节水资源的重要设施,流动阻力和水头损失会影响水利枢纽工程的调节效 果。通过优化水利枢纽工程的设计和运行,可以降低流动阻力和水头损失,提高调节效果。
减小水头损失的措施
减小流速:降 低水流速度可 以减小水头损
失
改变流道:通 过改变水流通 道的形状和尺 寸,可以减小
水头损失
增加阻力:通 过增加水流阻 力,可以减小
水头损失
采用新型材料: 采用新型材料 可以减小水流 阻力,从而减
小水头损失
流动阻力和水头损失的联合减小措施
添加标题
优化管道设计:选择适当的管径和长度,减少弯曲和急 转弯,以降低流动阻力和水头损失。
流体力学课件第四章流动阻力和水头损失
l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
第4章 水头损失
t
于是流场的紊流中某一瞬间, 于是流场的紊流中某一瞬间,某 一点瞬时速度可用下式表示. 一点瞬时速度可用下式表示.
第4章 水头损失 14
圆管有效截面上的平均流速
p f πr04 p f 2 qV V = = = r0 2 A 8 lπr0 8 l
u max =
p f 4 l
r02
V=
1 u max 2
即圆管中层流流动时,平均流速为最大流速的一半. 即圆管中层流流动时,平均流速为最大流速的一半. 工程中应用这一特性, 工程中应用这一特性,可直接从管轴心测得最大流速 从而得到管中的流量, 从而得到管中的流量,这种测量层流的流量的方法是 非常简便的. 非常简便的.
2l
r (6-24) τ =τ0 r 0
上式表明,在圆管的有效截面上, 上式表明,在圆管的有效截面上,切 应力与管半径r的一次方成比例 的一次方成比例, 应力与管半径 的一次方成比例,为直 线关系,在管轴心处r=0时τ = 0 . 线关系,在管轴心处 时
第4章 水头损失 16
五,沿程损失hf 流体在等直径圆管中作层流流动时,流体与管 沿程损失 流体在等直径圆管中作层流流动时,
第四章 流动阻力和水头损失
4.1 流动阻力的两种类型 4.2 两种流态及其判断 4.3圆管层流和圆管紊流 圆管层流和圆管紊流 4.4 沿程水头损失 4.5 局部水头损失
第4章 水头损失
1
流动阻力的两种类型
理想流体: 理想流体: 运动时没有相对运动,流速是均匀分布, 运动时没有相对运动,流速是均匀分布,无流速梯度和 粘性切应力,因而, 粘性切应力,因而,也不存在能量损失 .
p1 p2 h f = z1 + z 2 + ρg ρg
土力学第四章 流动阻力和水头损失
漩涡区中产生了较大的能量损失
漩涡区
C A C
D B
漩涡体形成、运转和分裂
漩涡区中产生了较大的能量损失
C A C
D B
流速分布急剧变化
漩涡区中产生了较大的能量损失
C A
D B
C 漩涡的形成,运转和分裂;流速分布急剧变化, 都使液体产生较大的能量损失。 这种能量损失产生在局部范围之内,叫做局部 水头损失hj 。
颜色水
l
hf
Q
V t
下游阀门再打开一点,管道中流速增大
红色水开始颤动并弯曲,出现波形轮廓
颜色水
l
hf
下游阀门再打开一点,管中流速继续增大
红颜色水射出后,完全破裂,形成漩涡,扩散至全管, 使管中水流变成红色水。 这一现象表明:液体质点运动中会形成涡体,各涡体相 互混掺。
Q
V t
颜色水
l
hf
Q
水流半径R
R A
粘性流体的两种流态
4.2.1 雷诺实验
雷诺:O.Osborne Reynolds (1842~1912) 英国力学家、物理学家和工程师,杰出实验科学家
1867年-剑桥大学王后学院毕业 1868年-曼彻斯特欧文学院工程学教授
1877年-皇家学会会员
1888年-获皇家勋章
1905年-因健康原因退休
两个过水断面的湿周相同,形状不同,过水断面 面积一般不相同,水头损失也就不同。 因此,仅靠湿周也不能表征断面几何形状的影响。
由于两个因素都不能完全反映横向边界对水头损失
的影响,因此,将过水断面的面积和湿周结合起来,全
面反映横向边界对水头损失影响。
水流半径R:
R
A
水力学第四章层流、紊流,液流阻力和水头损失
3.7d
结论2:
•紊流光滑区水流沿程水头损失系数只取决于雷诺数,粗糙度不 起作用。容易得出光滑区紊流沿程损失与流速的1.75次方成正 比。 •紊流粗糙区水流沿程水头损失系数只取决于粗糙度,由于粗糙 高度进入流速对数区,阻力大大增加,这是不难理解的。容易 得出粗糙区紊流沿程损失与流速的2.0次方成正比。 •在紊流光滑区与粗糙区之间存在紊流过渡粗糙区,此时沿 程损失系数与雷诺数和粗糙度都有关。 •尼古拉兹试验反映了圆管流动的全部情况,在其试验结果图上 能划分出层流区,过渡区、紊流光滑区、紊流过渡粗糙区,紊 流粗糙区。紊流粗糙区通常也叫做‘阻力平方区’。
ro gJ 2 2 gJ 4 1 4 gJ 4 Q (ro r )2 rdr (ro ro ) d 0 4v 4v 2 128v
上式为哈根——泊肃叶定律:圆管均匀层流的流量Q与管径d 的四次方成比例。 3、断面平均流速: V
Q gJ 2 1 ro umax A 8 2
1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 1
1 1 1 1 1 1 , , , , 及 30 61 .2 120 252 507 10
层流时,
64 Re
f (Re)
1 1 1 1 1 1 , , , , 及 30 61.2 120 252 507 1014
1 u u x x dt 0 T0
2、紊流的切应力 由相邻两流层间时均流速相对运动
所产生的粘滞切应力
紊流产生附加切应力
du l t v Re
t v Re 2
纯粹由脉动流速所产生 的附加切应力
dy ( du 2 ) dy
普朗特 混合长 Re 与 du 有关,根据质点脉动引起动量交换(传递),又称为动量传递理论 dy 理论
第四章水头损失(环境)
3.直线Ⅲ以右的区域,λ与 有关,而与Re无关 r ,属粗糙管区。
30
f ( 、Re ) r
1.圆管紊流过渡区的沿程摩阻系数: (a)与雷诺数 Re有关;
(b)与管壁相对粗糙 / d有关;
(c)与Re 及 / d 有关; (d)与 R 和 l 管长有关。
23
二、重力——重力: G Al
三、摩擦阻力: T l 0
因为均匀流没有加速度,所以
P 1P 2 G sin T 0
即
Ap1 Ap2 Al sin a l 0 0
z1 z 2 sin l
l 0 ( z1 ) ( z2 ) w p1 p2
20
第三节
恒定均匀流沿程水头损失与切应力的关系
均
匀
流
21
非
均
匀
流
均匀流时无局部水头损失,非均匀渐变流时局部水 头损失可忽略不计,非均匀急变流时两种水头损失都有 。
22
在管道或明渠均匀流中,任意取出一段总流来
分析,作用在该总流段上有下列各力。
一、动水压力
1-1断面 P 1 Ap 1 2-2断面 P2 Ap2
h=0.1m,实测断面平均流速为0.1m/s,T=20℃,判断 槽内水流的流态,并求在水深不变时,保持紊流状态 的最小流速。
第四节 沿程水头损失
一 达西公式 绝对粗糙度Δ:固体壁粗糙突出的平均高度。
l v2 均匀流沿程水头损失的达西公式: h f 4R 2 g
λ为沿程阻力系数,
Δ f Re, R
2 lg(Re ) 0.8 2 lg
第四章 液流型态和水头损失
主流+二次流=螺旋流 二、局部水头损失的计算公式 沿程损失:
2 l v2 v hf ' d 2g 2g
l ( ' ) d
v2 局部阻力系数 hj — 2g 由实验: f (Re,几何尺寸),在局部障碍的强烈干扰下,较
借用上面形式: 小雷诺数(Re=104)时水流就进入阻力平方区,故认为 三、圆管中水流突然扩大的局部水头损失及其系数
2 1 1
p2 v hf 2g p2 )
2 2 2
以1-1和2-2断面之间的水体作为隔离体,建立沿流向的平衡方程。
p1 p2 0 l l sin 0
p1 p2 0 l ( z1 z 2 ) 0
整理:
0 l ( z1 ) (z2 )
内因:内摩擦阻力的存在(起决定作用) hw产生的原因 外因:固体边界的影响
沿程水头损失hf
hw
局部水头损失h j
hw h f h j
§4-3 液流型态及其判别
一、雷诺实验 1885年 Reynolds 层流:各流层的液体质点有条不紊地运动,互不混掺。 紊流:液体质点形成涡体,流动过程中互古拉兹人工粗糙管不同,
和分布无规律, 从而引出当量粗糙度的概念,以把工业管道的粗 糙折算成人工粗糙,表4-1。
三、 计算沿程水头损失的经验公式——谢才公式
(1755年) v C RJ
v C RJ C Rh f / l
2 2 2
C—谢才系数
m
1
2
/s
v 2 l8 g 8g l v 2 hf 2 2 C R8 g C 4 R 2 g
2
§4-5 计算沿程水头损失的通用公式
工程流体力学课件4流动阻力和水头损失
流体流经局部障碍时,流动状态发生急剧变化,产生漩涡 和二次流,使得流体的速度分布和方向发生变化,导致水 头损失。
影响因素
局部障碍的形式、流体流速、流体性质等。
总水头损失
总水头损失
01
指流体在管道或渠道中流动过程中所损失的总水头,
等于沿程水头损失和局部水头损失之和。
计算方法
02 总水头损失等于沿程水头损失和局部水头损失的代数
水利工程中的流动阻力与水头损失分析
水利工程中的流动阻力来 源
在水利工程中,流动阻力主要来自水体与边 界的摩擦力、水流内部的各种阻力等。这些 阻力会导致水头损失,影响水利工程的正常 运行。
水头损失对水利工程效益 的影响
水头损失的大小直接影响到水利工程的效益 。在设计水利工程时,应充分考虑水头损失 的影响,合理选择水泵和水轮机的型号,确
保工程效益最大化。
THANKS
工程流体力学课件4流 动阻力和水头损失
目录
Contents
• 流动阻力的概念 • 水头损失的种类 • 流动阻力和水头损失的计算 • 工程实例分析
01 流动阻力的概念
定义与分类
定义
流动阻力是指流体在流动过程中受到的阻碍作用,导致流体机械能的损失。
分类
分为内阻力和外阻力。内阻力是由于流体内部摩擦力引起的,如层流内摩擦力 和湍流内摩擦力;外阻力是指流体在流动过程中受到的外部阻碍,如流体与管 道壁面的摩擦力。
计算公式
阻力系数通常通过实验测定,也可以通过经验公式进行估算。常用的经验公式有达西韦斯巴赫公式和莫迪图等。
影响因素
阻力系数的大小受到流体的物理性质、管道的几何形状和尺寸、流动状态等多种因素的 影响。在工程实际中,需要根据具体情况进行实验测定或经验估算。
工程流体力学 流动阻力与水头损失
第四章 流动阻力和水头损失主要内容] 阻力产生的原因及分类 ] 两种流态] 实际流体运动微分方程式(N -S 方程) ] 因次分析方法、相似原理 ] 水头损失的计算方法第一节 流动阻力产生的原因及分类一、基本概念1、湿周:管子断面上流体与固体壁接触的边界周长。
以 χ 表示。
单位:米2、水力半径:断面面积和湿周之比。
χA R =单位:米例: 圆管: 442d d d R ==ππ正方:442a a a R ==圆环流: 明渠流:()()()4422d D d D d DR −=+−=ππ42212aaaR ==3、绝对粗糙度:壁面上粗糙突起的高度。
4、平均粗糙度:壁面上粗糙颗粒的平均高度或突起高度的平均值。
以Δ表示。
5、相对粗糙度:Δ/D (D——管径)。
二、阻力产生的原因1、外因:(a )管子的几何形状与几何尺寸。
面积: A 1=a 2 A 2=a 2 A 3=3a 2/4 湿周: a 41=χ a 52=χ a 43=χ水力半径: R 1=0.25a > R 2=0.2a > R 3=0.1875a 实验结论: 阻力1 < 阻力2 < 阻力3 水力半径R ,与阻力成反比。
R ↑,阻力↓ (b )管壁的粗糙度。
Δ↑ ,阻力↑ (c )管长。
与 h f 成正比。
L ↑,阻力↑ 2、内因:流体在流动中永远存在质点的摩擦和撞击现象,流体质点由于相互摩擦所表现出的粘性,以及质点撞击引起速度变化所表现出的惯性,才是流动阻力产生的根本原因。
沿程阻力:粘性造成的摩擦阻力和惯性造成的能量消耗。
局部阻力:液流中流速重新分布,旋涡中粘性力做功和质点碰撞产生动量交换。
三、阻力的分类1、沿程阻力与沿程水头损失(1) 沿程阻力:沿着管路直管段所产生的阻力(管路直径不变,计算公式不变) (2) 沿程水头损失:克服沿程阻力所消耗的能量∑h f =h f1+ h f2+ h f3 2、局部阻力与局部阻力损失(1) 局部阻力:液流流经局部装置时所产生的阻力。
工程流体力学第四章自测题答案
所以
a1=-1, b1 =-1, c1 =-1
1
π1 =
μ ρVD
对于 Π2 项:
[ M 0 L0T 0 ] = [ L][ ML−3 ] a2 [ LT −1 ]b2 [ L]c2
对于
M:0=a2 L: 0=1-3a2+b2+c2 T: 0=-b2
所以
a2=0, b2 =0, c2 =-1
Δ D 对于 Π3 项:
V1 + V3 2
② h j2 所以,
V + V3 ⎞ ⎛ ⎛ V1 + V3 ⎞ − V3 ⎟ ⎜V1 − 1 ⎟ ⎜ (V1 − V3 )2 2 ⎠ 2 ⎝ ⎝ ⎠ + = = 2g 2g 4g
2
2
h j2 h j1
=
1 2
即分两次扩大最多可减少一半损失。
4-5.
如图所示,水在压强作用下从密封的下水箱沿竖直管道流入上水箱中,已知 h=
解:① 求 V2 一次扩大的: h j1 =
(V1 − V3 )2
2g
两次扩大的: h j 2 =
(V1 − V2 )2 (V2 − V3 )2
2g + 2g
当 V1、V3 确定时,产生的最小阻力的值 V2 由下式求出:
3
dh j 2 dV2 ∴ V2 =
=
1 [− 2(V1 − V2 ) + 2(V2 − V3 )] = 0 2g
第 4 章 流动阻力和水头损失
4-1. 在圆管层流中, 沿壁面的切应力 τ0 与管径 d、 流速 V 及粘性系数 µ 有关,
用量纲分析法导出此关系的一般表达式。 解:n=4,应用雷利法,假设变量之间可能的关系为一简单的指数方程:
第四章层流和紊流及水流阻力和水头损失
第四章 层流和紊流及水流阻力和水头损失1、紊流光滑区的沿程水头损失系数 λ 仅与雷诺数有关,而与相对粗糙度无关。
( )2、圆管紊流的动能校正系数大于层流的动能校正系数。
( )3、紊流中存在各种大小不同的涡体。
( )4、紊流运动要素随时间不断地变化,所以紊流不能按恒定流来处理。
( )5、谢才公式既适用于有压流,也适用于无压流。
( )6、''yu x u ρτ-=只能代表 X 方向的紊流时均附加切应力。
( )7、临界雷诺数随管径增大而增大。
( ) 8、在紊流粗糙区中,对同一材料的管道,管径越小,则沿程水头损失系数越大。
( ) 9、圆管中运动液流的下临界雷诺数与液体的种类及管径有关。
( ) 10、管道突然扩大的局部水头损失系数 ζ 的公式是在没有任何假设的情况下导出的。
( ) 11、液体的粘性是引起液流水头损失的根源。
( ) 11、不论是均匀层流或均匀紊流,其过水断面上的切应力都是按线性规律分布的。
( ) 12、公式gRJ ρτ= 即适用于管流,也适用于明渠水流。
( ) 13、在逐渐收缩的管道中,雷诺数沿程减小。
( ) 14、管壁光滑的管子一定是水力光滑管。
( ) 15、在恒定紊流中时均流速不随时间变化。
( ) 16、恒定均匀流中,沿程水头损失 hf 总是与流速的平方成正比。
( ) 17、粘性底层的厚度沿流程增大。
( ) 18、阻力平方区的沿程水头损失系数λ 与断面平均流速 v 的平方成正比。
( ) 19、当管径和流量一定时,粘度越小,越容易从层流转变为紊流。
( ) 20、紊流的脉动流速必为正值。
( ) 21、绕流阻力可分为摩擦阻力和压强阻力。
( ) 22、有一管流,属于紊流粗糙区,其粘滞底层厚度随液体温度升高而减小。
( ) 23、当管流过水断面流速符合对数规律分布时,管中水流为层流。
( ) 24、沿程水头损失系数总是随流速的增大而增大。
第四章 流动阻力和水头损失
2.粗糙区:希弗林松公式
k 0.11 d
0.25
3.舍维列夫公式: 适用于旧钢管和旧铸铁 管 紊流过渡区,v≤1.2m/s
m3 2.0
雷诺实验揭示了沿程水头损失与流速的关系。当
v<vc时,hf~v1.0;当v>vc时, hf~v1.75~2.0 。
发现了流体流动中存在两种性质不同的形态,即
层流和紊流: 层流——流体呈层状流动,各层质点互不掺混; 紊流——流体质点的运动轨迹极不规则,各层 质点相互掺混,且产生随机脉动。
切应力分布:
r 0 r0
1.切应力分布 2.层流、紊流均适用
§4-4 圆管中的层流运动
1.流动特性
流体呈层状流动,各层质点互不掺混
层流中的切应力为粘性切应力
du dy
其中 y=r0-r
Hale Waihona Puke du dr2.断面流速分布
du 牛顿内摩擦定律 dr r 又 g J 2
总水头损失=沿程水头损失+局部水头损失
二、流动阻力
hw——流体粘性引起
1.沿程阻力——沿程损失(长度损失、摩擦损失)
l v hf d 2g
λ——沿程阻力系数
2.局部阻力——局部损失
2
达西-魏斯巴赫公式
v hj 2g
ζ——局部阻力系数
2
3.总能量损失
**说明几点
hw h f h j
d ux u x y l1 u x y l1 dy d ux u x u x y l1 u x y l1 dy
(2) 横向脉动速度 u x
流体力学流动阻力和水头损失
2020/3/31
流动阻力和水头损失
17
第四章 流动阻力和水头损失
vc vc
2020/3/31
流动阻力和水头损失
18
第四章 流动阻力和水头损失
线段AC及ED都是直线,
用 lg h f lg k m lg 表示
的影响
可用过水断面的水力要素来表征,如过水断面
的面积A、湿周 及力半径R等。
对圆管:
d 2
R A 4 d
d 4
2020/3/31
流动阻力和水头损失
9
第四章 流动阻力和水头损失
2、液流边界纵向轮廓对水头损失的影响
因边界纵向轮廓的不同,可有两种不同 形式的液流:均匀流与非均匀流
均 匀 流
2020/3/31
分布进行改组流线发生弯曲并产生旋涡,在这些局部地区就有局部水头损
失。
2020/3/31
流动阻力和水头损失
6
第四章 流动阻力和水头损失
液流产生水头损失的两个条件
(1) 液体具有粘滞性。
(2) 由于固体边界的影响,液流内部质点之间 产生相 对运动。
液体具有粘滞性是主要的,起决定性作用。
2020/3/31
流动阻力和水头损失
10
第四章 流动阻力和水头损失
非
+hj
均
匀
流
均匀流时无局部水头损失,非均匀渐变流时局部
水头损失可忽略不计,非均匀急变流时两种水头损失 都有。
2020/3/31
流动阻力和水头损失
11
第四章 流动阻力和水头损失
二、水头损失的计算公式
第4章水流阻力和水头损失
1 2
p1 p2 h f z1 z2 g g
1
2
1
2 τ0
P 1 p1 A 1 P2 p2 A2
面积
1 Z1 L
F L 0
2
Z2 O
τ0 G=ρgAL
湿 周
O
列流动方向的平衡方程式: 水力半径——过水断面面积与 湿周之比,即A/χ
vk d
vk d
2300
若Re<Rek
1.0 h V ,水流为层流, f
1.75~2.0 若Re>Rek,水流为紊流, hf V
公式只适用于圆管,对于非圆管用当量直径来实现, 如下:
湿周: 过水断面中液体与固体接触的边界长度 水力半径:R
非圆管
A
A
d
2
对于圆管水力半径
雷诺数可理解为水流惯性力和粘滞力量纲之比 量纲:称为因次,指物理量的性质和类别,例如 长度和质量,分别用[L]和[M]表达
[V ] [惯性力]=[m][a]=[ ][L ] [ ][ L2 ][V 2 ] [T ] du 2 [V ] [粘性力] [ ][ A][ ] [ ][ L ] [ ][V ][ L] dy [ L]
3
量纲为
[惯性力] [ ][ L ][V ] [ ][ L][V ] [粘带力] [ ][V ][ L] [ ]
2 2
几个基本概念
层流底层、过渡层和紊流核心
§4.3 均匀流基本方程
1、沿程水头损失与切应力的关系
列1-1、2-2断面伯努利方程式:
2 p1 1v12 p2 2 v2 z1 z2 hf g 2g g 2g
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为是恒定均匀流的总流段,所以各作用力处于平衡状态, 各作用力沿流动方向的平衡方程式为:
P1 P2 G cos T 0
cos
Z1
Z2
, A1
A2
A
( z1
p1
r
)
(z2
p2
r
)
x A
0
hf
x 0 A
0 R
0 RJ
水力坡度 J h f l
R A r0 x2
Re d vd v 4.2.2 两源自流态的判别准则二、临界雷诺数
雷诺数 Re vd
Re cr 2320 ——下临界雷诺数 Recr 13800 ——上临界雷诺数
工程上常用的圆管临界雷诺数
层 流: Re Re cr 不稳定流: Re cr Re Recr 紊 流: Re Recr
4.2 实际流体的两种流态
二、实验现象
2、过渡状态——质点是曲线流动。 将阀门逐渐打开,发现有色液体开始抖动,直线变 为弯曲线。这说明管内一层层的流动受到扰动,流 体质点开始横向运动,直线变得有弯曲形状,但仍 在管中心部位。这是一种过渡状态。
过渡状态
4.2 实际流体的两种流态
二、实验现象
3、紊流——质点是无规则流动。 将圆管出口阀门继续开大,流量增加,管内有色水 线的完整形状消失,流动变得杂乱无章。这说明管 内流体质点有剧烈的横向运动,互相撞击掺混,流 体质点不仅沿着轴向运动而且在纵向也有不规则的 脉动,这种流动状态叫做紊流。
须首先判别流体的流动状态。
O
D
C
B A
vcr v’ v
cr
4.2 实际流体的两种流态
二、实验现象
1、层流——质点是直线流动。
层流
慢慢打开玻璃管出口的阀门,使管内流量很小,然 后开启红色小容器下的阀门。这时管内流速较低, 看到管内有一条很直的红色水线。有色水线呈直线 形状,非常稳定,这表明管内水的流动都是沿着轴 向,流体质点没有横向运动,不互相掺混,从管中 心开始到管壁延伸流动是一层一层的,这种流动状 态叫层流。
4.2.3 沿程损失和平均流速的关系
一、实验装置
hf p g
D
hj
C
B A
O
vcr v’ v
cr
lghf=lgk+nlgv hf kvn
4.2.3 沿程损失和平均流速的关系
二、实验结果
层流: hf v1.0
紊流: hf v1.75~2.0
hj
结论:
沿程损失与流动状态有关,故
计算各种流体通道的沿程损失,必
紊流
4.2 实际流体的两种流态
1、实验发现
v vcr v vcr
流动较稳定 流动不稳定
2、临界流速 vcr ——下临界流速
vcr ——上临界流速
层 流: v vcr
不稳定流: vcr v vcr
紊 流: v vcr
4.2.2 两种流态的判别准则
一、雷诺数
流体的层流和紊流状态不仅和流速有关,还 和流体的性质密度、动力粘度、特征尺寸(这 里指管径D)。
流段长为L,过水断面面积为A,湿周 为X,总流与水平面成
1:动水压力
P1 p1 A1, P2 p2 A2
2:重力
G Al
3:摩擦阻力T
T 0 xl
το το α
因为作用在各流束之间的摩阻力是成对地彼此相等而方向 相反,故不需考虑;仅考虑不能抵消的总流与粘在壁面上 的液体质点之间的摩擦力T。
2V22 2g
το το α
hf
(z1
p1
)
(
z2
)p2
两过水断面间的沿程水头损失;等于两过流断面测压管水头 的差值,即液体用于克服阻力所消耗的能量,全部由势能提 供。
1. 圆管中的恒定层流运动切应力
一、推导: 如图,取出过水断面1-1与2-2的一段均匀流动的总 流。各参数标于图上,作用在该流段上的力有:
叠加。
hw h f h j
hw ——总能量损失。
4.2 实际流体的两种流态
4.2.1 雷诺实验
一、实验装置
4.2 实际流体的两种流态
二、实验现象
1、层流——质点是直线流动。
层流
慢慢打开玻璃管出口的阀门,使管内流量很小,然 后开启红色小容器下的阀门。这时管内流速较低, 看到管内有一条很直的红色水线。有色水线呈直线 形状,非常稳定,这表明管内水的流动都是沿着轴 向,流体质点没有横向运动,不互相掺混,从管中 心开始到管壁延伸流动是一层一层的,这种流动状 态叫层流。
二、局部能量损失
发生在流动状态急剧变化的急变流中的能量损失, 即在管件附近的局部范围内主要由流体微团的碰撞、 流体中产生的漩涡等造成的损失。
hj
v2 2g
h j ——单位重力流体的局部能量损失。
——局部损失系数 v2 ——单位重力流体的动压头(速度水头)。
2g
三、总能量损失 整个管道的能量损失是分段计算出的能量损失的
4.3 圆管中的层流运动
4.3.1 圆管中的恒定层流动力性特性
1. 圆管中的恒定层流运动切应力
如图,以圆管均匀流为例,说明液流自断面1-1流至断面 2-2时的沿程水头损失。
写出断面1-1和2-2的总流能量方程:
z1
p1
1V12 2g
z2
p2
2V22 2g
hf
在均匀流时,有:
1V12 2g
第四章 流动阻力和水头损失
4.1 沿程水头损失和局部水头损失
两大类流动能量损失: 1.沿程能量损失 2.局部能量损失
一、沿程能量损失
发生在缓变流整个流 程中的能量损失,由流体 的粘滞力造成的损失。
hf
l
d
v2 2g
h f ——单位重力流体的沿程能量损失
——沿程损失系数 l ——管道长度 d ——管道内径 v2 ——单位重力流体的动压头(速度水头)。 2g
对于无压均匀流,按上述步骤写出流动方向的力平衡 方程式,同样可得⑴或⑵。且推导过程没有限制流态。 所以方程对有压流和无压流,因此层流和紊流都适用。
二:圆管过流断面上切应力的分布
液流各流层之间均有内摩擦切应力τ存在,在均匀流 中任意取一流速,按上述方法可求得流束的均匀流方 程式:
Re cr 2000
层 流: Re 2000 紊 流: Re 2000
4.2.2 两种流态的判别准则
三、雷诺数物理意义
雷诺数之所以能判别层流和紊流的标准,可根据雷 诺数的物理意义来解释。
雷诺数表示惯性力和黏性力的比值。雷诺数大小表 示了流体在流动过程中惯性力和黏性力哪个起主导作用。 黏性力小,表示黏性力起主导作用,流体指点受黏性的 约束,处于层流状态;雷诺数大表示惯性力起主导作用, 黏性不足以约束流体质点的紊乱运动,流体便处于紊流 状态