泰勒公式外文翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ta yl or 's Formu la an d the St udy of Ext rema
1. Tay lor's Form ula for M apping s
Th eore m 1. If a mapping Y U f →: from a neigh bo rho od ()x U U = of a point x in a no rm ed space X into a no rmed spac e Y ha s d eriva tiv es up to o rde r n -1 in clus ive in U an d h as an n-th orde r deriv ati ve ()()x f n at t he p oint x, the n
()()()()()⎪⎭⎫ ⎝⎛++++=+n n n h o h x f n h x f x f h x f !1,
(1)
as 0→h .
Equ ali ty (1) i s one of the variet ie s of Ta ylor's fo rmu la, writte n here for ra ther ge neral c las ses of ma ppings.
Proof . We p rov e T ay lor's fo rmu la by ind ucti on. For 1=n it is tru e by d efinition of ()x f ,.
As sume form ul a (1) is true for so me N n ∈-1.
Then b y the mean -val ue th eo rem, fo rm ula (12) o f Sec t. 10.5, and the in duc tion h ypot hesis , we obtain.
()()()()()()()()()()()()()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎭
⎫ ⎝⎛-+++-+≤⎪⎭
⎫ ⎝⎛+++-+--< h x f n h x f x f h x f h x f n h f x f h x f 11,,,,10!11sup !1x θθθθθ , as 0→h . W e s hall not take t he t ime h ere t o di scuss o th er v er si ons of Tayl or 's f ormu la, whic h are so meti mes quite useful . They wer e discu sse d earlier in detail for nume rica l fun cti ons . At thi s point w e le av e it to th e reader to derive them (s ee, for e xample , Pro blem 1 below). 2. Meth od s of St udying Inte rior Ext rema Usin g Ta ylor's formul a, we sha ll exhib it nece ssar y condi tio ns a nd a lso suffic ie nt c ondi tions for a n inte rior l ocal ex tre mum of r eal -val ue d fun ctions def ined on an op en su bse t of a nor med sp ace. As we sha ll see , these cond it io ns are an alogous to t he diffe renti al conditi ons alr eady known t o us fo r an ex tr emum o f a real -val ue d func tion of a re al variabl e. Theorem 2. Let R U f →: be a real-v al ued functio n d efined o n an o pen set U in a norm ed spa ce X a nd having continuous derivatives up to order 11≥-k inclu siv e in a neig hb orh ood of a point U x ∈ an d a d erivative ()()x f k of order k at th e p oi nt x i tself. If ()()()0,,01,==-x f x f k an d ()()0≠x f k , then for x to be an e xt rem um of the fu nct ion f it is: n eces sary that k be ev en and th at the form ()()k k h x f b e s emid efini te, a nd sufficient th at the v alues o f t he for m ()()k k h x f on th e unit s phere 1=h be b ound ed away fr om ze ro; mo reov er, x i s a lo cal minimum if the i nequali ti es ()()0>≥δk k h x f , h old o n that sphere, and a lo cal ma ximum if ()()0<≤δk k h x f , Proof. For the pr oof we con si de r the Taylor expansio n (1) of f i n a neigh bo rhood of x . Th e ass umptions e nable u s to w rite ()()()()()k k k h h h x f k x f h x f α+=-+!1 where ()h α is a re al-valued f unc tio n, and ()0→h α as 0→h . W e fi rs t prove th e neces sary co nditions. Since ()()0≠x f k , th er e exist s a v ector 00≠h on w hic h()()00≠k k h x f . The n for values of th e real pa ram eter t suffici ently close to zero , ()()()()()()k k k th th th x f k x f th x f 0000!1α+=-+ ()()()k k k k t h th h x f k ⎪⎭⎫ ⎝⎛+=000!1α a nd the ex pr ession in the outer pa rent heses h as the same sign a s()()k k h x f 0. For x to be an e xtre mum i t i s neces sary for the left-hand sid e (an d h ence also the right-h and side) of this last e quality to be of co nstan t sign when t c han ges sig n. B ut th is is pos sible only if k is ev en . Thi s reaso ning sho ws that if x is an ex tre mum, then the sign o f the diffe ren ce ()()x f th x f -+0 is th e same a s th at of ()()k k h x f 0 fo r suffi ci e nt ly sma ll t; hen ce in that ca se th ere cann ot be two vect ors 0h , 1h