求参数取值范围一般方法Word版
(完整word版)高考数学题型归纳完整版
第一章集合与常用逻辑用语第一节集合题型1-1 集合的基本概念题型1-2 集合间的基本关系题型1-3 集合的运算第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系题型1-5 充分条件、必要条件、充要条件的判断与证明题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围第三节简单的逻辑联结词、全称量词与存在量词题型1-7 判断命题的真假题型1-8 含有一个量词的命题的否定题型1-9 结合命题真假求参数的取值范围第二章函数第一节映射与函数题型2-1 映射与函数的概念题型2-2 同一函数的判断题型2-3 函数解析式的求法第二节函数的定义域与值域(最值)题型2-4 函数定义域的求解题型2-5 函数定义域的应用题型2-6 函数值域的求解第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断题型2-8 函数单调性(区间)的判断题型2-9 函数周期性的判断题型2-10 函数性质的综合应用第四节二次函数题型2-11 二次函数、一元二次方程、二次不等式的关系题型2-12 二次方程的实根分布及条件题型2-13 二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质题型2-16 指数函数中恒成立问题第六节对数与对数函数题型2-17 对数运算及对数方程、对数不等式题型2-18 对数函数的图象与性质题型2-19 对数函数中恒成立问题第七节幂函数题型2-20 求幂函数的定义域题型2-21 幂函数性质的综合应用第八节函数的图象题型2-22 判断函数的图象题型2-23 函数图象的应用第九节函数与方程题型2-24 求函数的零点或零点所在区间题型2-25 利用函数的零点确定参数的取值范围题型2-26 方程根的个数与函数零点的存在性问题第十节函数综合题型2-27 函数与数列的综合题型2-28 函数与不等式的综合题型2-29 函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1 导数的定义题型3-2 求函数的导数第二节导数的应用题型3-3 利用原函数与导函数的关系判断图像题型3-4 利用导数求函数的单调性和单调区间题型3-5 函数的极值与最值的求解题型3-6 已知函数在区间上单调或不单调,求参数的取值范围题型3-7 讨论含参函数的单调区间题型3-8 利用导数研究函数图象的交点和函数零点个数问题题型3-9 不等式恒成立与存在性问题题型3-10 利用导数证明不等式题型3-11 导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12 定积分的计算题型3-13 求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1 终边相同角的集合的表示与识别题型4-2 α2是第几象限角题型4-3 弧长与扇形面积公式的计算题型4-4 三角函数定义题型4-5 三角函数线及其应用题型4-6 象限符号与坐标轴角的三角函数值题型4-7 同角求值——条件中出现的角和结论中出现的角是相同的题型4-8 诱导求值与变形第二节三角函数的图象与性质题型4-9 已知解析式确定函数性质题型4-10 根据条件确定解析式题型4-11 三角函数图象变换第三节三角恒等变换题型4-12 两角和与差公式的证明题型4-13 化简求值第四节解三角形题型4-14 正弦定理的应用题型4-15 余弦定理的应用题型4-16 判断三角形的形状题型4-17 正余弦定理与向量的综合题型4-18 解三角形的实际应用第五章平面向量第一节向量的线性运算题型5-1 平面向量的基本概念题型5-2 共线向量基本定理及应用题型5-3 平面向量的线性运算题型5-4 平面向量基本定理及应用题型5-5 向量与三角形的四心题型5-6 利用向量法解平面几何问题第二节向量的坐标运算与数量积题型5-7 向量的坐标运算题型5-8 向量平行(共线)、垂直充要条件的坐标表示题型5-9 平面向量的数量积题型5-10 平面向量的应用第六章数列第一节等差数列与等比数列题型6-1 等差、等比数列的通项及基本量的求解题型6-2 等差、等比数列的求和题型6-3 等差、等比数列的性质应用题型6-4 判断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合第二节数列的通项公式与求和题型6-6 数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式第二节均值不等式和不等式的应用题型7-3 均值不等式及其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 绝对值不等式的解法第四节二元一次不等式(组)与简单的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简单线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球第二节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图⟹直观图——简单几何体基本量的计算题型8-7三视图⟹直观图——简单组合体基本量的计算题型8-8 部分三视图⟹其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”、“点共面”或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12证明空间中直线、平面的垂直关系第六节空间向量及其应用题型8-13 空间向量及其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程第二节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的判断题型9-9 圆的一般方程的充要条件题型9-10 与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的判断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值及取值范围题型10-3 焦点三角形第二节双曲线题型10-4 双曲线的标准方程题型10-5 双曲线离心率的求解及其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面向量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 根据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简单排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简单排列组合问题的结合第二节排列问题题型12-4 特殊元素或特殊位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和分配问题第四节二项式定理题型12-12 证明二项式定理题型12-13 T r+1的系数与x幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式展开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率及其计算题型13-1 古典概型题型13-2 几何概型的计算第二节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回归方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理第二节直接证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{a n}通项公式的猜证及有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节几何证明选讲(选修4-1)题型16-1 圆和直角三角形中长度和角的计算题型16-2 证明题题型16-3 空间图形问题转化为平面问题第二节坐标系与参数方程(选修4-4)题型16-4 参数方程化为普通方程题型16-5 普通方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第三节不等式选讲(选修4-5)题型16-7含绝对值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。
人教A版数学选修4第一讲二绝对值不等式的解法2.docx
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升卷(五)绝对值不等式的解法(45分钟 100分)一、选择题(每小题5分,共30分)1.若>,则实数x的取值范围是( )A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)2.若a>1,则不等式|x|+a>1的解集是( )A.{x|a-1<x<1-a}B.{x|x<a-1或x>1-a}C.D.R3.已知集合A={x|x2-5x+6≤0},B={x||2x-1|>3},则A∩B等于( )A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|-1<x<3}4.若规定=|ad-bc|,则不等式lo<0的解集为( )A.(0,1)B.(1,2)C.(0,2)D.(0,1)∪(1,2)5.不等式>a的解集为M,且2∉M,则a的取值范围为( )A. B.C. D.6.已知y=log a(2-ax)在(0,1)上是增函数,则不等式log a|x+1|>log a|x-3|的解集为( )A.{x|x<-1}B.{x|x<1}C.{x|x<1,且x≠-1}D.{x|x>1}二、填空题(每小题8分,共24分)7.(2013·陕西高考)设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是.8.(2013·江西高考)在实数范围内,不等式||x-2|-1|≤1的解集为.9.若关于x的不等式ax2-|x+1|+2a<0的解集为空集,则实数a的取值范围是.三、解答题(10~11题各14分,12题18分)10.(2013·郑州高二检测)已知a∈R,设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A.(1)若a=1,求A.(2)若A=R,求a的取值范围.11.已知实数a,b满足:关于x的不等式|x2+ax+b|≤|2x2-4x-16|对一切x∈R均成立.(1)请验证a=-2,b=-8满足题意.(2)求出所有满足题意的实数a,b,并说明理由.(3)若对一切x>2,均有不等式x2+ax+b≥(m+2)x-m-15成立,求实数m的取值范围.12.(能力挑战题)已知关于x的不等式|x|>ax+1的解集为{x|x≤0}的子集,求a 的取值范围.答案解析1.【解析】选A.由题意知<0,解得-1<x<0.2.【解析】选D.由|x|+a>1,得|x|>1-a,因为a>1,所以1-a<0,故该不等式的解集为R.【变式备选】若关于x的不等式|x-a|<1的解集为(2,4),则实数a的值为( )A.3B.2C.-3D.-2【解析】选A.不等式|x-a|<1的解集为a-1<x<a+1,又因为2<x<4,所以a=3. 3.【解析】选C.A={x|2≤x≤3},B=或,所以A∩B=.【变式备选】已知集合M=,P=,则M∩P等于( )A.{x|0≤x≤3,x∈Z}B.{x|0<x≤3,x∈Z}C.{x|-1≤x≤0,x∈Z}D.{x|-1≤x<0,x∈Z}【解析】选A.M=={x|-1≤x≤3},P=={x|-1<x≤4,x∈Z},所以M∩P={x|0≤x≤3,x∈Z}.4.【解析】选D.lo<0⇒lo|x-1|<0⇒0<|x-1|<1,所以0<x<1或1<x<2.ðM,5.【解析】选B.因为2∉M,所以2∈R所以≤a,即-a≤≤a,解得a≥.6.【解题指南】先由对数函数的单调性判断a的范围,再解不等式.【解析】选C.因为y=log a(2-ax)在(0,1)上是增函数,又a>0,所以u=2-ax为减函数,所以0<a<1,所以|x+1|<|x-3|,且x+1≠0,x-3≠0,由|x+1|<|x-3|得(x+1)2<(x-3)2,解得x<1.综上,得x<1且x≠-1.7.【解题指南】利用绝对值不等式的基本知识|x-a|+|x-b|表示数轴上某点到a,b 的距离之和即可得解.【解析】函数f(x)=|x-a|+|x-b|的值域为:[|a-b|,+∞).因此,当∀x∈R时,f(x)≥|a-b|>2.所以,不等式|x-a|+|x-b|>2的解集为R.答案:R8.【解题指南】根据绝对值的意义去绝对值符号求解.【解析】由绝对值的意义,||x-2|-1|≤1等价于0≤|x-2|≤2,即-2≤x-2≤2, 即0≤x≤4.答案:[0,4]9.【解析】当x>-1时,原不等式可化为ax2-x+2a-1<0,由题意知该不等式的解集为空集,结合二次函数的图象可知a>0且Δ=1-4a(2a-1)≤0,解得a≥;当x≤-1时,原不等式可化为ax2+x+1+2a<0.由题意知该不等式的解集为空集,结合二次函数的图象可知a>0且Δ=1-4a(2a+1)≤0,解得a≥.综上可知,a≥.答案:10.【解析】(1)当x≤-3时,原不等式为-3x-2≥2x+4,得x≤-3,当-3<x≤时,原不等式化为4-x≥2x+4,得-3<x≤0.当x>时,3x+2≥2x+4,得x≥2,综上,A={x|x≤0,x≥2}.(2)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立.当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4,得x≥a+1或x≤,所以a+1≤-2或a+1≤,得a≤-2.综上,a的取值范围为a≤-2.11.【解析】(1)当a=-2,b=-8时,有|x2+ax+b|=|x2-2x-8|≤2|x2-2x-8|=|2x2-4x-16|.(2)在|x2+ax+b|≤|2x2-4x-16|中,分别取x=4,x=-2,得,所以,所以a=-2,b=-8,因此满足题意的实数a,b只能是a=-2,b=-8.(3)由x2+ax+b≥(m+2)x-m-15(x>2),所以x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1),所以对一切x>2,均有不等式≥m成立,而=(x-1)+-2≥2-2=2(当且仅当x=3时等号成立),所以实数m的取值范围是(-∞,2].【拓展提升】不等式恒成立问题的求解方法不等式恒成立,求参数的取值范围,一般有三种常用的方法:(1)直接将参数从不等式中分离出来变成k≥f(x)(或k≤f(x)),从而转化成求f(x)最值的问题.(2)如果参数不能分离,而x可以分离,如g(x)≥f(k)或g(x)≤f(k),则f(k)恒小于g(x)的最小值或恒大于g(x)的最大值,然后对关于参数k的不等式求解. (3)若不等式对于x,参数都是二次的,则借助二次函数在某区间上恒大于0或恒小于0求解.12.【解析】设y1=|x|,y2=ax+1.则y1=在同一直角坐标系中作出两函数图象,如图所示.|x|>ax+1的x,只需考虑函数y1=|x|的图象位于y2=ax+1的图象上方的部分,可知a≥1.关闭Word文档返回原板块。
数学讲义:第3章 3.3 一元二次不等式及其解法 Word版含答案
高中数学课程
1.含参数的不等式的解题步骤 (1)将二次项系数转化为正数; (2)判断相应方程是否有根(如果可以直接分解因式,可省去此步); (3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根 的大小). 2.解含参数的一元二次不等式 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 与等于 0 进行 讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.
∴g(x)max=g(3)=7m-6.
∴7m-6<0,解得
6 m<7.
∴0<m<67.
当 m=0 时,-6<0 恒成立.
当 m<0 时,g(x)在[1,3]上是减函数.
∴g(x)max=g(1)=m-6<0,解得 m<6,∴m<0.
高中数学课程
综上所述,m 的取值范围为-∞,67. 法二:f(x)<-m+5 恒成立,
高中数学课程
综上所述,
当-2<a<0 时,解集为x2a≤x≤-1
;
当 a=-2 时,解集为{x|x=-1};
当 a<-2 时,解集为x-1≤x≤2a
.
不等式恒成立问题
【例 3】 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范围; (2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
.
(2)原不等式等价于 3x2-6x+2≥0.Δ=12>0,解方程 3x2-6x+2=0,得 x1=
高中数学教师备课必备(集合):专题10 集合中的参数问题 Word版含解析
【知识回顾】根据集合关系求参数取值范围的步骤:(1)化简:将给定的集合加以化简,若有不确定因素则需分类讨论; (2)画轴:画出数轴以便明确集合之间的关系; (3)列式:根据数轴及所给集合关系列出不等式(组); (4)求解:对所列出的不等式(组)进行求解。
【例1】已知集合A={y|y>a 2+1或y<a},B={y|2≤y ≤4},若A ∩B ≠φ,求实数a 的取值范围。
点评:应用集合关系求解参数范围的关键及注意点:(1)关键:解答此类问题的关键是利用两集合关系,列出所求参数满足的不等式(组)。
(2)注意点:当题目中含有条件B B A A B A ==Y I ,,注意将关系等价转化,如A B A =I B A ⊆⇔。
【例2】已知集合}3{+≤≤=a x a x A ,1{-<=x x B 或}5>x 。
(1)若∅=B A I ,求实数a 的取值范围;(2)若B B A =Y ,求实数a 的取值范围。
解析:∅≠+≤≤=}3{a x a x A Θ,1{-<=x x B 或}5>x , (1)若∅=B A I ,如图4,则有⎩⎨⎧≤+-≥531a a ,解得21≤≤-a 。
(2)若B B A =Y ,如图,则B A ⊆,∴5,45,13>-<-⇒>-<+a a a a 或或 【例3】已知{|||},{||2}43|A x x a B x x <>=-=-.若A ∪B =R ,求实数a 的取值范围. 解:4{|}4A x a x a =<<Q -+,B ={x|x<-1或x>5},且A B R U =, ∴4145a a -<-⎧⎨+>⎩,13a ∴<<,∴实数a 的取值范围是(1,3).针对训练:1.已知集合{}21P x x =≤,{}M a =.若P M P =U ,则a 的取值范围是( )A .(],1-∞-B .[)1,+∞C .[]1,1-D .(][),11,-∞-+∞U 【答案】C考点:集合的运算.2.如果集合=A {}0242=+-x mx x 中只有一个元素,则实数m 的值为( ) A.0 B. C.2 D.0或2 【答案】D【解析】试题分析:因为集合=A {}0242=+-x mx x 中只有一个元素,所以方程2mx 420x -+=只有一个根,当0m =时显然符合题意,当0m ≠时,由0∆=得2m =,因此实数m 的值为0或2,故选D.考点:1、集合的表示;2、方程的根与系数之间的关系.3.已知集合{}{}2|30,1,A x x x B a =-<=,且A B I 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)(1,3)UC .(0,1)D .(,1)(3,)-∞+∞U 【答案】B.【考点】本题主要考查集合的关系.4.已知集合{}{}{}2310,9140,52A x x B x x x C x m x m =<<=-+<=-<<. (1)求(),A B C A B R IU ;(2)()x C x A B ∈∈⋂若是的充分不必要条件,求实数的取值范围.【答案】(1){}|37A B x x ⋂=<<,(){}710C A B x x x =<≥R U 或 (2)(],2-∞ 【解析】试题分析:(1) 由题问题为求集合的交并补运算,可先解出集合B ,再由集合运算的定义求解,注意求解中可借助数轴进行(数形结合)。
求参数取值范围一般方法
求参数取值范围一般方法参数取值范围是指一些变量的取值范围或限制,在不同的场景中,参数的取值范围有不同的定义和限制。
一般来说,我们可以使用以下几种方法来确定参数的取值范围。
1.物理范围:一些参数的取值范围可以根据物理世界中的规律确定。
例如,温度参数的取值范围可以根据物质的相变点或极限温度来确定。
这种方法主要适用于与自然现象或物质性质相关的参数。
2.数学模型:一些参数的取值范围可以通过数学模型来确定。
例如,在统计学中,一些参数的取值范围可以通过概率分布函数或统计量的定义来确定。
这种方法主要适用于与数学模型相关的参数。
3.专家意见:在一些情况下,参数的取值范围可能需要由专家根据经验或领域知识来确定。
例如,在一些金融模型中,一些参数的取值范围可能需要由金融专家来确定。
这种方法主要适用于领域专家无法通过物理或数学方法确定参数的情况。
4.数据分析:在一些情况下,参数的取值范围可以通过对实际数据的分析来确定。
例如,在市场营销中,一些参数的取值范围可以通过对市场调查数据的分析来确定。
这种方法主要适用于可以通过数据分析得到参数取值范围的情况。
5.系统约束:在一些情况下,参数的取值范围可能受到系统约束的限制。
例如,在计算机程序中,一些参数的取值范围可能受到计算机硬件或软件的限制。
这种方法主要适用于与计算机或系统相关的参数。
在确定参数的取值范围时,应该综合考虑以上几种方法,并根据具体情况选择合适的方法。
此外,还需要注意避免参数取值范围过于宽泛或过于狭窄的情况,以充分满足系统需求。
最后,为了确保参数的取值符合要求,还需要进行参数验证和测试,确保参数在取值范围内。
这样可以有效避免由于参数取值范围不合理而引发的问题。
2016年高考天津理科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试〔天津卷〕数学〔理科〕参考公式:• 如果事件A ,B 互斥,那么()()()P AB P A P B =+;• 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷〔共40分〕一、选择题:本大题共8小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的. 〔1〕【2016年天津,理1,5分】已知集合}{1,2,3,4A =,}{32,B y y x x A ==-∈,则AB =〔 〕〔A 〕}{1 〔B 〕}{4 〔C 〕{}1,3 〔D 〕{}1,4 【答案】D 【解析】把1,2,3,4x =分别代入32y x =-得:1,4,7,10y =,即{}1,4,7,10B =,∵{}1,2,3,4A =,∴{}1,4AB =,故选D .【点评】此题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基此题,难点系数较小.一要注意培养良好的答题习惯,防止出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.〔2〕【2016年天津,理2,5分】设变量x ,y 满足约束条件2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为〔 〕〔A 〕4- 〔B 〕6 〔C 〕10 〔D 〕17 【答案】B【解析】作出不等式组2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩表示的可行域,如右图中三角形的区域,作出直线0:250l x y +=,图中的虚线,平移直线0l ,可得经过点()3,0时,25z x y =+取得最小值6,故选B .【点评】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. 〔3〕【2016年天津,理3,5分】在ABC ∆中,假设13AB =,3BC =,120C ∠=,则AC =〔 〕〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4 【答案】A【解析】在ABC ∆中,假设13AB =,3BC =,120C ∠=,2222cos AB BC AC AC BC C =+-⋅,得:21393AC AC =++,解得1AC =或4AC =-〔舍去〕,故选A .【点评】〔1〕正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.〔2〕利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而到达知三求三的目的.(4)〔4〕【2016年天津,理4,5分】阅读右边的程序框图,运行相应的程序,则输出S 的值为〔 〕 〔A 〕2 〔B 〕4 〔C 〕6 〔D 〕8 【答案】B【解析】第一次判断后:不满足条件,248S =⨯=,2n =,4i >;第二次判断不满足条件3n >;第三次判断满足条件:6S >,此时计算862S =-=,3n =,第四次判断3n >不满足条件,第五次判断6S >不满足条件,4S =.4n =,第六次判断满足条件3n >,故输出4S =,故选B .【点评】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.〔5〕【2016年天津,理5,5分】设{}n a 是首项为正数的等比数列,公比为q 则“0q <”是“对任意的正整数n ,2120n n a a -+<”的〔 〕〔A 〕充要条件 〔B 〕充分而不必要条件 〔C 〕必要而不充分条件 〔D 〕既不充分也不必要条件 【答案】C【解析】{}n a 是首项为正数的等比数列,公比为q ,假设“0q <”是“对任意的正整数n ,2120n n a a -+<”不一定成立,例如:当首项为2,12q =-时,各项为2,1-,12,14-,…,此时()2110+-=>,1110244⎛⎫+-=> ⎪⎝⎭; 而“对任意的正整数n ,2120n n a a -+<”,前提是“0q <”,则“0q <”是“对任意的正整数n ,2120n n a a -+<” 的必要而不充分条件,故选C .【点评】充分、必要条件的三种判断方法.〔1〕定义法:直接判断“假设p 则q ”、“假设q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.〔2〕等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否认式的命题,一般运用等价法.〔3〕集合法:假设A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;假设A =B ,则A 是B 的充要条件.〔6〕【2016年天津,理6,5分】已知双曲线()222104x y b b-=>,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为〔 〕 〔A 〕223144x y -= 〔B 〕224143x y -= 〔C 〕222144x y -= 〔D 〕221412x y -= 【答案】D【解析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为224x y +=,双曲线两条渐近线方程为2by x =±,设,2b A x x ⎛⎫ ⎪⎝⎭,则∵四边形ABCD 的面积为2b ,∴22x bx b ⋅=,∴1x =±,将1,2b A ⎛⎫⎪⎝⎭代入224x y +=,可得2144b +=,∴212b =,∴双曲线的方程为221412x y -=,故选D .【点评】求双曲线的标准方程关注点:〔1〕确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.〔2〕利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以防止讨论.①假设双曲线的焦点不能确定时,可设其方程为()2210Ax By AB =<+.②假设已知渐近线方程为0mx ny +=,则双曲线方程可设为()22220m x n y λλ-=≠.〔7〕【2016年天津,理7,5分】已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为〔 〕〔A 〕58- 〔B 〕18 〔C 〕14 〔D 〕118【答案】B【解析】由DD 、E 分别是边AB 、BC 的中点,2DE EF =,()()AF BC AD DF AC AB ⋅=+⋅-()()2213133112224442AB DE AC AB AB AC AC AB AC AB AC AB ⎛⎫⎛⎫=+⋅-=+⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭,311111144228=-⋅⋅⋅-=,故选B .【点评】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.〔8〕【2016年天津,理8,5分】已知函数2(43)3,0()log (1)1,0a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩〔0a >,且1a ≠〕在R 上单调递减,且关于x 的方程()2f x x =-恰好有两个不相等的实数解,则a 的取值范围是〔 〕〔A 〕20,3⎛⎤ ⎥⎝⎦ 〔B 〕23,34⎡⎤⎢⎥⎣⎦〔C 〕123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭ 〔D 〕123,334⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭【答案】C【解析】()log 11a y x =++在[)0,+∞递减,则01a <<,函数()f x 在R 上单调递减,则()()234020104303log 011a a a a a -⎧≥⎪⎪<<⎨⎪+-⋅+≥++⎪⎩;解得,1334a ≤≤;由图象可知,在[)0,+∞上,()2f x x =-有且仅有一个解,故在(),0-∞上,()2f x x =-同样有且仅有一个解,当32a >即23a >时,联立()24332x a a x +-+=-,则()()2424320a a ∆=---=,解得34a =或1〔舍去〕,当132a ≤≤时,由图象可知,符合条件,综上:a 的取值范围为123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭,故选C .【点评】已知函数有零点求参数取值范围常用的方法和思路:〔1〕直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围〔2〕别离参数法:先将参数别离,转化成求函数值域问题加以解决;〔3〕数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第II 卷〔共110分〕二、填空题:本大题共6小题,每题5分,共30分.〔9〕【2016年天津,理9,5分】已知a ,R b ∈,i 是虚数单位,假设()()1i 1i b a +-=,则ab的值为 . 【答案】2【解析】∵()()()1i 1i 11i b b b a +-=++-=,,R a b ∈,∴110b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,∴2a b =.【点评】此题重点考查复数的基本运算和复数的概念,属于基此题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,.)++=-++∈a b c d ac bd ad bc a b c d R ,22i ()()ii +++-=++a b ac bd bc ad c d c d(,,.)∈a b c d R ,其次要熟悉复数相关基本概念,如复数i(,)+∈a b a b R 的实部为a 、虚部为b 、模为22+a b 、共轭为i -a b .〔10〕【2016年天津,理10,5分】821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为 .〔用数字作答〕【答案】56-【解析】()()8216318811r rr r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令1637r -=,解得3r =.∴821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为()338156C -=-.【点评】〔1〕求特定项系数问题可以分两步完成:第一步是根据所给出的条件〔特定项〕和通项公式,建立方程来确定指数〔求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n r ≥〕;第二步是根据所求的指数,再求所求解的项.〔2〕有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.〔11〕【2016年天津,理11,5分】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如下图〔单位:m 〕,则该四棱锥的体积为 3m .【答案】2【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积2212m S =⨯=,棱锥的高3m h =,312m 3V Sh ==.【点评】〔1〕解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.〔2〕三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图 的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.〔12〕【2016年天津,理12,5分】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22BE AE ==,BD ED =,则线段CE 的长为 .【答案】233【解析】过D 作DH AB ⊥于H ,∵22BE AE ==,BD ED =,∴1BH HE ==,2AH =,1BH =, ∴2•2DH AH BH ==,则2DH =,在Rt DHE ∆中,则 22213DE DH HE =+=+=,由相交弦定理得:CE DE AE EB ⋅=⋅,∴122333AE EB CE DE ⋅⨯===. 【点评】1、解决与圆有关的成比例线段问题的两种思路:〔1〕直接应用相交弦、切割线定理及其推论;〔2〕当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相 似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2、应用相交 弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关 的相似三角形等.〔13〕【2016年天津,理13,5分】已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增.假设实数a 满足()()122a f f ->-,则a 的取值范围是 .【答案】13,22⎛⎫ ⎪⎝⎭【解析】∵()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增,∴()f x 在区间()0,+∞上单调递减,则()()122a f f ->-,等价为()()122a f f ->,即1222a --<<,则112a -<,即1322a <<.【点评】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:〔1〕借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.〔2〕借助 函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代 数式的几何意义实现“数”向“形”的转化.〔14〕【2016年天津,理14,5分】设抛物线222x pt y pt ⎧=⎨=⎩〔t 为参数,0p >〕的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .假设2CF AF =,且ACE ∆的面积为32,则p 的值为 . 【答案】6【解析】抛物线222x pt y pt⎧=⎨=⎩〔t 为参数,0p >〕的普通方程为:22y px =焦点为,02p F ⎛⎫⎪⎝⎭,如图:过抛物线上一点A 作l 的垂线,垂足为B ,设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .2CF AF =,3CF p =,32AB AF p ==,(),2A p p ,ACE ∆的面积为32,12AE AB EF CF ==,可得13AFC ACE S S ∆∆=.即:11323232p p ⨯⨯⨯=,解得6p =.【点评】〔1〕凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.〔2〕假设()00,P x y 为抛物线()220y px p =>上一点,由定义易得02pPF x =+;假设过焦点的弦AB 的端点坐标为()11,A x y ,()22,B x y ,则弦长为12AB x x p =++,12x x +可由根与系数的关系整体求出;假设遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.〔15〕【2016年天津,理15,13分】已知函数()4tan sin cos 23f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭〔1〕求()f x 的定义域与最小正周期;〔2〕讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性.解:〔1〕()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭214sin cos 2sin cos 2x x x x x x ⎛⎫=+- ⎪ ⎪⎝⎭)()sin 21-cos2sin 2=2sin 23x x x x x π==-.所以, ()f x 的最小正周期22T ππ==. 〔2〕令23z x π=-,函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦. 所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【点评】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为()sin y A x k ωϕ=++的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的表达;降次是一种三角变换的常用技巧,要灵活运用降次公式.〔16〕【2016年天津,理16,13分】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. 〔1〕设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;〔2〕设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:〔1〕由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. 〔2〕随机变量X 的所有可能取值为0,1,2.()2223342104015C C C P X C ++===,()111133342107115C C C C P X C +===, ()113424215C C P X C ===.所以,随机变量X 分布列为: 随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=.【点评】求均值、方差的方法〔1〕已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;〔2〕已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;〔3〕如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.〔17〕【2016年天津,理17,13分】如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,2AB BE ==. 〔1〕求证://EG 平面ADF ;〔2〕求二面角O EF C --的正弦值;〔3〕设H 为线段AF 上的点,且23AH HF =,求直线BH 和平面CEF 所成角的正弦值.解:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),A B C ----(11,0),D ,(1,1,2),E --(0,0,2),F (1,0,0)G -.〔1〕()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面. 〔2〕易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-.因此有2226cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为33. 〔3〕由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭, 从而284,,555BH ⎛⎫= ⎪⎝⎭,因此2227cos ,21BH n BH n BH n ⋅<>==-⋅.直线BH 和平面CEF 所成角的正弦值为721.【点评】1、利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2、利用数量积可解决有关垂直、夹角、长度问题.〔1〕0a ≠,0b ≠,·0a b a b ⊥⇔=;〔2〕2a a =;〔3〕cos ,a ba b a b ⋅=.〔18〕【2016年天津,理18,13分】已知{}n a 是各项均为正数的等差数列,公差为d .对任意的N n *∈,n b 是na和1n a +的等比中项.〔1〕设221n n n c b b +=-,N n *∈,求证:数列}{n c 是等差数列;〔2〕设1a d =,221(1)nk n k k T b ==-∑,N n *∈,求证21112nk kT d =<∑. 解:〔1〕由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.〔2〕()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nnnk k k kT d k k d k k dn d===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 【点评】分组转化法求和的常见类型〔1〕假设n n n a b c ±=,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和.〔2〕通项公式为n a =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和.〔19〕【2016年天津,理19,14分】设椭圆22213x y a +=(a >的右焦点为F ,右顶点为A .已知113e OF OA FA+=,其中O 为原点,e 为椭圆的离心率.〔1〕求椭圆的方程;〔2〕设过点A 的直线l 与椭圆交于点B 〔B 不在x 轴上〕,垂直于l 的直线与l 交于点M ,与y 轴交于点H .假设BF HF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.解:〔1〕设(),0F c ,由113cOF OA FA+=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.〔2〕设直线l 的斜率为k ()0k ≠,则直线l 的方程为()2y k x =-.设(),B B B x y ,由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩, 消去y ,整理得()2222431616120k x k x k +-+-=.解得2x =,或228643k x k -=+,由题意得228643B k x k -=+,从而21243B ky k -=+.由〔1〕知,()1,0F ,设()0,H H y ,有()1,H FH y =-,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭.由BF HF ⊥,得0BF HF ⋅=,所以222129404343H ky k k k -+=++,解得29412H k y k-=.因此直线MH 的方程为219412k y x k k -=-+.设(),M M M x y ,由方程组219412(2)k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,解得2220912(1)M k x k +=+.在MAO ∆中,||||MOA MAO MA MO ∠≤∠⇔≤,即()22222M MMMx y x y -+≤+,化简得1M x ≥,即22209112(1)k k +≥+,解得k ≤或k ≥l的斜率的取值范围为6,,4⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭. 【点评】在利用代数法解决最值与范围问题时常从以下五个方面考虑:〔1〕利用判别式来构造不等关系,从而确定参数的取值范围;〔2〕利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间 建立等量关系;〔3〕利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;〔4〕利用基本 不等式求出参数的取值范围;〔5〕利用函数的值域的求法,确定参数的取值范围.〔20〕【2016年天津,理20,14分】设函数()3()1f x x ax b =---,x ∈R ,其中a ,b ∈R .〔1〕求()f x 的单调区间;〔2〕假设()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,求证:1023x x +=;〔3〕设0a >,函数()()g x f x =,求证:()g x 在区间[]0,2上的最大值不小于...14. 解:〔1〕由()()31f x x ax b =---,可得()()2'31f x x a =--.下面分两种情况讨论:①当0a ≤时,有()()2'310f x x a =--≥恒成立,所以()f x 的单调递增区间为(),-∞+∞. ②当0a >时,令()'0fx =,解得1x =+1x = 当x 变化时,()'f x ,()f x 的变化情况如下表:所以⎝⎭⎝⎭⎫+∞⎪⎪⎝⎭. 〔2〕因为()f x 存在极值点,所以由〔1〕知0a >,且01x ≠,由题意,得()()200'310f x x a =--=,即()2013a x -=,进而()()300002133a a f x x axb x b =---=---. ()()()()()3000000082322222123333a a a f x x a xb x ax a b x b f x -=----=-+--=---=,且0032x x -≠,由题意及〔1〕知,存在唯一实数满足()()10f x f x =,且10x x ≠,因此1032x x =-,所以1023x x +=.〔3〕设()g x 在区间[]0,2上的最大值为M ,{}max ,x y 表示,x y 两数的最大值.下面分三种情况同理:①当3a ≥时,1021≤<≤,由〔1〕知,()f x 在区间[]0,2上单调递减,所以()f x 在区间 []0,2上的取值范围为()()2,0f f ⎡⎤⎣⎦,因此()(){}{}max 2,0max 12,1M f f a b b ==----{}max 1(),1()a a b a a b =-++--+1(),01(),0a a b a b a a b a b -+++≥⎧=⎨--++<⎩,所以12M a a b =-++≥.②当334a ≤<时,101121≤<<+<≤+1〕和〔2〕知,()011f f f ⎛⎛≥-=+ ⎝⎭⎝⎭,()211f f f ⎛⎛≤+= ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为1,1ff ⎡⎤⎛⎛+⎢⎥ ⎢⎥⎝⎭⎝⎭⎣⎦,max 1,1M f f ⎧⎫⎛⎫⎛⎪⎪=+- ⎪ ⎨⎬ ⎪ ⎝⎭⎝⎭⎪⎪⎩⎭max a b a b ⎧⎫=---⎨⎬⎩⎭()()max a b a b ⎧⎫=++⎨⎬⎩⎭231944a b =+≥⨯=.③当304a <<时,0112<<<,由〔1〕和〔2〕知,()011f f f ⎛⎛<=+ ⎝⎭⎝⎭,()211f f f ⎛⎛>=- ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为()()0,2f f ⎡⎤⎣⎦,因此 ()(){}{}max 0,2max 1,12M f f b a b ==----()(){}max 1,1a a b a a b =-++--+11||4a ab =-++>. 综上所述,当0a >时,()g x 在区间[]0,2上的最大值不小于14. 【评析】1、求可导函数单调区间的一般步骤:〔1〕确定函数()f x 的定义域〔定义域优先〕;〔2〕求导函数()f x ';〔3〕在函数()f x 的定义域内求不等式()0f x '>或()0f x '<的解集.〔4〕由()()()00f x f x >'<'的解集确定函数()f x 的单调增〔减〕区间.假设遇不等式中带有参数时,可分类讨论求得单调区间.2、由函数()f x 在(),a b 上的单调性,求参数范围问题,可转化为()0f x '≥ 〔或()0f x '≤〕恒成立问题,要注意“=”是否可以取到.。
例析求参数取值范围的常用方法
点评 :在 求参数 的取值 范 围时 ,先 求 出原命题 的否命题 中参数 的取 值 范围 。再 求原命题 中参 数 的
取值 范 围. 当命题 出现 “ 多” “ 至 至少”或 直接 从正 面人 手难 以寻觅解题 的 突破 口时 .宜考虑 利 用反 面
求解法.
六 、利 用数形 结合 法 求参数 取值范 围
间 D上是 下降的甘在 区间 D上 自变量增大 函数值减
( ) g 甘 函数 , 图像与 函数 gx 图像有 1 _ () () ()
交点:
小. 类似地 , 函数, 在 区间 D上是增 函数乍 ) 图 () 的
像在 区间 D上是上升 的甘 在区间 D上 自变量增 大 函
( )() g § 函数, 图像恒在函数 gx 图像 2, > ) () ()
习 中善 于归纳 、总结 ,就会 发现有 关求参 数取值 范 解析 : 函数, ) 一 叶 1x l O1 上单调 递 ( = ( )+ l 在【,】 e 减 ( ) 0 [ 1上恒成立 - 在 0] < , 在 【, 上 恒成立 .0 Ol 】 . ’
0即o . . ≥1
2(- )一 O在 + I ̄X 司
到等.
破 ;适 当改 变参数 的取值范 围来 区分文 科与 理科 难
度 ,培养推理论证能力 ,综合提高数学思维能力 ,为 解好高考压轴题做准备.
今年 高考数 学对不 等式 的考查 .在 基础 上做 文 章 ,回归课本 ,于平淡处 出神奇 , “ 摘叶飞花 ”. 符 合 时代要求 ,为师生所喜爱 . 也许 ,这正是解 决 当今
再
暌 得 : 孚 < 解 .
围( 是掣 , ) .
的值 取范
(2 x-
求参数取值范围的方法
求参数取值范围的方法参数取值范围是在科学研究和工程设计中常见的问题。
确定参数的取值范围对于正确的模型建立和系统设计至关重要。
本文将介绍一些常用的方法来确定参数的取值范围。
一、理论分析法理论分析法是通过对问题进行深入研究和分析,结合已有的理论知识和经验,来确定参数的取值范围。
这种方法适用于已有较为完善的理论模型或经验公式的情况。
通过对模型或公式的推导和分析,可以得到参数的取值范围。
二、实验测定法实验测定法是通过实验手段来确定参数的取值范围。
通过设计合理的实验方案,对参数进行系统的测量和观察,得到参数的实际取值范围。
这种方法适用于对参数的影响机理不清楚或无法通过理论分析得到准确结果的情况。
三、经验估计法经验估计法是通过借鉴过去的经验和类似问题的解决方法,来估计参数的取值范围。
通过对类似问题的分析和总结,可以得到参数的典型取值范围。
这种方法适用于缺乏理论模型或实验数据的情况。
四、专家咨询法专家咨询法是通过请教相关领域的专家来确定参数的取值范围。
专家凭借自己的经验和知识,可以给出合理的参数取值范围。
这种方法适用于问题比较复杂或涉及多个学科领域的情况。
五、参数优化算法参数优化算法是通过数值计算的方法来确定参数的取值范围。
通过建立数学模型和定义优化目标,可以使用优化算法来搜索最优的参数取值范围。
这种方法适用于参数之间存在复杂的相互关系或目标函数不易通过解析方法求解的情况。
在确定参数取值范围时,需要考虑以下几个因素:1. 系统要求:根据系统的要求和性能指标,确定参数的取值范围。
例如,对于一个控制系统,参数的取值范围应该能够满足系统的稳定性和响应速度要求。
2. 物理限制:考虑参数的物理限制,例如材料的强度、温度的范围等。
参数的取值范围应该在物理限制范围内。
3. 经济因素:考虑参数的取值对系统成本的影响。
参数的取值范围应该在经济可接受范围内。
4. 安全因素:考虑参数的取值对系统安全性的影响。
参数的取值范围应该能够保证系统的安全运行。
求参数取值范围一般方法
求参数取值范围一般方法参数取值范围是指参数在特定条件下允许的取值范围。
在软件开发、数据分析、科学实验等领域中,确定参数的取值范围是非常重要的,因为这会影响到结果的准确性、可信度以及应用的有效性。
下面介绍一般的方法来确定参数的取值范围。
1.理论分析法:通过对问题的物理、数学或其他理论进行分析,可以确定参数的取值范围。
例如,在设计一个模型时,可以根据模型的基本原理和公式来确定参数该取值范围。
这种方法特别适用于已有理论支持的情况。
2.经验法:根据以往的经验或类似问题的实例,可以推断参数的取值范围。
这种方法通常适用于缺乏理论依据的情况下。
例如,针对其中一种疾病的药物剂量,可以参考以往的治疗经验来确定剂量的取值范围。
3.数据分析法:通过对已有数据进行统计分析,可以确定参数的取值范围。
例如,在建立一种新的预测模型时,可以通过对历史数据的分析来确定参数的范围。
这种方法可以利用统计方法,如均值、方差、相关性等来分析数据。
4.试错法:通过反复尝试参数的不同取值,观察实际效果,逐步逼近最佳取值范围。
这种方法适用于直观的实验或模拟过程。
例如,在优化算法的应用中,可以通过不断调整参数的取值来获得最佳的结果。
5.常识法:根据实际情况和常识来确定参数的大致取值范围。
例如,在设计一个电子产品的电池寿命时,可以根据用户的使用习惯和常见的电池寿命来估算参数的范围。
总结起来,确定参数的取值范围是一个综合性的问题,需要结合理论、经验、数据分析、试错和常识等多种方法。
在确定参数的取值范围时,需要考虑到参数的物理限制、问题的实际需求以及结果的准确性和可靠性。
此外,还需要根据具体情况灵活运用不同的方法,以确保参数的取值范围能够满足问题的要求。
2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.1 单调性 Word版含答案
1.3 导数在研究函数中的应用1.3.1单调性1.利用导数研究函数的单调性.(重点)2.含有字母参数的函数单调性的讨论,单调区间的求解.(难点)3.由单调性求参数的取值范围.(易错点)[基础·初探]教材整理函数的单调性与其导数的关系阅读教材P28“例1”以上部分,完成下列问题.1.函数的单调性与其导数的关系(1)一般地,在某区间上函数y=f(x)的单调性与导数有如下关系:(2)2.导数与函数图象间的关系(1)导函数图象在x轴上方的区间为原函数的单调增区间,导函数图象在x轴下方的区间为原函数的单调减区间.(2)一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”;反之,函数的图象就“平缓”一些.1.判断正误:(1)若函数f(x)在(a,b)上是增函数,则对任意x∈(a,b),都有f′(x)>0.( )(2)函数f(x)=1x在其定义域上是单调减函数.( )(3)函数f(x)=x3-2x在(1,+∞)上单调递增.( )(4)若存在x∈(a,b)有f′(x)=0成立,则函数f(x)为常数函数.( )【答案】(1)×(2)×(3)√(4)×2.函数f(x)=(x-3)e x的单调递增区间是________.【解析】f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x,令f′(x)>0,解得x>2.【答案】(2,+∞)[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)0)内是减函数.(2)判断函数f(x)=ln xx在区间(0,2)上的单调性.【精彩点拨】求出导数f′(x),然后判断导数的符号即可.【自主解答】(1)证明:由于f(x)=e x-x-1,所以f′(x)=e x-1,当x∈(0,+∞)时,e x>1,即f′(x)=e x-1>0.故函数f(x)在(0,+∞)内为增函数,当x∈(-∞,0)时,e x<1,即f′(x)=e x-1<0. 故函数f(x)在(-∞,0)内为减函数.(2)由于f(x)=ln x x,所以f′(x)=1x·x-ln xx2=1-ln xx2.由于0<x<2,所以ln x<ln 2<1,x2>0.故f′(x)=1-ln xx2>0.∴函数f(x)在区间(0,2)上是单调递增函数.1.利用导数证明函数f(x)在给定区间上的单调性,实质上就是证明f′(x)>0(或f′(x)<0)在给定区间上恒成立.2.利用导数判断可导函数f(x)在(a,b)内的单调性,步骤是:(1)求f′(x);(2)确定f′(x)在( a,b)内的符号;(3)得出结论.[再练一题]1.证明:函数y=ln x+x在其定义域内为增函数.【证明】显然函数的定义域为{x|x>0},又f′(x)=(ln x+x)′=1x+1,当x>0时,f′(x)>1>0,故y=ln x+x在其定义域内为增函数.(1)f(x)=x2-ln x;(2)f(x)=exx-2;(3)f (x )=-x 3+3x 2.【精彩点拨】 首先确定函数的定义域,再求导数,进而解不等式得单调区间. 【自主解答】 (1)函数f (x )的定义域为(0,+∞). f ′(x )=2x -1x=错误!.因为x >0,所以2x +1>0,由f ′(x )>0,解得x >22,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎪⎫22,+∞; 由f ′(x )<0,解得x <22,又x ∈(0,+∞),所以函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎪⎫0,22. (2)函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=错误!=错误!.因为x ∈(-∞,2)∪(2,+∞), 所以e x >0,(x -2)2>0.由f ′(x )>0,解得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0,解得x <3,又x ∈(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3).(3)函数f (x )的定义域为R . f ′(x )=-3x 2+6x =-3x (x -2).当0<x <2时,f ′(x )>0,所以函数f (x )的单调递增区间为(0,2);当x <0或x >2时,f ′(x )<0,所以函数f (x )的单调递减区间为(-∞,0)和(2,+∞).利用导数求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)由f ′(x )>0(或f ′(x )<0),解出相应的x 的范围;当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应区间上是减函数.(4)结合定义域写出单调区间.[再练一题]2.若函数f (x )=x 2-2x -4ln x ,则函数f (x )的单调递增区间为________.【导学号:01580011】【解析】 由已知f (x )的定义域为(0,+∞), f ′(x )=2x -2-4x =2x2-2x -4x,由f ′(x )>0得x 2-x -2>0,解得x <-1或x >2, 又x >0,所以函数f (x )的单调递增区间为(2,+∞). 【答案】 (2,+∞)[探究共研型]探究【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x +ax +ln x (a ∈R )在(1,+∞)上单调递增,求a 的取值范围.【提示】 函数f (x )的定义域为(0,+∞),f ′(x )=1-ax2+1x =x2+x -ax由题意知,f ′(x )≥0在(1,+∞)上恒成立, 即x 2+x -a ≥0在(1,+∞)上恒成立, 令g (x )=x 2+x -a =⎝ ⎛⎭⎪⎪⎫x +122-14-a ,则g (x )>2-a ,从而2-a ≥0,∴a ≤2. 当a =2时,f ′(x )>0在(1,+∞)上恒成立, 因此实数a 的取值范围是(-∞,2].已知关于x 的函数y =x 3-ax +b .(1)若函数y 在(1,+∞)内是增函数,求a 的取值范围; (2)若函数y 的一个单调递增区间为(1,+∞),求a 的值.【精彩点拨】 (1)函数在区间(1,+∞)内是增函数,则必有y ′≥0在(1,+∞)上恒成立,由此即可求出a 的取值范围.(2)函数y 的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】 y ′=3x 2-a .(1)若函数y =x 3-ax +b 在(1,+∞)内是增函数. 则y ′=3x 2-a ≥0在x ∈(1,+∞)时恒成立, 即a ≤3x 2在x ∈(1,+∞)时恒成立, 则a ≤(3x 2)最小值. 因为x >1,所以3x 2>3.所以a ≤3,即a 的取值范围是(-∞,3]. (2)令y ′>0,得x 2>a3.若a ≤0,则x 2>a3恒成立,即y ′>0恒成立,此时,函数y =x 3-ax +b 在R 上是增函数,与题意不符. 若a >0,令y ′>0,得x >a 3或x <-a 3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a =3.1.解答本题注意:可导函数f (x )在(a ,b )上单调递增(或单调递减)的充要条件是f ′(x )≥0(或f ′(x )≤0)在(a ,b )上恒成立,且f ′(x )在(a ,b )的任何子区间内都不恒等于0.2.已知f (x )在区间(a ,b )上的单调性,求参数范围的方法(1)利用集合的包含关系处理f (x )在(a ,b )上单调递增(减)的问题,则区间(a ,b )是相应单调区间的子集;(2)利用不等式的恒成立处理f (x )在(a ,b )上单调递增(减)的问题,则f ′(x )≥0(f ′(x )≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-1所示,则导函数y=f′(x)的图象可能是( )图1-3-1【解析】当x<0时,f(x)为增函数,f′(x)>0,排除①,③;当x>0时,f(x)先增后减再增,对应f ′(x )先正后负再正.故选④.【答案】 ④2.下列函数中,在区间(-1,1)上是减函数的有________(填序号). ①y =2-3x 2;②y =ln x ;③y =1x -2;④y =sin x .【解析】 显然,函数y =2-3x 2在区间(-1,1)上是不单调的; 函数y =ln x 的定义域为(0,+∞),不满足题目要求; 对于函数y =1x -2,其导数y ′=错误!<0,且函数在区间(-1,1)上有意义,所以函数y =错误!在区间(-1,1)上是减函数;函数y =sin x 在⎝ ⎛⎭⎪⎪⎫-π2,π2上是增函数,所以函数y =sin x 在区间(-1,1)上也是增函数.【答案】 ③3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________.【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,12.【答案】 ⎝⎛⎭⎪⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x2-2x恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎢⎡⎦⎥⎥⎤14,1,所以G (x )最大值=-716(此时x =4), 所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x16x=错误!.因为x ∈[1,4],所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫-716,+∞.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________我的课下提升方案:(1)_______________________________________________(2)_______________________________________________。
利用导数解决含参的问题(word版含答案和详细解析)
利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
(完整word版)线性规划问题经典习题
线性规划问题1线性规划下的非线性问题1.1线性规划下的距离问题已知220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,当x,y取何值时(1取得最大值?(2)()222x y++取得最小值?1。
2线性规划下的斜率问题已知220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,(1)当x,y取何值时,11yx++取得最大值?(2)求322xy--取值范围。
1。
3线性规划下的向量问题(1)点P(x,y)满足不等式组105702x yx yy-+≥⎧⎪--≤⎨⎪≥-⎩,i为x轴正方向上的单位向量,则向量OP在向量i方向上的投影的最大值是____________(2)已知(A,O是原点,点P(x,y)的坐标满足20yxy-<-+<⎨⎪≥⎪⎩,则OP OAOP⋅的取值范围是______________1。
4线性规划下的分式函数问题(1)如果实数a,b满足条件20101a bb aa+-≥⎧⎪--≤⎨⎪≤⎩,则22a ba b++的最大值是.(2)设实数x,y满足2025020x yx yy--≤⎧⎪+-≥⎨⎪-≤⎩,则22x yuxy+=的取值范围是.1。
5线性规划下的抛物线问题在平面直角坐标系中,不等式组0,0,,x yx yx a+≥⎧⎪-≥⎨⎪≤⎩(a为常数),表示的平面区域的面积是8,则2x y+的最小值是。
2。
非线性规划下的线性问题(1)实数x,y满足2222101212x y x yxy⎧+--+≥⎪≤≤⎨⎪≤≤⎩,则x+y取得最小值时,点(x,y)的个数是.(2)定义[]x 表示不超过x 的最大整数,又设x ,y 满足方程[][]313435y x y x ⎧=+⎪⎨=-+⎪⎩,如果x 不是整数,则x+y 的取值范围是 .3。
非线性规划下的非线性问题(1)已知钝角三角形ABC 的最大边长为2,其余两边长为x,y ,则以(x ,y )为坐标的点表示平面区域的面积是 .(2)已知实数x ,y 满足不等式组2262902312x y x y x y ⎧+--+≤⎪≤≤⎨⎪≤≤⎩取值范围是 . 4线性规划的逆问题4.1线性约束条件中的参数问题(1)已知x ,y 满足140x x y ax by c ≥⎧⎪+≤⎨⎪++≤⎩,且目标函数2z x y =+的最大值是7,最小值是1,则_______a b c a ++= (2)设m 为实数,若{}22250(,)30(,)250x y x y x x y x y mx y ⎧⎫-+≥⎧⎪⎪⎪-≥⊆+≤⎨⎨⎬⎪⎪⎪+≥⎩⎩⎭,则m 的取值范围是 .4。
求参数取值范围一般方法
求参数取值范围一般方法参数取值范围是指其中一变量或参数的取值范围。
它是指该变量能够取到的所有可能的值的范围。
在许多领域中,包括科学、工程、计算机科学等,参数的取值范围是非常重要的。
在这篇文章中,我们将介绍一般的方法来确定参数的取值范围,并探讨一些常见的应用。
首先,确定参数取值范围的一般方法是根据问题的要求和约束条件来确定。
在大多数情况下,参数的取值范围是根据问题的需求来确定的。
例如,如果我们正在解决一个问题,需要找到一个正数解,那么参数的取值范围通常是0到正无穷大。
而如果我们需要找到一个整数解,那么参数的取值范围通常是整数集合。
其次,我们可以使用数学模型来确定参数取值范围。
数学模型是在问题域中对问题进行建模的过程。
通过建立合适的数学模型,可以帮助我们更好地理解问题的性质和要求,并确定参数的取值范围。
例如,在优化问题中,我们可以使用线性规划模型来确定参数的取值范围,以满足线性约束条件。
在模拟和数值计算中,我们可以使用数值分析方法,如有限元法和差分法来确定参数的取值范围。
第三,我们可以利用经验和专业知识来确定参数取值范围。
在许多领域,专业人士通常有丰富的经验和专业知识,可以帮助他们确定参数的取值范围。
例如,在医学诊断中,医生通常利用他们的临床经验和专业知识来确定一些指标的正常范围。
在工程设计中,工程师通常根据材料的性质和安全要求来确定参数的取值范围。
最后,我们可以使用计算机模拟和优化方法来确定参数取值范围。
计算机模拟和优化是一种通过计算机模拟和优化算法来确定参数的取值范围的方法。
通过建立合适的数学模型和使用相应的计算机算法,可以帮助我们在大规模和复杂的问题中确定参数的取值范围。
例如,在交通规划中,我们可以使用交通模拟软件来模拟不同的交通情景,并确定最佳的参数取值范围。
总之,确定参数取值范围是一项复杂而重要的任务。
通过运用上述方法,我们可以更好地理解问题,并确定合适的参数取值范围。
无论在哪个领域,确定参数取值范围都是非常重要的,它将直接影响到问题的解决方案和结果。
高考数学九大模块word版本
高考数学九大模块一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
河道水面线推求及参数选取方法Word版
设计洪水水面线推算根据沿程比降、流量、建筑物及支流汇入情况,水面线分段进行推算。
(1)水面线推算的基本公式水面线计算按明渠恒定非均匀渐变流能量方程,在相邻断面之间建立方程,采用逐段试算法从下游往上游进行推算。
具体如下:2g2g 21w 2221V h V Z Z αα-++= 式中: 1Z 、1V ——上游断面的水位和平均流速;2Z 、2V ——下游断面的水位和平均流速;j f w h h h +=——上、下游断面之间的能量损失;l RC Vh f 22=——上、下游断面之间的沿程水头损失; )22(2221gV g V h j -=ζ——上、下游断面之间的局部水头损失; ζ——局部水头损失系数,根据《水力计算手册》,由于断面逐渐扩大的ζ取值0.333,桥渡处ζ取值0.05~0. 1。
C ——谢才系数;R ——水力半径;α——动能修正系数。
(2)河道糙率河道的粗糙系数受到河床组成床面特性、平面形态及水流流态、植物、岸壁特性等影响,情况复杂,不易估计,本工程河道基本顺直,床面平整,经过整治的河床粗糙系数可以采用《水工设计手册》第一卷P1-404介绍的当量粗糙系数x Nxnn ∑=1当 ;设总湿周x 的各组成部分1x ,2x ,……N x 及所对应的粗糙系数分别为n 1,n 2……n N 。
1糙率的选取河道糙率影响因素有河槽方面也有水流方面。
河槽边壁及河床粗糙程度,滩地植被,河槽纵横形态的变化是主要因素。
大洪水糙率小于小洪水糙率,若附近有大洪水资料时可采用河段附近现状河道纵横断面资料反推综合糙率;若河道纵横断面于大洪水有较大变化时应在河道原貌的基础上反推糙率;反推糙率实际上小于实际糙率。
无资料时可根据经验参照水力计算手册确定,偏重于安全考虑,在河道整治工作中糙率适当选小些,在防洪规划中适当大一些。
2起推断面与起推水位的确定水流为缓流时起推断面一般选在推算河段下游,急流时选在上游,附近下游有水文站时以水文站为起推断面,依据实测水位资料分析不同标准洪水位,当缺乏高标准的水位流量关系时可适当将水位流量关系外延。
第六讲: 函数的值域Microsoft Word 文档
第六讲:函数的值域函数的值域、最值或取值范围,是中学数学及高考中的常见问题,热点问题一.建构知识网络1、确定函数的值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合;③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。
2、常见函数的值域:一次、二次函数,反比例函数,指数、对数函数,正、余弦函数,“对钩函数,(0)ax a x+>”等; 3、求函数值域的几种常用方法;配方法、换元法、不等式法、判别式法、反解法、单调性法、数形结合法、利用已知函数的值域等。
二、双基题目练练手1、函数y =2211xx +-的值域是 ( ) A.[-1,1] B.(-1,1] C.[-1,1) D.(-1,1) 2、函数y=1x +-1-x 的值域为 ( ) A.(-∞,2) B.(0,2] C.[2,+∞]D.[0,+∞] 3、若x 2+y 2=1,则3x -4y 的最大值为 ( ) A.3 B.4 C.5 D.64、对函数2()2f x x x m =++作代换x =g(t),则总不改变f (x )值域的代换是A .212()log (23)g t t t =-+ B .tt g )21()(= ( )C .g(t)=(t -1)2D .g(t)=cost5、函数y =的值域 .6、函数4522++=x x y 的值域是简答精讲:1-3、BBCA ;1、反解法,不等式法;2、解:分子有理化,分母递增;定义域1x ≥。
3、换元x =cos α,y =sin α;5值域)+∞6、用x x y 1+=的单调性:),25[+∞。
三、经典例题做一做【例1】求下列函数的值域:(1)y =; (2)y x =+(3)y x =+ (4)1sin 2cos xy x-=-解:(1)求复合函数的值域:设265x x μ=---(0μ≥),则原函数可化为y =又∵2265(3)44x x x μ=---=-++≤,∴04μ≤≤[0,2],∴y =的值域为[0,2](2)三角换元法:21011x x -≥⇒-≤≤,设cos ,[0,]x ααπ=∈,则cos sin )4y πααα=+=+∵[0,]απ∈,∴5[,]444πππα+∈,∴sin()[4πα+∈,)[4πα+∈-,∴原函数的值域为[1-。
利用导数求参数范围举例word资料7页
利用导数求参数范围举例例1.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f(1) 求a、b的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围.解:(1)2,21-=-=b a2122)2(]2,1[)(,2)2(,21)1(23)1(,2722)32(132023,23)().2(222'>-<+>+=-+=+=-+-=+=-=-==----=c c c ,c c f x f c f c f cf c f x x x x x x x f 或解得从而上的最大值为在所以且或得由例2.已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值 (1) 求函数)(x f 的解析式.(2) 若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围. 解:(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'030-=-x x f x x x M 因为 0200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x M x x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为)2,3(230)1(0)0(1,0)(,)1,0(,),1(),0,()(100)(00000000'---<<-⎩⎨⎧<>*==+∞-∞===的取值范围是所求的实数解得条件是有三个不同实根的充要的方程所以关于的极值点为故函数上单调递减在上单调递增在所以或得由m m g g x x x x g x g x x x g 例3.已知,)(2c x x f +=且)1()]([2+=x f x f f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求参数取值范围一般方法
一、分离参数
在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。
例1、已知函数()lg 2a f x x x ⎛⎫=+
- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求a 的取值范围。
1.若不等式x 2+ax+1≥0,对于一切x ∈[0,
2
1]都成立,则a 的最小值是__
2.设124()lg ,3
x x
a f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
二、分类讨论
在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。
例1、若[]2,2x ∈-时,不等式2
3x ax a ++≥恒成立,求a 的取值范围。
例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
例3.关于x 的不等式0622<+++m m mx x 在[]20,上恒成立,求实数m 的取值范围.
变式:若函数m m mx x y 622+++=在[]20,上有最小值16,求实数m 的值.
1.已知752+->x x x
a a 0(>a 且)1≠a ,求x 的取值范围. 2.求函数)(log 2x x y a -=的单调区间.
3.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。
4.已知
(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,求a 的取值范围。
5解不等式)0( 01)1(2≠<++-a x a a x
6.解关于的不等式:x ax a x 2110-++<()
7. 解不等式
()()x a x a a +-+4621>0 (a 为常数,a ≠-12
) 8.当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围。
9.关于x 的不等式01)1()1(22<----x a x a 的解集为R ,求实数a 的取值范围.
10:求二次函数22+-=mx x y 在闭区间[2,3]上的最大值m ax y 的表达式。
11:求解关于x 的不等式1)11(log >-x
a (其中10≠>a a 且)。
三、变更主元法
在给出的含有两个变量的不等式中,学生习惯把变量x 看成是主元(未知数),而把另一个变量a 看成参数,在有些问题中这样的解题过程繁琐。
如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。
例1、若不等式()
2211x m x ->-对满足2m ≤的所有m 都成立,求x 的取值范围。
例2.对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。
1:若对于任意a (]1,1-∈,函数
()()a x a x x f 2442-+-=的值恒大于0,求x 的取值范围。
2.若对一切2≤p ,不等式()p x x p x +>++222
2log 21log log 恒成立,求实数x 的取值范围。
3.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围。
四、数形结合
数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。
例1、若不等式23log 0a x x -<在10,3x ⎛
⎫∈ ⎪⎝⎭
内恒成立,求实数a 的取值范围。
例2.设x x x f 4)(2--= , a x x g -+=13
4)(,若恒有)()(x g x f ≤成立,求实数a 的取值范围.
1.已知函数f (x )=⎩⎪⎨⎪⎧
2x -1, x >0,-x 2-2x , x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围为__________.
2.若不等式log a x >sin 2x (a >0,a ≠1)对任意x ∈⎝⎛⎭
⎫0,π4都成立,则a 的取值范围为 ( ) A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,1 C.⎝⎛⎭⎫π4,π2 D .(0,1)
3.函数f (x )=(12
)x -sin x 在区间[0,2π]上的零点个数为( ) A .1 B .2 C .3 D .4
4:若不等式0log 32<-x x a 在⎪⎭
⎫ ⎝⎛∈31,0x 内恒成立,求实数a 的取值范围。
5.已知函数1)(2-=x x f ,1)(-=x a x g .
(1)若关于x 的方程)()(x g x f =只有一个实数解,求实数a 的取值范围;
(2)当R x ∈时,不等式)()(x g x f ≥恒成立,求实数a 的取值范围.。