第9章代数系统定理和例题讲解离散数学
离散数学中的代数系统与群论
离散数学是数学中重要的一个分支,它研究离散对象和离散结构。
在离散数学的范畴中,代数系统是一个非常基础而重要的概念。
代数系统是在一组元素上定义了一组操作的结构,它研究了这些操作的性质和规律。
而群论是代数系统研究的一个重要方向,它研究了代数系统中的群的性质和特点。
代数系统是离散数学的重要概念之一。
它是一个三元组(S, F, O) ,其中S是一个非空集合, F是定义在S上的一组操作,O是与操作F相适应的元素关系。
代数系统可以是代数学、逻辑学、计算机科学等领域的基本概念。
在代数系统中,操作具有封闭性、结合律、单位元和逆元等基本性质。
代数系统可以有多种形式,如群、环、域等。
而群论就是研究代数系统中的群的性质和规律。
群论是代数系统研究的一个重要方向。
群是一种具有封闭性、结合律、单位元和逆元等性质的代数系统。
在群论中,我们研究了群的基本性质和规律。
群论有两个基本概念:子群和同态。
子群是群中的一个子集,并且仍然满足群的定义。
同态是两个群之间的一个映射,并且保持了一些重要的性质。
群论在数学中有广泛的应用。
它在几何学、物理学、密码学等领域中都有应用。
在几何学中,群论被应用于对称性的研究,帮助我们理解对称性的本质和规律。
在物理学中,群论被用于对物理规律和物理现象的数学描述。
在密码学中,群论被应用于设计和分析密码系统,保证信息的安全性。
总的来说,离散数学中的代数系统与群论是数学中重要的研究方向。
代数系统是在一组元素上定义了一组操作的结构,而群论研究了代数系统中的群的性质和规律。
群论在数学以及其他领域中有广泛的应用。
它不仅为我们解决实际问题提供了新的思路和方法,也帮助我们理解了离散数学中的一些基本概念和原理。
因此,学习和掌握离散数学中的代数系统与群论是非常重要的,它们对我们提高数学素养和解决实际问题都具有重要的意义。
离散数学 第九章
οai οa1 ο a2
. . . οan
二元运算的运算表
2011-1-31 曲阜师范大学计算机科学学院
一元运算的运算表
12
运算表的实例
上的⊕ 运算的运算表 的运算表, 例3 设 S=P({a,b}),S上的⊕和 ∼运算的运算表,其中全 , 上的 集为{a,b}。 集为 。 ⊕ ∅ {a} {b} {a,b} ∅ ∅ {a} {a} {a} ∅ {b} {a,b} {b} ∅ {a} {a,b} {a} ∅ x ∅ {a} {b} {a,b} ~x {a,b} {b} } {a} ∅
2011-1-31
曲阜师范大学计算机科学学院
2
第三部分 代数结构
一元:f:S→S 一元 二元:f:S×S→S 二元 × 多元
符合某些律
运算
性质 交换律 单位元 结合律 零元 幂等律 逆元 分配律 吸收律 消去律
代数系统
建立两 个代数 系统的 联系 映射) (映射)
具体代数系统
半群 群 环 域 格 布尔代数
离 散 数 学
代数结构
2011-1-31
曲阜师范大学计算机科学学院
1
第三部分 代数结构
代数结构是以研究数字、文字和更一般元素的运算的 代数结构是以研究数字、文字和更一般元素的运算的 规律和由这些运算适合的公理而定义的各种数学结构的性 规律和由这些运算适合的公理而定义的各种数学结构的性 和由这些 为中心问题. 质为中心问题 它对现代数学如拓扑学、泛函分析等, 它对现代数学如拓扑学、泛函分析等 以及一些其他 科学领域, 如计算机科学、编码理论等, 科学领域 如计算机科学、编码理论等 都有重要影响和广 泛应用. 泛应用
2011-1-31
曲阜师范大学计算机科学学院
离散数学及其应用课件:典型代数系统简介
典型代数系统简介
9.3.2 布尔代数的概念与性质 定义9.20 如果一个格是有补分配格,则称它为布尔格或
布尔代数。布尔代数通常记为<B,∨,∧,',0,1>,其中“¢”为求 补运算。
典型代数系统简介
典型代数系统简介
定义9.21 设<B,*,·>是一个格代数系统,*和·是B 上的两 个二元运算,如果*和·满足交换律、分配律、同一律和互补 律,则称<B,*,·>为布尔代数。
(2)若 H 是G 的子群,且 H ⊂G,则称 H 是G 的真子群,记作
H <G。 定理9.6 假设G 为群,H 是G 的非空子集,则 H 是G 的子
群当且仅当下面的条件成立:
(1)∀a,b∈H 必有ab∈H; (2)∀a∈H 有a-1∈H。 证明 必要性是显然的。为证明充分性,只需证明e∈H。 因为 H 非空,必存在a∈H。由条件(2)知a-1∈H,再根据条件(1)
典型代数系统简介
典型代数系统简介
定义9.10 令<R,+,·>是环,若环中乘法·适合交换律,则称R 是交换环。若环中乘法·存在单位元,则称R 是含幺环。 注意
(1)在环中通常省略乘法运算·; (2)为了区别含幺环中加法幺元和乘法幺元,通常把加法 幺元记作0,乘法幺元记作1。可以证明加法幺元0恰好是乘法 的零元。 (3)环中关于加法的逆元称为负元,记为-x;关于乘法的逆 元称为逆元,记为x-1。
有aa-1∈H,即e∈H。
典型代数系统简介
定理9.7 假设G 为群,H 是G 的非空子集,H 是G 的子群当
且仅当∀a,b∈H 有ab-1∈H。
证明 根据定理9.6必要性显然可得出,这里只证充分性。
因为 H 非空,必存在a∈H。根据已知条件得aa-1∈H,即e∈H。 任取a∈H,由e,a∈HH得ea-1∈H,即a-1∈H。任取a,b∈H,知b1∈H .再利用给定条件得a (b-1)-1∈,即ab∈H。
离散数学精讲第九章
19
同类型与同种代数系统
定义9.7 (1) 如果两个代数系统中运算的个数相同,对应运算的元数相 同,且代数常数的个数也相同,则称它们是同类型的代数 系统. (2) 如果两个同类型的代数系统规定的运算性质也相同,则称 为同种的代数系统. 例如 V1=<R, +, · , 0, 1>, V2=<Mn(R), +, · , , E>, 为 n 阶全0 矩阵,E为 n 阶单位矩阵, V3=<P(B), ∪, ∩, , B> V1, V2, V3是同类型的代数系统,它们都含有2个二元运算, 2个代数常数. V1, V2是同种的代数系统,V1, V2与V3不是同种的代数系统
5
二元与一元运算的表示
1.算符 可以用◦, ∗, ·, , , 等符号表示二元或一元运算,称为算符. 对二元运算◦,如果 x 与 y 运算得到 z,记做 x◦y = z 对一元运算, x的运算结果记作x. 2.表示二元或一元运算的方法: 解析公式和运算表
公式表示
例 设R为实数集合,如下定义R上的二元运算∗: x, y∈R, x ∗ y = x. 那么 3∗4 = 3, 0.5∗(3) = 0.5
则矩阵加法和乘法都是Mn(R)上的二元运算. (5) S为任意集合,则∪、∩、-、 为P(S)上二元运算. (6) SS为S上的所有函数的集合,则合成运算为SS上二元运算.
4
一元运算的定义与实例
定义9.2 设S为集合,函数 f:S→S 称为S上的一元运算,简 称一元运算. 例2 (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上 的一元运算 (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算 (3) 求共轭复数是复数集合C上的一元运算 (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的 一元运算. (5) 设S为集合,令A为S上所有双射函数的集合,ASS,求一 个双射函数的反函数为A上的一元运算. (6) 在n(n≥2)阶实矩阵的集合Mn(R)上,求转置矩阵是Mn(R)上 的一元运算.
离散数学9-格与布尔代数
17
定理4: 设<A, ∨, ∧>是格,对任意a, b, cA,有 (1)若a≤b和c≤d,则a∧c≤b∧d,a∨c≤b∨d (2)若a≤b,则a∧c≤b∧c,a∨c≤b∨c
18
证明:(1)如果a≤b,又b≤b∨d, 由传递性得 a≤b∨d, 类似由c≤d, d≤b∨d,由传递性得 c≤b∨d,这说明b∨d是{a, c}的上界,而a∨c是{a, c}的最小上界,所以a∨c≤b∨d。类似可证 a∧c≤b∧d。
则称b是a的补元,记为a′。若b是a的补元,则a也是b的补 元,即a与b互为补元。 一般说来,一个元素可以有其补元 ,未必唯一,也可能无补元。0′=1和1′=0。
37
定义12: 在有界格中,如果每个元素都有补元,则称格是有 补格。
由于补元的定义是在有界格中给出的,可知,有补格一定是 有界格。
38
定理11: 在有界分配格中,如果某元素有补元,则补元是唯 一的。
34
定理9: 设<A, ∧,∨, 0, 1>是有界格,则对于A中任意元素 a 都有 a∨1 = 1 a∧1 = a a∨0 = a a∧0 = 0
1称为全上界或最大元,0称为全下界或最小元。
图9-6中(a)(b)(c)都有最大元和最小元,所以都是有界格。
35
定理10: 有限格必定是有界格。
36
定义11: 设<A,∨,∧>是有界格,aA,如果存在bA使得 a∨b = 1 a∧b = 0
31
定义8: 设<A,∨,∧>是格,如果A中存在元素a,使得对于A中 任意元素x 都有a≼x,则称a为格(A , ≤)的全下界,用0表 示。如果L中存在元素 a, 使得对于L中任意元素 x 都有 x≼a则称a为格(A , ≤)的全上界,用1表示。全下界即是格 的最小元,是唯一的。全上界即是格的最大元,是唯一的 。
《离散数学》第9—11章 习题详解!
第九章 代 数 系 统
9.1 内 容 提 要
1.二元运算与一元运算 二元运算 设 S 为集合,函数 f:S ×S→S 称为 S 上的二元运算.这时也称 S 对 f 是封闭的. 一元运算 设 S 为集合,函数 f:S→S 称为 S 上的一元运算.这时也称 S 对 f 是封闭的. 二元与一元运算的算符 ,倡,· ,◇,Δ等 二元与一元运算的表示法 表达式或者运算表 2.二元运算的性质 (1) 涉及一个二元运算的算律
定理 9.3 如果 |S |>1,则单位元不等于零元. 定理 9.4 对于可结合的二元运算,可逆元素 x 只有惟一的逆元 x -1 .
3.代数系统
代数系统 非空集合 S 与 S 上的 k 个一元或二元运算 f1 ,f2 ,…,fk 组成的系统,记作 <S,f1 ,
f2 ,…,fk >. 同类型的代数系统与同种的代数系统
称 V =<A ×B,· 重要结果:
<a1 ,b1 >· <a2 ,b2 >=<a1 a2 ,b1 倡b2 > >为 V1 与 V2 的积代数,记作 V1 ×V2 .这时也称 V1 和 V2 为 V 的因子代数.
任何代数系统 V 都存在子代数,V 是 V 的平凡子代数.
V 的子代数与 V 不仅是同类型的,也是同种的.
9.2 基 本 要 求
1.会判断给定函数 f 是否为集合 S 上的二元或一元运算. 2.会判断或者证明二元运算的性质.
第九章 代 数 系 统
177
3.会求二元运算的特异元素. 4.掌握子代数的概念. 5.掌握积代数的定义及其性质 6.能够判断函数是否为同态并分析同态的性质.
9.3 习 题 课
本章的习题主要有以下题型. 题型一 判断运算是否封闭( 集合与运算是否构成代数系统) ,并对封闭的运算确定其性质 及特异元素
离散数学证明题解题方法
离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。
离散数学以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。
1、定义和定理多。
离散数学是建立在大量定义上面的逻辑推理学科。
因而对概念的理解是我们学习这门学科的核心。
在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。
●证明等价关系:即要证明关系有自反、对称、传递的性质。
●证明偏序关系:即要证明关系有自反、反对称、传递的性质。
(特殊关系的证明就列出来两种,要证明剩下的几种只需要结合定义来进行)。
●证明满射:函数f:X Y,即要证明对于任意的y Y,都有x X,使得f(x)=y。
●证明入射:函数f:X Y,即要证明对于任意的x1、x2 X,且x1≠x2,则f(x1) ≠f(x2);或者对于任意的f(x1)=f(x2),则有x1=x2。
●证明集合等势:即证明两个集合中存在双射。
有三种情况:第一、证明两个具体的集合等势,用构造法,或者直接构造一个双射,或者构造两个集合相互间的入射;第二、已知某个集合的基数,如果为א,就设它和R之间存在双射f,然后通过f的性质推出另外的双射,因此等势;如果为א0,则设和N之间存在双射;第三、已知两个集合等势,然后再证明另外的两个集合等势,这时,先设已知的两个集合存在双射,然后根据剩下题设条件证明要证的两个集合存在双射。
●证明群:即要证明代数系统封闭、可结合、有幺元和逆元。
(同样,这一部分能够作为证明题的概念更多,要结合定义把它们全部搞透彻)。
●证明子群:虽然子群的证明定理有两个,但如果考证明子群的话,通常是第二个定理,即设<G,*>是群,S是G的非空子集,如果对于S中的任意元素a和b有a*b-1 S,则<S,*>是<G,*>的子群。
离散数学中代数系统知识点梳理
离散数学中代数系统知识点梳理离散数学作为一门数学学科,研究的是离散化的对象和结构。
代数系统作为离散数学的一个重要分支,是对数学对象的代数性质进行研究的一种形式化工具。
在离散数学中,代数系统的概念和相关知识点是非常重要的。
一、代数系统的基本概念代数系统是指由集合和一组运算构成的数学结构。
其中,集合是代数系统中最基本的概念,可以是有限集或无限集;运算是指对集合中的元素进行操作并得到新的元素。
代数系统主要包括代数结构、代数运算和代数性质三个方面。
1. 代数结构:代数结构由集合和一组运算构成,可以包括加法、减法、乘法、除法等。
常见的代数结构有群、环、域等。
2. 代数运算:代数运算是指对集合中的元素进行操作,可以是二元运算也可以是多元运算。
常见的代数运算有加法、乘法、幂运算等。
3. 代数性质:代数系统具有一些特定的性质,如封闭性、结合律、交换律、单位元素、逆元素等。
二、代数系统的分类根据代数运算的性质,代数系统可以分为群、环、域和向量空间等不同类型。
1. 群:群是一种代数系统,具有封闭性、结合律、单位元素和逆元素等性质。
群分为有限群和无限群,可以是交换群或非交换群。
2. 环:环是一种代数系统,具有封闭性、结合律、交换律和单位元素等性质。
环分为有限环和无限环,可以是可除环或非可除环。
3. 域:域是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
域是一种完备的代数系统,可以进行加、减、乘、除运算。
4. 向量空间:向量空间是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
向量空间是一种具有线性结构的代数系统。
三、代数系统的应用代数系统作为离散数学的一个重要分支,在计算机科学、密码学、通信工程等领域有着广泛的应用。
1. 计算机科学:代数系统在计算机科学中起到重要的作用,比如在数据库设计、编译原理、算法设计等方面都有应用。
代数系统可以描述和分析计算机系统的运行和性能。
离散数学-代数系统
代数系统
环的性质
• 设〈A,+, • 〉是一个环,则对任意的 • a, b,c∈A, 有 (1) a • θ= θ • a= θ(加法的幺元是乘法的零元) (2) a •(-b)=(-a) •b=-(a •b) (3) (-a) •(-b)=a •b (4) a •(b-c)=a •b-a •c (5) (b-c) •a=b •a-c •a 其中, θ是加法幺元,-a是a的加法逆元,并记 a+(-b)为a-b.
拉格朗日定理
• 设〈H,*〉是群〈G,*〉的一个子群, 那么 (1)R={〈a, b〉| a∈G, b∈G, a-1*b∈H} 是G中的一个等价关系;而且由R所确定 的等价类[a]R=aH。 (2) 如果G是有限集,|G|=n, |H|=m, 则 m|n (m整除n)。
代数系统
具有两个二元运算的代数系统
代数系统
代数系统的引入
• 设 f1, f2, …, fk 是在非空集合A上定义的运 算,这些运算与集合组成一个代数系统, 记作 <A, f1, f2, …, fk >. • 当运算只有一种时,通常写作<A, f>, • 而运算 f 通常表示成 *,•, ★, △, ◇, ⊕, ⊙等。
代数系统
封闭性与唯一性
代数系统
等幂性
• *是集合A上的一个二元运算,如果对于 任意的 x∈A, 都有 x*x=x, 则称运算*是等 幂的。
代数系统
运算表
• *是定义在集合A上的二元运算,A是有 限集,A={x1, x2, …, xn},那么对于任意的 xi, xj∈A, xi* xj 的结果放在以 xi 为行、xj 为列所组成的一个表格内。 • 例如
代数系统
子群
离散数学几个典型的代数系统
{ a, b, c, e, f }是 L2的子格, 并且同构于五角格;
{ a, c, b, e, f }是 L3的子格, 也同构于钻石格.
25
全上界与全下界
定义 设L是格, 若存在 a∈L 使得 x∈L 有 a ≼ x, 则称 a 为 L 的全 下界; 若存在 b∈L 使得 x∈L 有 x ≼ b, 则称 b 为 L 的全 上界. 说明:
对偶原理 交换律、结合律、幂等律、吸收律
格的等价定义 子格 格的同构 特殊的格:分配格、有界格、有补格、布尔格
10
格的定义
定义 设<S, ≼>是偏序集,如果x,y≼S,{x,y}都有 最小上界和最大下界,则称S关于偏序≼作成一个
格. 由于最小上界和最大下界的惟一性,可以把求{x,y} 的最小上界和最大下界看成 x 与 y 的二元运算∨和 ∧,即 x∨y 和 x∧y 分别表示 x 与 y 的最小上界和 最大下界. 注意:这里出现的∨和∧符号只代表格中的运算, 而不再有其他的含义.
由 a ≼ a, a∧b ≼ a 可得 a∨(a∧b) ≼ a (VI)
由式 (V) 和 (VI) 可得 a∨(a∧b) = a 根据对偶原理, a∧(a∨b) = a 得证.
18
格作为代数系统的定义
定理 设<S,∗, >是具有两个二元运算的代数系统, 若对于∗和运算适合交换律、结合律、吸收律, 则 可以适当定义S中的偏序≼,使得<S, ≼>构成格, 且 a,b∈S有 a∧b = a∗b, a∨b = ab.
4
零因子的定义与存在条件
设<R,+,>是环,若存在 ab =0, 且 a0, b0, 称 a 为左零因子,b为右零因子,环 R 不是无零因子 环. 实例 <Z6,,>,其中 23=0,2 和 3 都是零因 子.
第9章代数系统定理和例题讲解离散数学
例题
设R为实数集合,如下定义R上的二元运算 :
x,y∈R,x y = x。
那么 3 4 = 3,0.5 (3) = 0.5。
• 函数的解析公式 • 运算表(表示有穷集上的一元和二元运算)
二元运算的运算表
一元运算的运算表
a1
a2
…
an
a1 a1a1 a1a2 … a1an
a12 L a22 L
an2 L
a1n a2n
ann
aijR, i,j1,2,...,n
则矩阵加法和乘法都是Mn(R)上的二元运算。 (6)S为任意集合,则∪、∩、-、 为P(S)上的二元运算。
(7)SS为S上的所有函数的集合,则合成运算为SS上的二元运 算。
定义9.2 设S为集合,函数f:S→S称为S上的一元运算,简称为 一元运算。
x的逆元x x的逆元x1
x逆元x x的逆元x1 (x可逆)
的逆元为 B的逆元为B
定理9.1 设为S上的二元运算,el、er分别为运算的左单位元 和右单位元,则有
el = er = e 且e 为S上关于运算的唯一的单位元。
证明
el = eler
(er为右单位元)
eler = er
(el为左单位元)
所以el = er,将这个单位元记作e。
普通加法和乘法。 • <加M法n(和R)乘,+法, 。>是代数系统,其中+和 分别表示n阶(n≥2)实矩阵的 • <P(S),∪,∩,~>是代数系统,其中∪和∩为并和交,~为绝对补。 • <Zn, ,>是代数系统,其中
Zn={0,1,2, … ,n-1} 和分别表示模n的加法和乘法。
离散数学几种典型的代数系统 PPT
a 4(b4c) = a 4res4(b+c) = res4(a+res4(b+c))
= res4(a+(4m2+res4(b+c))) = res4(a+(b+c)) = res4((a+b)+c)
因此(a 4b)4c= a 4(b 4c),即4满足结合律。
(1)若a*b=a*c, 则 b=c; (2)若b*a=c*a,则 b=c。
证 明 (1)令a*b=a*c=d,依照定理5-2,方 程a*x = d 在G中只有唯一的解,故得b=c。
二、元素运算后求逆元等于元素分别求逆元后颠 倒次序相运算
定理5-4 设<G; >是一个群,则对任意a,b G ,
(a1)6 a6
2、循环群
定义5-6 在群<G;* >中,假如存在一元素g ∈G,使得每
一元素 a ∈G 都能表示成 g i ( i ∈I)的形式,则称群 <G ;* > 为循环群,称 g 为该循环群的生成元,并称群 <G;* >由 g 生成。
例3 群<I;+>是循环群,1是生成元,10=0,对任意正整数
限循环群;
(2)若 g 的周期为无限,则<G; >是一个无限阶的
循环群。
例如 循环群<I;+>的生成元1和–1,其周期均为无限,
群<I;+>是一个无限阶的循环群。
循环群<Z4; 4>的生成元是1和3。 14=13 41=3 41=res4(4)=0 34=33 43=1 43=res4(4)=0
离散数学代数系统总结
离散数学代数系统总结离散数学是数学的一个分支,主要研究离散对象和离散结构。
而代数系统是离散数学的一个重要分支,它研究的是一类具有特定性质的运算集合。
在这篇文章中,我们将从代数系统的基本概念、性质和应用几个方面对离散数学中的代数系统进行总结。
一、代数系统的基本概念代数系统是指一个非空集合A,以及在这个集合上定义的一个或多个运算。
根据运算的性质,代数系统可以分为不同的类型,包括群、环、域等。
其中,群是最基本的代数系统,它具有封闭性、结合律、单位元、逆元等性质。
环则在群的基础上增加了乘法运算,并满足了分配律。
域是环的一种扩充,它除了满足环的性质外,还具有乘法逆元。
二、代数系统的性质1. 封闭性:代数系统中的运算结果仍属于该系统,即对于任意a、b∈A,a运算b的结果仍然属于A。
2. 结合律:对于代数系统中的任意元素a、b、c,(a运算b)运算c 与a运算(b运算c)的结果相同。
3. 单位元:代数系统中存在一个元素e,对于任意元素a,a运算e与e运算a的结果均为a。
4. 逆元:代数系统中的每个元素a都存在一个逆元,使得a运算它的逆元等于单位元。
5. 交换律:对于代数系统中的任意元素a、b,a运算b与b运算a 的结果相同。
这些性质是代数系统的基本特征,不同类型的代数系统在这些性质上有所区别,比如群具有结合律和单位元,但不一定满足交换律。
三、代数系统的应用代数系统在数学及其他学科中有着广泛的应用。
以下是几个代数系统应用的例子:1. 编码理论:代数系统的运算可以用于编码和解码信息,例如循环冗余校验码(CRC)就是通过代数系统中的运算实现数据校验。
2. 密码学:代数系统中的数学运算被广泛应用于密码学中,用于加密和解密信息,保护数据的安全。
3. 图论:代数系统的概念和性质在图论中有着重要的应用,例如邻接矩阵和关联矩阵可以用于描述和分析图的结构和特性。
4. 计算机科学:代数系统在计算机科学中有着广泛的应用,例如布尔代数在逻辑电路设计和逻辑编程中的应用。
离散数学证明题解题方法(5篇范例)
离散数学证明题解题方法(5篇范例)离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。
离散数学以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。
1、定义和定理多。
离散数学是基于大量定义的逻辑推理学科。
所以,理解概念是我们学习这门学科的核心。
在这些概念的基础上,要特别注意概念之间的关系,描述这些关系的实体是大量的定理和性质。
●证明等价关系:即要证明关系有自反、对称、传递的性质。
●证明偏序关系:即要证明关系有自反、反对称、传递的性质。
(特殊关系的证明就列出来两种,要证明剩下的几种只需要结合定义来进行)。
●证明满射:函数f:XY,即要证明对于任意的yY,都有x或者对于任意的f(x1)=f(x2),则有x1=x2。
●证明集合等势:即证明两个集合中存在双射。
有三种情况:第一、证明两个具体的集合等势,用构造法,或者直接构造一个双射,或者构造两个集合相互间的入射;第二、已知某个集合的基数,如果为א,就设它和R之间存在双射f,然后通过f 的性质推出另外的双射,因此等势;如果为א0,则设和N之间存在双射;第三、已知两个集合等势,然后再证明另外的两个集合等势,这时,先设已知的两个集合存在双射,然后根据剩下题设条件证明要证的两个集合存在双射。
●证明群:即要证明代数系统封闭、可结合、有幺元和逆元。
(同样,这一部分能够作为证明题的概念更多,要结合定义把它们全部搞透彻)。
●证明子群:虽然子群的证明定理有两个,但如果考证明子群的话,通常是第二个定理,即设<g,*>是群,S是G的非空子集,如果对于S中的任意元素a和b有a*b-1是<g,*>的子群。
对于有限子群,则可考虑第一个定理。
●证明正规子群:若<g,*>是一个子群,H是G的一个子集,即要证明对于任意的aG,有aH=Ha,或者对于任意的hH,有a-1 *h*aH。
离散数学 代数结构-代数系统
代数系统
9.2 代数系统
代数或叫代数系统,应用抽象的方法,研究要处理的数学对 象集合上的关系或运算。 事物中的关系就是事物的结构,所以,代数系统又称代数 结构。 代数通常由三部分组成; 1.一个集合,叫做代数的载体。 载体是要处理的数学目标的集合,如整数,实数集合等。 代数载体一般是非空集合,不讨论载体是空集的代数。 2.定义在集合上的运算 定义在载体S上的运算是从Sm到S的一个映射,自然数m的值 叫做运算的元数。 3.特异元素,叫做代数常数 如幺元、零元、等幂元等 代数通常用由集合、运算和特殊元素组成的n元组表示
代数系统
1、定义12 非空集合S和S上k个一元或二元运算fl,f2,…,fk组 成的系统称为一个代数系统,简称代数, 记作: < S ,f1,f2,…,fk > . 例如 < N,+ > ,< Z,+,·> ,< R,+,· > 都是代数系统, < M(R),+, * > 其中 + 和 * 表示n阶实矩阵的加法和乘法 < Zn ,+n ,*n > 是代数系统,其中 Zn={ 0,1,2 ,… n-1 } ,+n 和 *n 分别表示模n的加法和乘法:
例:设B={0,a,b,1},S1={a,1} S2={0,1} S3={a,b} 二元运算+和*由表给出,则: 1)<B,*,+,0,1>是代数系统吗? 2)<S1,*,+>是代数系统吗? 是<B,*,+,0,1>的子代数吗? 3)<S2,*,+,0,1>是<B,*,+,0,1>的子代数吗? 4)<S3,*,+>是代数系统吗?
习题与解答(代数系统) 离散答案
2
2
2
所以 ba=ab ,即 ab=ba, 因此 G 为交换群。 17、设 G 为群,a,b,c∈G, 证明: |abc|=|bca|=|cab| 证明:设|abc|=r , |bca|=t, 则 (abc) =e,
t r
(bca) =e
t
由于(abc) =(abc)(abc)……(abc) =a(bca)(bca)……(bca)a
-1 -1 -1 -1 -1 -1
则存在 h,k∈H, 使得 u=xhx ,v=xkx
-1
-1
,
则有 uv
-1
=(xhx )(xkx ) =(xhx )(xk x )=x(hk )x
-1 -1 -1 -1
-1
-1
-1
-1
-1
-1
-1
-1
因为 H 为子群,hk 属于 H,从而 x(hk )x 属于 xHx . 即 uv ∈xHx
-1 -1
21、设 G 为群,a 是 G 中给定元素,a 的正规化子 N(a)表示 G 中与 a 可交换的元素构成的集合,即 N(a)={x| x∈G∧xa=ax } 证明:N(a)是 G 的子群 证明: (1) a∈N(a), 所以 N(a)非空(因为 a∈G∧aa=aa) (2) x,y ∈N(a) 则 xa=ax ya=ay
*
=(a∧b)∨(b∧c) =(b∧a)∨(b∧c) =b∧(a∨c) (2) f =(a∨b)∧(b∨c) 14、设 B 是布尔代数, a, b∈B, 证明: a≤b a∧b =0 a ∨b=1
(1) S1= 1 , , 2 , , 3 , , 4 ,运算为普通乘法。 1 2 1 3 1 4
离散数学-代数系统
1
抽象代数在计算机中有着广泛的应用,例如自动机理论、编码 理论、形式语义学、代数规范、密码学等等都要用到抽象代数 的知识。 构成一个抽象代数系统有三方面的要素:
4
为了研究抽象的代数系统,需要先定义一元和二元代数运算以 及二元运算的性质,并通过选择不同的运算性质来规定各种抽 象代数系统的定义。在此基础上再深入研究这些抽象代数系统 的内在特性和应用。
主要内容:
第四章 代数系统 第五章 群 *第六章 环和域 第七章 格和布尔代数
5
第四章 代数系统
本章在集合、关系和函数等概念基础上,研究更为复杂的对 象——代数系统,研究代数系统的性质和特殊的元素,代数系 统与代数系统之间的关系(如代数系统的同态、满同态和同构, 这些概念较为复杂也较为抽象,是本章的难点)。它们将集合、 集合上的运算以及集合间的函数关系结合在一起进行研究。 前三章内容是本章的基础,熟练地掌握集合、关系、函数等概 念和性质是理解本章内容的关键。
= (r1 + r2 – r1r2) + r3 – (r1 + r2 – r1r2)r3
= r1 + r2 + r3 – r1r2 – r1r3 – r2r3 + r1r2r3,
r1 (r2 r3) = r1 (r2 + r3 – r2r3)
= r1 + (r2 + r3 – r2r3) – r1(r2 + r3 – r2r3)
定理4-1 设 ◦ 是定义在集合 A 上的一个 n 元运算,且在 A 的两 个子集 S1 和 S2 上均封闭,则 ◦ 在 S1 S2 上也是封闭的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)在n(n≥2)阶实矩阵的集合Mn(R)上,求一个矩阵的转置 矩阵是Mn(R)上的一元运算。
• 可以用、、·、、、等符号表示二元或一元运算,称为 算符。
• 设f : S×S→S是S上的二元运算,对任意的x, y∈S,如果x与y的运算 结果为z,即f(<x,y>)=z,可以利用算符简记为
∪对∩可分配 ∩对∪可分配
∩对可分配
吸收律 无 无 有 无
定义9.8 设为S上的二元运算,
如果存在元素el(或er)S,使得对任意x∈S都有 elx = x (或xer = x)
则称el (或er)是S中关于运算的一个左单位元(或右单位元)。 若e∈S关于运算既是左单位元又是右单位元,则称e为S上
4
1
1
2
3
4
2
2
4
1
3
3
3
1
4
2
4
4
3
2
1
定义9.3 设为S上的二元运算,如果对于任意的x,y∈S都有 xy=yx,则称运算在S上满足交换律。
定义9.4 设为S上的二元运算,如果对于任意的x,y,z∈S都有 (xy)z=x(yz),则称运算在S上满足结合律。
说明:若+适合结合律,则有 (x+y)+(u+v)= x+y+u+v。
(2)整数集合Z上的加法、减法和乘法都是Z上的二元运算 ,而除法不是。
(3)非零实数集R*上的乘法和除法都是R*上的二元运算,加 法、减法不是。
(4)设S={a1,a2,…,an},aiaj =ai为S上二元运算。
(5)设Mn(R)表示所有n阶(n≥2)实矩阵的集合,即
Mn(R)aaaL12n111
离散数学
第9章 代数系统定理和例题讲解
本章的主要内容
–一元和二元运算定义及其实例 –二元运算的性质 –代数系统定义及其实例 –子代数
与后面各章的关系
–是后面典型代数系统的基础
定义9.1 设S为集合,函数 f:S×S→S 称为S上的二元运算,简 称为二元运算。
举例 f:N×N→N,f(<x,y>)=x +y 是自然数集合N上的二元运算
a2 a2a1 a2a2 … a2an
……………
ai ai a1 a1 a2 a2 ……
an ana1 ana2 … anan
an an
例9.4 设S={1,2},给出P(S)上的运算和~的运算表 ,其中全集 为S。
解答
的运算表
~的运算表
{1} {2} {1,2} {1} {2} {1,2}
ai ~ ai {1,2}
{1} {1} {1,2} {2}
{1} {2}
{2} {2} {1,2} {1} {1,2} {1,2} {2} {1}
{2} {1} {1,2}
例9.5 设S={1,2,3,4},定义S上的二元运算如下: x y=(xy) mod 5,
的运算表。
解答
1
2
3
则称运算对运算满足分配律。
说明:若*对运算分配律成立,则*对运算广义分配律也成立。
x(y1 y2 … yn ) = (xy1)(x y2) … (x yn) (y1 y2 … yn )x = (y1x) (y2x) … (ynx) 定义9.7 设和为S上两个可交换的二元运算,如果对于任意的 x,y∈S,都有
x(xy)=x x(xy)=x
则称运算和满足吸收律。
Z, Q, R分别为整数、有理数、实数集;Mn(R)为n阶实矩阵集 合,n2;P(B)为幂集;AA为从A到A的函数集,|A|2 。
集合
Z,Q,R Mn(R)
P(B)
运算 普通加法+与乘法 矩阵加法+与乘法
并∪与交∩ 交∩与对称差
分配律
对+可分配 +对不分配 对+可分配 +对不分配
a12 L a22 L
an2 L
a1n a2n
ann
aijR, i,j1,2,...,n
则矩阵加法和乘法都是Mn(R)上的二元运算。 (6)S为任意集合,则∪、∩、-、 为P(S)上的二元运算。
(7)SS为S上的所有函数的集合,则合成运算为SS上的二元运 算。
定义9.2 设S为集合,函数f:S→S称为S上的一元运算,简称为 一元运算。
f:N×N→N,f(<x,y>)=x - y 不是自然数集合N上的二元运算 称N对减法不封闭。
说明 验证一个运算是否为集合S上的二元运算主要考虑两点: S中任何两个元素都可以进行这种运算,且运算的结果 是唯一的。 S中任何两个元素的运算结果都属于S,即S对该运算是 封闭的。
(1)自然数集合N上的加法和乘法是N上的二元运算,但减 法和除法不是。
关于运算的单位元。单位元也叫做幺元。
运算可以没有左单位元和右单位元。
说明
运算可以只有左单位元。 运算可以只有右单位元。
运算可以既有左单位元,又有右单位元。
例10.3 (1)求一个数的相反数是整数集合Z、有理数集合Q和实数集
合R上的一元运算。 (2)求一个数的倒数是非零有理数集合Q*、非零实数集合R*
上的一元运算。
(3)求一个复数的共轭复数是复数集合C上的一元运算。
(4)在幂集P(S)上,如果规定全集为S,则求集合的绝对补 运算是P(S)上的一元运算。
定义9.5 设为S上的二元运算,如果对于任意的x∈S有xx=x, 则称运算在S上满足幂等律。如果S中的某些x满足xx=x, 则称x为运算的幂等元。
举例:普通的加法和乘法不适合幂等律。但0是加法的幂等 元,0和1是乘法的幂等元。
集合
Z,Q,R Mn(R) P(B)
AA
运算
普通加法+ 普通乘法
矩阵加法+ 矩阵乘法
xy = z。 • 对一元运算,x的运算结果记作x。
例题
设R为实数集合,如下定义R上的二元运算 :
x,y∈R,x y = x。
那么 3 4 = 3,0.5 (3) = 0.5。
• 函数的解析公式 • 运算表(表示有穷集上的一元和二元运算)
二元运算的运算表
一元运算的运算表
a1
a2
…
an
a1 a1a1 a1a2 … a1an
并∪ 交∩ 相对补 对称差
函数复合
交换律
有 有
有 无 有 有 无 有
无
结合律
有 有
有 有 有 有 无 有
有
幂等律
无 无
无 无 有 有 无 无
无
定义9.6 设和为S上两个二元运算,如果对于任意的x,y,z∈S,
有
x(yz) = (xy) (xz) (yz)x = (yx) (zx)
Байду номын сангаас
(左分配律) (右分配律)