每日一练:2020年中考数学热门考点_探索图形规律练习题及答案(拓展版3)
2020年中考数学 中考试题精选 探索规律(含解答)-
探索规律型问题【解题指导】探索数、式、符号的变化规律;探究几何问题的结论——探索图形规律. 1、(2004浙江省嘉善县)用边长为1cm 的小正方形搭如下的塔状图形,则第n 次所搭图形的周长是 ___________cm (用含n 的代数式表示).2、(2004年泰州市)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n 个图中小黑点的个数为y .图⑴ 填表:⑵ 当n =8时,y =__________.⑶ 根据上表中的数据,把n 作为横坐标,把y 作为纵坐标,在左图的平面直角坐标系中描出相应的各点(n,y ),其中1≤n ≤5.⑷ 请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,现在你能够写出该函数的解析式吗?【探索与交流】1、(金华市)观察一列数:3,8,13,18,23,28……依此规律,在此数列中比2000大的最小整数是_______________. 2、(舟山市)古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 _____ . 3、一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按····· · · · · ·· · ······· · ·· · · · · · · · · · ·· ·· · · · · · ·· · · ·第1次 第2次 第3次 第4次 ······照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的_____________A .31,32,64;B .31,62,63;C .31,32,33;D .31,45,46 4、(2004江苏省徐州市)下面的图形是由边长为l 的正方形按照某种规律排列而组成的.(1)观察图形,填写 下表:图形 ① ② ③ 正方形的个数 8 图形的周长18(2)推测第n 个图形中,正方形的个数为________,周长为_______(都用含n 的代数式表示).(3)这些图形中,任意一个图形的周长与它所含正方形个数之间的函数关系式为______________________________.5、观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4……请你将猜想到的规律用自然数n (n ≥1)表示出来 .6、一个由数字1和0组成的2005位的数码,其排列规律是101101110101101110101101110……,其中“0”的个数为____________. 7、(扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=⨯+⨯+⨯+⨯,那么将二进制数2)1111(转换成十进制形式是数_______ .A 、8B 、15C 、20D 、308、观察下列算式:,221=, 422=,823=,1624=,3225=,6426=12827= ,25628=通过观察,用你所发现的规律写出98的末位数字是 .9、研究下列算式:1=12; 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52;…用代数式表示此规律(n 为正整数)1+3+5+7+……+(2n-1)=______________________.用文字语言表述是:____________________________________.10、观察下面几个算式,你发现了什么规律: 1+2+1=4; 1+2+3+2+1=9;1+2+3+4+3+2+1=16; 1+2+3+4+5+4+3+2+1=25;……利用上面的规律,你能不能迅速算出1+2+3+……+99+100+99+……+3+2+1=_____11、(山西省)联欢会上,小红按照4个红气球、3个黄气球、2个绿气球的顺序把气球串起来装饰会场,第56个气球的颜色是 .12、(大连市)借助计算器可以求得2222222243,4433,444333,44443333++++……,仔细观察上面几道题的计算结果,试猜想2220032003444+333=L L个个_______________;13、将一边长为16厘米的正方形纸片,剪成四个大小一样的小正方形,然后将其中的一个再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环下去,剪6次一共剪出多少个小正方形?所剪得正方形个数S和所剪次数n有什么关系?用数学表达式表示为.14、(山东省)下面是按照一定规律画出的一列“树型”图:……经观察发现:图(2)比图(1)多2个“树枝”,图(3)比(2)多5个“树枝”,图(4)比(3)多10个“树枝”,照此规律,图(7)比(6)多出 _ 个“树枝”.15、(资阳市)如图,已知四边形ABCD是梯形(标注的数字为边长),按图中所示的规律,用2003个这样的梯形镶嵌而成的四边形的周长是___________.1211DCBA图5……16、(2004年十堰市)有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的()A.21B.41C.81D.16117、(南昌市)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第四个图案中有白色地砖_________块;(2)第n个图案中有白色地砖___________块.18、(宁夏)一组线段AB和CD把正方……第10题图第三个第二个第一个A C AD CADBADC形分成形状相同、面积相等的四部分.现给出四种分法,如图所示.请你从中找出线段AB、CD的位置及关系存在的规律.符合这种规律的线段共有多少组?(不再添加辅助线和其它字母)19、(吉林)如图所示,用用样规格黑白两色的正方形瓷砖铺设矩形地面.请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围);……20、(黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.n=1答案1、4n;2(1)21;(2)57;(3)略;(4)y=n2-n+1;1、2003;2、47;3、B;4、(1)13、28;18、38;(2)5n+3,10n+8;(3)C=2n+2;5、n2+n=n(n+1);6、668;7、B;8、8;9、n2;10、1002;11、红;12、55…5(2003个);13、19个;14、80个;15、6011;16、B;17、(1)18;(2)4n+2;18、AB ⊥CD,AB、CD交于正方形的中心;无数组;19、(1)n+3,n+2;(2)y=n2+5n+6;20、图(2)成立;图(3)不成立;过点P作BC的平行线,转化为图(1);图(3)中结论:h1+h2-h3=h。
2020年中考数学压轴题题型专练:规律探索题(含答案)
2020中考数学压轴题题型专练:规律探索题类型一数式规律1. 将一组数2,2,6,22,10,…,210,按下列方式进行排列:2,2,6,22,10;23,14,4,32,25;…若2的位置记为(1,2),23的位置记为(2,1),则38这个数的位置记为________.(4,4)【解析】∴当10n -2=38时,n =4,∴38这个数的位置记为(4,4). 2. 按一定规律排列的一列数:-12,1,-1, ,-911,1113,-1317,…,请你仔细观察,按照此规律方框内的数字应为________.1 【解析】将原来的一列数变形为-12,33,-55, ,-911,1113,-1317,…,观察这列数可得奇数项为负数,偶数项为正数,分子是依次从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1.3. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.-12211 【解析】∵-2=-12+11,52= 22+12,-103=-32+13,174= 42+14,-265= -52+15,∴第11个数据是:-112+111=-12211.4. 已知a 1= t t -1,a 2= 11-a 1,a 3= 11-a 2,…,a n +1= 11-a n(n 为正整数,且t ≠0,1),则a 2018= ________(用含t 的代数式表示). 1-t 【解析】根据题意得:a 1= t t -1,a 2= 11-t t -1= 1-t ,a 3= 11-1+t = 1t ,a 4= 11-1t= t t -1, (2018)3= 672……2,∴a 2018的值为1-t . 5. 一列数:0,1,2,3,6,7,14,15,30,…,这列数是由小明按照一定规律写下来的,他第一次写下“0,1”,第二次接着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么30后三个连续数应该是________.31,62,63 【解析】通过观察可知,下一组数的第一个数是前一组数的第二个数的2倍,在同一组数中的前后两个数相差1,由此可得30后三个连续数为31,62,63.类型二 图形累加规律1. 如图,用菱形纸片按规律依次拼成如图图案,第1个图案中有5个菱形纸片,第2个图案中有9个菱形纸片,第3个图案中有13个菱形纸片,按此规律,第10个图案中有________个菱形纸片.第1题图41【解析】观察图形发现:第1个图案中有5=4×1+1个菱形纸片,第2个图案有9=4×2+1个菱形纸片,第3个图案中有13=4×3+1个菱形纸片,…,第n个图形中有4n+1个菱形纸片,故第10个图案中有4×10+1=41个菱形纸片.2. 如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.第2题图n2+n【解析】由题图知,第1、2、3个图案对应的正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的正方形的个数为n(n+1)=n2+n.3. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为________.第3题图85【解析】可以分两部分观察,上半部分小圆圈个数为:1+2+3+…+n +n+1,下半部分小圆圈个数为n2,所以第⑦个图形小圆圈个数为1+2+3+4+5+6+7+8+72=85.4. 如图是用棋子摆成的“T”字图案:从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.则摆成第n个图案需要________枚棋子.第4题图3n+2【解析】观察图案可知,图案分成两部分,横向的横子数量依次为3,5,7,…,纵向的棋子数量依次为2,3,4,…,∴第n个图案棋子数量为2n+1+(n+1)=3n+2.5. 如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n(n≥3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S与n(n≥3)的关系是________.第5题图n2-n【解析】n=3时,S=6=3×2,n=4时,S=12=4×3,n=5时,S =20=5×4,…,依此类推,当边数为n时,S=n(n-1)=n2-n.类型三图形成倍递变规律1. 如图,过点A0(2,0)作直线l:y=33x的垂线,垂足为点A1,过点A1作A1A2⊥x轴,垂足为点A2,过点A2作A2A3⊥l,垂足为点A3,…,这样依次下去,得到一组线段:A0A1,A1A2,A2A3,…,则线段A2016A2017的长为()A. (32)2015 B. (32)2016C. (32)2017 D. (32)2018第1题图B【解析】由y=33x,得直线l的倾斜角为30°,∵点A0坐标为(2,0),∴OA0=2,∴OA1=32OA0=3,OA2=32OA1=32,OA3=32OA2=334,OA4=32OA3=98,…,∴OA n=(32)n OA0=2×(32)n.∴OA2016=2×(32)2016,A2016A2017=12×2×(32)2016=(32)2016.2. 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),则第4个正方形的边长为________,第n个正方形的边长为________.第2题图8,2n-1【解析】∵函数y=x与x轴正半轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n-1.3. 如图,在矩形ABCD中,AD=a,AB=b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2,…,如此操作下去,得到菱形I2016,则I2016的面积是________.第3题图(12)4033ab 【解析】由题意得,菱形I 1的面积为:12AG ·AE =12×12a ×12b =(12)3ab ,菱形I 2的面积为:12FQ ·FN =12×(12×12a )×(12×12b )=(12)5ab ;…;菱形I n 的面积为:(12)2n +1ab .∴当n =2016时,菱形I 2016的面积为(12)4033ab .4. 如图,已知∠AOB =30°,在射线OA 上取点O 1,以O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以O 3为圆心,O 3O 2为半径的圆与OB 相切;…;在射线O 9A 上取点O 10,以O 10为圆心,O 10O 9为半径的圆与OB 相切.若⊙O 1的半径为1,则⊙O 10的半径长是________.第4题图29 【解析】如解图,作O 1C 、O 2D 、O 3E 分别⊥OB ,∵∠AOB =30°,∴OO 1=2CO 1,OO 2= 2DO 2,OO 3=2EO 3,∵O 1O 2=DO 2,O 2O 3= EO 3,O 1C =1,∴O 2D =2,O 3E =4,∴圆的半径呈2倍递增,∴⊙On 的半径为2n -1CO 1,∵⊙O 1的半径为1,∴⊙O 10的半径长= 29.第4题解图类型四图形周期变化规律1. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A. (1,-1)B. (-1,-1)C. (2,0)D. (0,-2)第1题图B【解析】∵菱形OABC的顶点O(0,0),点B的坐标是(2,2),∴BO与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1) ,∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).2. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2018个梅花图案中,共有________个“”图案.第2题图505【解析】∵2018÷4=504……2,∴有505个.3. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2017B2018C2018的顶点B2018的坐标是________.第3题图(0,21009)【解析】点B的位置依次落在第一象限、y正半轴、第二象限、x负半轴、第三象限、y负半轴、第四象限、x正半轴…,每8次一循环.2018÷8=252……2,所以B2018落在y轴正半轴,故B2018的横坐标是0;OB n是正方形的对角线,OB1=2,OB2=2=(2)2,OB3=22=(2)3,…,所以OB2018=(2)2018=21009,所以B2018的坐标为(0,21009).4. 如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________,翻滚2017次后AB中点M经过的路径长为________.第4题图(5,3),(134633+896)π 【解析】如解图,翻滚3次后点B 的对应点是B 3,作B 3E ⊥x 轴于E ,易知OE = 5,B 3E = 3,B 3(5,3),观察图象可知翻滚3次为一个循环,一个循环点M 的运动路径为MM 1︵、M 1M 2︵、M 2M 3︵,120 ·π ·3180+120 ·π ·1180+120 ·π ·1180=23+43π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672×23+43π+23π3= (134633+896)π.第4题解图。
中考数学高频考点《规律探究题》专项测试卷-带答案
中考数学高频考点《规律探究题》专项测试卷-带答案(14道)一、单选题1.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形 曲线12345C C C C C 叫作“正方形的渐开线” 其中12C C 23C C 34C C 45C C …的圆心依次按O A B 1C 循环.当1OA =时 点2023C 的坐标是( )A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,2.(2023·四川绵阳·统考中考真题)如下图,将形状 大小完全相同的“●”和线段按照一定规律摆成以下图形 第1幅图形中“●”的个数为1a 第2幅图形中“●”的个数为2a 第3幅图形中“●”的个数为3a … 以此类推 那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .4317603.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( ) A .m n +B .mC .n m -D .2n4.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41……A .2003B .2004C .2022D .2023二 填空题6.(2023·辽宁锦州·统考中考真题)如图,在平面直角坐标系中 四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 顶点1B 2B 3B 4B 5B …都在x 轴上 顶点1C 2C 3C 4C …都在正比例函数14y x =(0x ≥)的图象上 且21212B C A C = 32322B C A C = 43432B C A C = … 连接12A B 23A B 34A B 45A B … 分别交射线1OC 于点1O 2O 3O 4O … 连接12O A 23O A 34O A … 得到122O A B ∆ 233O A B ∆ 344O A B ∆ ….若()12,0B ()23,0B ()13,1A ,则202320242024O A B ∆的面积为 .7.(2023·江苏宿迁·统考中考真题)如图,ABC 是正三角形 点A 在第一象限 点()0,0B ()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP 将线段1BP 绕点B 按顺时针方向旋转120︒至2BP 将线段2AP 绕点A 按顺时针方向旋转120︒至3AP 将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ……以此类推,则点99P 的坐标是 .8.(2023·黑龙江大庆·统考中考真题)1261年 我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表 人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图 根据图中各式的规律 7()a b +展开的多项式中各项系数之和为 . 9.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .10.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)11.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上4OA OB == 连接AB 过点O 作1OA AB ⊥于点1A 过点1A 作11A B x ⊥轴于点1B 过点1B 作12B A AB ⊥于点2A 过点2A 作22A B x ⊥轴于点2B 过点2B 作23B A AB ⊥于点3A 过点3A 作33A B x ⊥轴于点3B … 按照如此规律操作下去,则点2023A 的坐标为 .12.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .13.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .三 解答题14.(2023·山东潍坊·统考中考真题)[材料阅读] 用数形结合的方法 可以探究23...n q q q q +++++的值 其中01q <<.例求2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.方法1:借助面积为1的正方形 观察图①可知2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于该正方形的面积即23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.方法2:借助函数1122y x =+和y x =的图象 观察图①可知 2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于1a 2a 3a … n a …等各条竖直线段的长度之和即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1所以 23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【实践应用】任务一 完善2322223333n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的求值过程.方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为______所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.任务二 参照上面的过程 选择合适的方法 求23233334444⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.任务三 用方法2 求23n q q q q +++++的值(结果用q 表示).【迁移拓展】 51+的矩形是黄金矩形 将黄金矩形依次截去一个正方形后 得到的新矩形仍是黄金矩形.观察图① 直接写出2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.参考答案一、单选题1.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形 曲线12345C C C C C 叫作“正方形的渐开线” 其中12C C 23C C 34C C 45C C …的圆心依次按O A B 1C 循环.当1OA =时 点2023C 的坐标是( )A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,【答案】A【分析】由题得点的位置每4个一循环 经计算得出2023C 在第三象限 与3C 7C 11C …符合同一规律 探究出3C 7C 11C ...的规律即可.【详解】解:由图得123450110()()()()(140)205C C C C C ---,,,,,,,,, 67(506)1()C C --,,, … 点C 的位置每4个一循环202350543=⨯+①2023C 在第三象限 与3C 7C 11C … 符合规律()11n --+,①2023C 坐标为)12(022--,. 故选:A .【点睛】本题考查了点的坐标的规律的探究 理解题意求出坐标是解题关键.2.(2023·四川绵阳·统考中考真题)如下图,将形状 大小完全相同的“●”和线段按照一定规律摆成以下图形 第1幅图形中“●”的个数为1a 第2幅图形中“●”的个数为2a 第3幅图形中“●”的个数为3a … 以此类推 那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .431760【答案】C【分析】首先根据图形中“●”的个数得出数字变化规律 进而求解即可. 【详解】解:1313a2824a 31535a 42446a…()2n a n n =+ ①123191111a a a a +++⋅⋅⋅+ 11111132435461921=++++⋅⋅⋅+⨯⨯⨯⨯⨯11111111111232435461921⎛⎫=-+-+-+-+⋅⋅⋅+- ⎪⎝⎭ 11111222021⎛⎫=+-- ⎪⎝⎭589840=故选①C .【点睛】此题考查图形的变化规律 找出图形之间的联系 找出规律是解题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作: 第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( ) A .m n + B .mC .n m -D .2n【答案】D【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后得到整式串m n n m - m - n - 第4次操作后得到整式串m n n m - m - n - n m -+ 第5次操作后得到整式串m n n m - m - n -n m -+m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每六次一循环 ①202363371÷=⋅⋅⋅①第2023次操作后得到的整式中各项之和与第1次操作后得到整式串之和相等 ①这个和为2m n n m n ++-= 故选D【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.二 填空题6.(2023·辽宁锦州·统考中考真题)如图,在平面直角坐标系中 四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 顶点1B 2B 3B 4B 5B …都在x 轴上 顶点1C 2C 3C 4C …都在正比例函数14y x =(0x ≥)的图象上 且21212B C A C = 32322B C A C = 43432B C A C = … 连接12A B 23A B 34A B 45A B … 分别交射线1OC 于点1O 2O 3O 4O … 连接12O A 23O A 34O A … 得到122O A B ∆ 233O A B ∆ 344O A B ∆ ….若()12,0B ()23,0B ()13,1A ,则202320242024O A B ∆的面积为 .【答案】2023202494【分析】根据题意和图形可先求得12312290A B B B B A ∠∠=︒= 34323290A B B B B A ∠∠=︒=45434390A B B B B A ∠∠=︒=11190n n n n n n B A B B A B +--∠∠=︒= 333,02B ⎛⎫⨯ ⎪⎝⎭2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 从而得2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝ 利用三角形的面积公式即可得解.【详解】解:①()12,0B ()23,0B ()13,1A①点()13,1A 与点()23,0B 的横坐标相同 12OB = 12321B B =-= 121A B = 23OB = ①12A B x ⊥轴 ①1290A B O ∠=︒ ①21212B C A C = ①21212B C A C = ①四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 ①1122A B A B ∥ 222A C OB ∥ 233A B OB ∥ 2223A B C B = 1121A B B C = ①112223A B B A B B ∠=∠ 12212C A C C B O ∠=∠ 12212C C A C OB ∠=∠ 2222111232B A B A B A BC == ①12212C C A C OB ∠∽ ①21222212232OB C B OB C A C A B B === ①23211322B B OB ==⨯①1222123232B B B B B A B C == 3233322OB OB ==⨯ ①212312A A B B B B ∽ ①12312290A B B B B A ∠∠=︒= ①333,02B ⎛⎫⨯ ⎪⎝⎭同理可得34323290A B B B B A ∠∠=︒= 45434390A B B B B A ∠∠=︒=11190n n n n n n B A B B A B +--∠∠=︒=2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭①2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭①2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭①2022202333,2O n ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭在14y x =上 ①2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝①202320242024202320232202302240464220242025404820240211333222223944O A B SB O A B ⎛⎫⎛⎫=⋅=⨯⨯== ⎪ ⎪⎝⨯⎭⎝⎭故答案为:2023202494.【点睛】本题考查相似三角形的判定及性质 平行四边形的性质 坐标与图形 坐标规律 熟练掌握相似三角形的判定及性质以及平行四边形的性质是解题关键.7.(2023·江苏宿迁·统考中考真题)如图,ABC 是正三角形 点A 在第一象限 点()0,0B ()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP 将线段1BP 绕点B 按顺时针方向旋转120︒至2BP 将线段2AP 绕点A 按顺时针方向旋转120︒至3AP 将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ……以此类推,则点99P 的坐标是 .【答案】(49,503-【分析】首先画出图形 然后得到旋转3次为一循环 然后求出点99P 在射线CA 的延长线上 点100P 在x 轴的正半轴上 然后利用旋转的性质得到99100CP = 最后利用勾股定理和含30︒角直角三角形的性质求解即可.【详解】如图所示由图象可得 点1P 4P 在x 轴的正半轴上 ①.旋转3次为一个循环 ①99333÷=①点99P 在射线CA 的延长线上 ①点100P 在x 轴的正半轴上 ①()1,0C ABC 是正三角形 ①由旋转的性质可得 11AC CP == ①112BP OC CP =+=①()12,0P ①212BP BP ==①3223AP AP OP AO ==+= ①433314CP CP CA AP ==+=+= ①445BP BC CP =+= ①()45,0P①同理可得 ()78,0P ()1011,0P ①()100101,0P ①100101BP = ①1001011100CP =-=①由旋转的性质可得 99100CP = ①如图所示 过点99P 作99P E x ⊥轴于点E①60ACB ∠=︒ ①9930EP C ∠=︒ ①991502EC P C == ①49EO EC OC =-= 229999503P E P C EC -=①点99P 的坐标是(49,503-. 故答案为:(49,503-.【点睛】本题考查了坐标与图形变化-旋转 勾股定理 等边三角形的性质.正确确定每次旋转后点与旋转中心的距离长度是关键.8.(2023·黑龙江大庆·统考中考真题)1261年 我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表 人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图 根据图中各式的规律 7()a b +展开的多项式中各项系数之和为 . 【答案】128【分析】仿照阅读材料中的方法将原式展开 即可得出结果. 【详解】根据题意得:()5a b +展开后系数为:1,5,10,10,5,1 系数和:515101051322+++++==()6a b +展开后系数为:1,6,15,20,15,6,1系数和:61615201561642++++++==()7a b +展开后系数为:1,7,21,35,35,21,7,1系数和:71721353521711282+++++++== 故答案为:128.【点睛】此题考查了多项式的乘法运算 以及规律型:数字的变化类 解题的关键是弄清系数中的规律. 9.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .【答案】(3【分析】先确定前几个点的坐标 然后归纳规律 按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x ⊥轴①12,OA A①111cos601,sin603,OB OA A B OA =︒⨯==︒⨯= ①(13A ,同理:(((47104,3,3,10,3,A A A -①点1A 的横坐标为1 点2A 的横坐标为2 点3A 的横坐标为3 ……纵坐标三个一循环 ①2023A 的横坐标为2023 ①202336741÷= 674为偶数①点2023A 在第一象限 ①(20233A . 故答案为(3.【点睛】本题主要考查了等边三角形的性质 解直角三角形 坐标规律等知识点 先求出几个点 发现规律是解答本题的关键.10.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.11.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上4OA OB == 连接AB 过点O 作1OA AB ⊥于点1A 过点1A 作11A B x ⊥轴于点1B 过点1B 作12B A AB ⊥于点2A 过点2A 作22A B x ⊥轴于点2B 过点2B 作23B A AB ⊥于点3A 过点3A 作33A B x ⊥轴于点3B … 按照如此规律操作下去,则点2023A 的坐标为 .【答案】20212021114,22⎛⎫- ⎪⎝⎭【分析】根据题意 结合图形依次求出123,,A A A 的坐标 再根据其规律写出2023A 的坐标即可. 【详解】解:在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上 4OA OB == OAB ∴是等腰直角三角形 45OBA ∠=︒1OA AB ⊥1OA B ∴是等腰直角三角形同理可得:1111,OA B A B B 均为等腰直角三角形 1(2,2)A ∴根据图中所有的三角形均为等腰直角三角形 依次可得:()2342211113,1,4,,4,,2222A A A ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭由此可推出:点2023A 的坐标为20212021114,22⎛⎫- ⎪⎝⎭.故答案为:20212021114,22⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了平面直角坐标系中点的坐标特征 以及点的坐标变化规律问题 等腰直角三角形的性质 解题的关键是依次求出123,,A A A 的坐标 找出其坐标的规律.12.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .【答案】23【分析】解直角三角形得出30AOB ∠=︒ 60BOC ∠=︒ 求出3ABC S 证明111ABC A B C ∽△△222ABC A B C ∽ 得出1114A B C ABCSS= ()22222242A B C ABCABCSSS=⋅=⋅ 总结得出()2222n n nn n A B C ABCABCSSS== 从而得出202320232023220232323A B C S⨯=【详解】解:①22OB =①()22,0B ①AB x ⊥轴①点A 的横坐标为2①13:l y =①点A 32622①2633tan 22AB AOB OB ∠==①30AOB ∠=︒ ①2:3l y x =①设(),C C C x y ,则3C C y x ①tan 3CCy BOC x ∠==①60BOC ∠=︒①1cos602222OC OB =⨯︒==3sin 60226BC OB =⨯︒==①130AOC BOC AOB ∠=∠-∠=︒ ①1AOB AOC ∠=∠ ①OA 平分BOC ∠ ①12AC l ⊥ AB OB ⊥ ①126AC AB ==①1AB AC = OA OA = ①1Rt Rt OAB OAC ≌ ①122OC OB ==①112222CC OC OC =-=①12ABCOABACC BOCSSSS=--126126122226222=⨯⨯--3①2BC l ⊥ ①90BCO ∠=︒①906030CBO ∠=︒-︒=︒ ①112B C l ⊥ 2BC l ⊥ 222B C l ⊥ ①2112B B C C B C ∥∥①112230C B O C B O CBO ∠=∠=∠=︒ ①1122C B O C B O CBO AOB ∠=∠=∠=∠ ①1AO AB = 112AO A B = ①AB x ⊥轴 11A B x ⊥轴①112OB OB = 1212OB OB =①AB x ⊥轴 11A B x ⊥轴 22A B x ⊥轴①1122AB A B A B ∥∥ ①11112AB OB A B OB ==22214AB OB A B OB == ①2112B B C C B C ∥∥ ①11112BC OB B C OB ==22214BC OB B C OB == ①1111AB BCA B B C = ①111903060ABC A B C ∠=∠=︒-︒=︒ ①111ABC A B C ∽△△ 同理222ABC A B C ∽ ①1114A B C ABCS S=()22222242A B C ABC ABCSSS=⋅=⋅ ①()2222n n nn n A B C ABCABCS SS==①202320232023220232323A B C S⨯=故答案为:23【点睛】本题主要考查了三角形相似的判定和性质 解直角三角形 三角形面积的计算 平行线的判定和性质 一次函数规律探究 角平分线的性质 三角形全等的判定和性质 解题的关键是得出一般规律()2222n n nn n A B C ABCABCSSS==.13.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.三 解答题14.(2023·山东潍坊·统考中考真题)[材料阅读] 用数形结合的方法 可以探究23...n q q q q +++++的值 其中01q <<.例求2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.方法1:借助面积为1的正方形 观察图①可知2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于该正方形的面积即23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.方法2:借助函数1122y x =+和y x =的图象 观察图①可知 2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于1a 2a 3a … n a …等各条竖直线段的长度之和即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1所以 23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【实践应用】任务一 完善2322223333n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的求值过程.方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为______所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.任务二 参照上面的过程 选择合适的方法 求23233334444⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.任务三 用方法2 求23n q q q q +++++的值(结果用q 表示).【迁移拓展】 51+的矩形是黄金矩形 将黄金矩形依次截去一个正方形后 得到的新矩形仍是黄金矩形.观察图① 直接写出2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【答案】任务一、方法1:2 方法2:()2,2 2 任务二 3 任务三 1qq- [迁移拓展] 51- 【分析】任务一、仿照例题 分别根据方法1 2进行求解即可 任务二 借助函数3344y x =+和y x =得出交点坐标 进而根据两个函数图象的交点到x 轴的距离.因为两个函数图象的交点()2,2到x 轴的距为2 即可得出结果任务三 参照方法2 借助函数y qx q =+和y x =的图象 得出交点坐标 即可求解 [迁移拓展]观察图①第一个正方形的面积为051111-⨯==⎝⎭ 第二个正方形的面积为2251511⎫+-=⎪⎪⎝⎭⎝⎭ ……进而得出则2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值等于长51+的矩形减去1个面积为1的正方形的面积 即可求解. 【详解】解:任务一、方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2故答案为:2. 方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为()2,2所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.故答案为:()2,2 2.任务二:参照方法2 借助函数3344y x =+和y x =的图象 3344y x y x⎧=+⎪⎨⎪=⎩ 解得:33x y =⎧⎨=⎩ ①两个函数图象的交点的坐标为()3,3232333334444⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.任务三 参照方法2 借助函数y qx q =+和y x =的图象 两个函数图象的交点的坐标为,11q q q q ⎛⎫⎪--⎝⎭①231n qq q q q q +++++=- [迁移拓展]根据图① 第一个正方形的面积为051111-⨯==⎝⎭ 第二个正方形的面积为2251511⎫+-=⎪⎪⎝⎭⎝⎭ …… 则2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭51+的矩形减去1个面积为1的正方形的面积即24625151515151511122n⎛⎫----+-+++++=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】本题考查了一次函数交点问题 正方形面积问题 理解题意 仿照例题求解是解题的关键.。
八上数学每日一练:探索图形规律练习题及答案_2020年综合题版
答案解析
4. (2017梁子湖.八上期末) 如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数 ,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他 位置的十字星,可以发现“十字差”仍为48.
(1)
如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定
值,则这个定值为.
(2) 若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请 用k表示出这个定值,并证明你的结论. (3) 如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应 的“十字差”为2017,则这个十字星中心的数为(直接写出结果).
考点: 探索数与式的规律;探索图形规律; 5. (2017孝南.八上期中) 观察下列图形,回答问题:
(1)
猜测第七个图形中共有个三角形.
(2) 按上面的方法继续下去,第n个图形中有个三角形(用n的代数式表示结论). 考点: 探索图形规律;
2020年 八 上 数 学 : 数 与 式 _代 数 式 _探 索 图 形 规 律 练 习 题 答 案
八上数学每日一练:探索图形规律练习题及答案_2020年综合题版
2020年 八 上 数 学 : 数 与 式 _代 数 式 _探 索 图 形 规 律 练 习 题
1. (2020驿城.八上期中) 观察图,先填空,然后回答问题
(1) 由上而下第 行的白球与黑球总数比第 (2) 求出第 行白球与黑球的总数可能是 考点: 探索图形规律;一元一次方程的其他应用;
中考数学规律探索题(整理全,含答案).doc
A. M=mnD.M=m(n+1)规律探索7选择题1. 观察下列等式:31=3, 32=9, 33=27, 34=81, 3—243, 36=729, 37=2187...解答下列问题:3 + 32 + 33 + 34...+32013的末位数字是( )A. 0B. 1C. 3D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,29, 31),…,现用等式A M = (i, j)表示正奇数M 是第i 组第j 个数(从左往右数),如A7= (2, 3),则A 20I 3=() A. (45, 77) B. (45, 39) C. (32, 46) D. (32, 23)3. 下表中的数字是按一定规律填写的,表中a 的值应是 ________ . 12 3 5 813a・2 358 13 21 34・4. 下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2“?,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) 6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是7. 我们知道,一元二次方程x 2 =-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为(B.M=n(m+1) C.M=mn+1i + Z 2 + Z 3 + 广 + ..严12 + /2013 的值为A. 0B. 1C. -1 D .•• • •• • •• • • •• •• • •图①图②图③(第8题图)A. 51 C.76 D. 81厂= -1(即方程X 2 =-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则 仍然成立,于是有z 1 = z, i 2= -1 , z 3 = i 2-i = (-1).1 = -i, i 4 = (z 2)2 = (-1)2 = 1.从而对任意正整数n,我们可得到 严”+1 = j4” j =(严)” j = i,同理可得严”+2 = _1,严”+3 = =1,那么,&下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③ 个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()填空题1. ________________________________________________________________________________ 观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为 _________________________________ (用含"的代数式表(第11题)2. 如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△OAB 连续作旋转变换,依次得到△】、△?、△?、A 4...,则△2013的直角顶点的坐标为 ___________________ .3. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AjBiCiDi 四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B 6C 6D6周长是 ________ •B. 70& 1 图2 图3 D4. _________________________________________________________________________________________________ 直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ________________ 个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是 __________将C1绕点山旋转180。
类型1 数字与图形规律探索(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)
数字与图形规律探索1.若1×22﹣2×32=﹣1×2×7;(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11;(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15;则(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=.2.设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是.3.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=.4.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.5.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是.6.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n个图案是由个组成的.7.观察下列砌钢管的横截面图:则第n个图的钢管数是(用含n的式子表示)8.如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n∁n=°.(用含n的代数式表示)9.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.10.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC 的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.11.求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.12.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,113.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为(结果用n表示).14.图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,…,你是否发现苹果的排列规律?猜猜看,第六行有个苹果、第十行有个.(可用乘方形式表示)15.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了(a+b)n (n为非负数)展开式的各项系数的规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;根据以上规律,(a+b)4展开式共有五项,系数分别为.17.观察下列二次根式的化简:,,,…从计算结果中找到规律,再利用这一规律计算下列式子的值.=.18.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=.19.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.20.阅读理解:给定次序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为.试题解析1.若1×22﹣2×32=﹣1×2×7;(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11;(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15;则(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3).解:∵1×22﹣2×32=﹣1×2×7=﹣1×2×(4×1+3);(1×22﹣2×32)+(3×42﹣4×52)=﹣2×3×11=﹣2×3×(4×2+3);(1×22﹣2×32)+(3×42﹣4×52)+(5×62﹣6×72)=﹣3×4×15═﹣3×4×(4×3+3);…(1×22﹣2×32)+(3×42﹣4×52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3),故答案为:﹣n(n+1)(4n+3).2.设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是165.解:(a1+1)2+(a2+1)2+…+(a2014+1)2=a12+a22+…+a20142+2(a1+a2+…+a2014)+2014=a12+a22+…+a20142+2×69+2014=a12+a22+…+a20142+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849,解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.3.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6故本题答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b64.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.5.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是365.解:第1个图案只有1块黑色地砖,第2个图案有黑色与白色地砖共32=9,其中黑色的有5块,第3个图案有黑色与白色地砖共52=25,其中黑色的有13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有[(2n﹣1)2+1],当n=14时,黑色地砖的块数有[(2×14﹣1)2+1]=×730=365.故答案为:365.6.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由16个组成的,依此,第n个图案是由3n+1个组成的.解:由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,…,第5个图案基础图形的个数为4+3(5﹣1)=16,第n个图案基础图形的个数为4+3(n﹣1)=3n+1.故答案为:16,3n+1.7.观察下列砌钢管的横截面图:则第n个图的钢管数是n2+n(用含n的式子表示)解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.8.如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n∁n=(90﹣)°.(用含n的代数式表示)解:由张角度数变化可知顶角∠A n+1∁n A n=,则∠A n+1A n∁n=(180﹣)÷2=90﹣.故答案为:(90﹣).9.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.10.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC 的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成2n+1个互不重叠的小三角形.解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1).故答案为:2n+1.11.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012﹣1B.52013﹣1C.D.解:设S=1+5+52+53+...+52012,则5S=5+52+53+54+ (52013)因此,5S﹣S=52013﹣1,S=.故选:C.12.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选:D.13.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为1﹣(结果用n表示).解:…+=1﹣.答:…+的值为1﹣.故答案为:1﹣.14.图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,…,你是否发现苹果的排列规律?猜猜看,第六行有25个苹果、第十行有29个.(可用乘方形式表示)解:第六行有25个苹果、第十行有29个.15.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.解:结合图形,得+++…+=1﹣.16.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了(a+b)n (n为非负数)展开式的各项系数的规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;根据以上规律,(a+b)4展开式共有五项,系数分别为1,4,6,4,1.解:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;所以(a+b)4展开的五项系数应该为:1,4,6,4,1.故答案为:1,4,6,4,1.17.观察下列二次根式的化简:,,,…从计算结果中找到规律,再利用这一规律计算下列式子的值.=2009.解:原式=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2009.18.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=(a+b)(a+b+c).解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).19.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.20.阅读理解:给定次序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为120.解:∵99个数a1,a2,…,a99的“凯森和”为100,∴(S1+S2+…+S99)÷99=100,∴S1+S2+…+S99=9900,(21+S1+21+S2+21+…+S99+21)÷100=(21×100+S1+S2+…+S99)÷100=(21×100+9900)÷100=21+99=120.。
2020中考数学规律探索问题试题汇编
中考数学规律探索问题试题汇编一、选择题1、(2020最新模拟山东济宁)如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
B2、(2020最新模拟江苏泰州)按右边33⨯方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内( )A3、(2020最新模拟湖南湘潭)为庆祝“六g 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n4、(2020最新模拟湖南株州)某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )C(第01题图)ABCDA. 31B. 33C. 35D. 37 二、填空题1、(2020最新模拟辽宁沈阳)有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .501、(2020最新模拟山东日照)把正整数1,2,3,4,5,……,按如下规律排列:1 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,… … … …按此规律,可知第n 行有 个正整数.2n-12、(2020最新模拟重庆)将正整数按如图所示的规律排列下去。
若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 。
233、(2020最新模拟福建晋江)试观察下列各式的规律,然后填空:1)1)(1(2-=+-x x x 1)1)(1(32-=++-x x x x 1)1)(1(423-=+++-x x x x x ……则=++++-)1)(1(910x x x x ΛΛ_______________。
111-x 。
11235...4、(2020最新模拟内蒙古赤峰)观察下列各式:22151(11)1005225=⨯+⨯+= 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=……依此规律,第n个等式(n为正整数)为 .22(105)(1)1005n n n +=+⨯+5、(2020最新模拟浙江温州)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
中考数学《规律探索》专题复习试题含解析
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
2020年中考数学专题复习卷 探索规律专题
探索规律专题练习卷1.观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是________. (n为正整数)2.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得3S =3+32+33+34+35+36+37+38+39②,②-①,得3S -S =39-1,即2S =39-1,所以S =39-12.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m2 016的值?如能求出,其正确答案是________.3.如图是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)4.如图在平面直角坐标系中放置一菱形OABC ,已知∠ABC =60°,OA =1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2 014次,点B 的落点依次为B 1,B 2,B 3,…,则B 2 014的坐标为________.5.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m ,n 的关系是( )A .M =mnB .M =n (m +1)C .M =mn +1D .M =m (n +1)6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2 017个格子中的数为( )A .3B .2C .0D .-17.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )……A .y =2n +1B .y =2n+n C .y =2n +1+n D .y =2n+n +18.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2 017个白色纸片,则n 的值为( )A .671B .672C .673D .6749.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,……设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( )A .C n H 2n +2B .C n H 2n C .C n H 2n -2D .C n H n +310.观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A.2531 B.3635C.47D.626311.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ) A .135 B .170 C .209 D .25212.下列图形都是按照一定规律组成的,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形……依此规律,第五个图形中三角形的个数是( )A .22B .24C .26D .2813.观察下列关于自然数的等式:(1)32-4×12=5, (2)52-4×22=9,(3)72-4×32=13,…根据上述规律解决下列问题:(1)完成第四个等式:92-4×()2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.14.将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余):第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形再分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去……(1)请你在下图中画出第一次分割的示意图;(2)若原正六边形的面积为a,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:(3)观察所填表格,并结合操作,请你猜想:分割后所得的正六边形的面积S与分割次数n之间有何关系?(S用含a和n的代数式表示,不需要写出推理过程) 参考答案1.2n+1n2+12.m2 017-1m-13. 2n2+2n或2n(n+1)解析:方法一,根据图形的变化规律,得出结果.方法二,依题意,得n=1,根数为4=2×1×(1+1);n=2,根数为12=2×2×(2+1);n=3,根数为24=2×3×(3+1);……n=n时,根数为2n(n+1).4. (1 342,0)5.D6.A7.B8.B 9.A 10.C 11.C 12.C 13.解:(1)4 17(2)第n个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1=右边,∴第n个等式成立.14.解:(1)如图所示:(2)(3)S=a4n .。
中考数学每日一练:探索图形规律练习题及答案_2020年单选题版
中考数学每日一练:探索图形规律练习题及答案_2020年单选题版答案答案答案答案2020年中考数学:数与式_代数式_探索图形规律练习题~~第1题~~(2017都匀.中考模拟) 如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A . 71B . 78C . 85D . 89考点: 探索图形规律;~~第2题~~(2019阜新.中考真卷) 如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB C 的位置,再到△A B C 的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 的坐标为( )A .B .C .D .考点: 探索图形规律;坐标与图形性质;~~第3题~~(2019抚顺.中考模拟) 如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB C 的位置,点B 、O 分别落在点B 、C 处,点B 在x 轴上,再将△AB C 绕点B 顺时针旋转到△ABC 的位置,点C 在x 轴上,将△A B C 绕点C 顺时针旋转到△A B C的位置,点A 在x 轴上,依次进行下去……,若点A ( ,0),B (0,2).则点B 的坐标是( )A . (6052,0)B . (6054,2)C . (6058,0)D . (6060,2)考点: 探索图形规律;坐标与图形变化﹣旋转;~~第4题~~(2019新昌.中考模拟) 我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n个“平行四边形数”和“正六边形数”分别为a 和b ,若a+b =103,则 的值是( )A .B .C .D .考点: 探索图形规律;~~第5题~~1111210011111111122112222222019答案答案答案答案(2019绍兴.中考模拟) 如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( ) A . B . C . D .考点: 探索图形规律;~~第6题~~(2019义乌.中考模拟) 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A . 22张B . 23张C . 24张D . 25张考点: 探索图形规律;~~第7题~~(2019婺城.中考模拟) 如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a ,第2幅图形中“●”的个数为a , 第3幅图形中“●”的个数为a , …,以此类推,则 + + +…+ 的值为( )A .B .C .D .考点: 有理数的乘法运算律;探索图形规律;~~第8题~~(2020余杭.中考模拟) 已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B ,M 间的距离可能是( )A . 0.5B . 0.7C . ﹣1D . ﹣1考点: 探索图形规律;正多边形的性质;旋转的性质;~~第9题~~(2019台州.中考模拟) 正方形A B C O ,A B C C , A B C C , …按如图的方式放置.点A , A , A , …和点C , C , C , …分别在直线y=x+1和x 轴上,则点B 的坐标是( )123111222133321231236答案答案A . (63,32) B . (64,32) C . (63,31) D . (64,31)考点: 探索图形规律;~~第10题~~(2019江北.中考模拟) 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为( )A . 56B . 64C . 72D . 90考点: 探索图形规律;2020年中考数学:数与式_代数式_探索图形规律练习题答案1.答案:D2.答案:B3.答案:C4.答案:D5.答案:D6.答案:D7.答案:C8.答案:D9.答案:A10.答案:D。
中考数学每日一练:探索图形规律练习题及答案_2020年填空题版
,再依次作菱形,Biblioteka ,则过点,,
的圆的圆心坐标为________.
,并使 ,
考点: 探索图形规律;勾股定理;菱形的性质;
答案
~~第2题~~ (2019荆州.中考模拟) 用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个 图案比前一个图案多4个等边三角形和1个正方形,则第n个图案中等边三角形的个数为________个.
,
为邻边在 , 间作菱形
,分别以点 , 为圆心,
以 为半径画弧得扇形
和扇形
,记扇形
与扇形
重叠部分的面积为
按照此规
律继续作下去,则 __.(用含有正整数 的式子表示)
考点: 探索图形规律;等边三角形的判定与性质;含30度角的直角三角形;菱形的性质;扇形面积的计算;
答案
~~第4题~~ (2019营口.中考真卷) 如图,在平面直角坐标系中,直线
继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标
轴平行,正方形ABCA1 , A1B1C1A2 , …, 为________.
中的阴影部分的面积分别为S1 , S2 , …,Sn , 则Sn可表示
考点: 探索图形规律;一次函数图象与坐标轴交点问题;正方形的性质;同角三角函数的关系;
考点: 探索图形规律;
答案
~~第3题~~ (2019抚顺.中考真卷) 如图,直线 的解析式是
,直线 的解析式是
,点 在 上, 的横坐标
为 ,作
交 于点 ,点 在 上,以 , 为邻边在直线 , 间作菱形
,分别以点
, 为圆心,以 为半径画弧得扇形
和扇形
中考数学复习《探索规律问题》经典题型及测试题(含答案)
中考数学复习《探索规律问题》经典题型及测试题(含答案)阅读与理解探索规律问题是中考数学中的常考问题,往往以选择题或填空题中的压轴题形式出现,主要命题方向有数式规律、图形变化规律、点的坐标规律等.基本解题思路为:从简单的、局部的、特殊的情形出发,通过分析、比较、提炼,发现其中的规律,进而归纳或猜想出一般性的结论,最后验证结论的正确性.即“从特殊情形入手→探索发现规律→猜想结论→验证”.类型一数式规律这类问题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.例1 (2016·绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.【分析】首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律根据规律得出结论,进而求出a399+a400的值.【自主解答】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴an +an+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练:1.(2017·遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.2.(2017年黄石)观察下列格式:=1﹣=+=1﹣+﹣=++=1﹣+﹣+﹣=…请按上述规律,写出第n个式子的计算结果(n为正整数).(写出最简计算结果即可)类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.例2 (2016·重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.【自主解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15 …,所以第n个图形为:+n2,当n=7时,+72=85,故选D.变式训练:3.(2017·随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )A.84株 B.88株 C.92株 D.121株4.(2015·德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形An BCnDn的面积为_______类型三点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.例3 (2017·东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.21433an【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A2017的横坐标.【自主解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,An的横坐标为,∴点A2017的横坐标是,故答案为:.变式训练5.(2016·德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2 017的坐标为__6.(2017·安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn顶点Bn的横坐标为___。
七下数学每日一练:探索图形规律练习题及答案_2020年综合题版
七下数学每日一练:探索图形规律练习题及答案_2020年综合题版答案2020年七下数学:数与式_代数式_探索图形规律练习题~~第1题~~(2019韶关.七下期末) 如图(a ),木杆EB 与FC 平行,木杆的两端B ,C 用一橡皮筋连接,现将图(a )中的橡皮筋拉成下列各图的形状,试解答下列各题:(1) 探究图(b )、(c)、(d )、(e )中,之间的数量关系,并填空;①图(b )中,之间的关系是;②图(c )中,之间的关系是;③图(d )中,之间的关系是;④图(e )中, 之间的关系是;(2)探究图(f )、(g )中,之间的数量关系,并填空:①图(f )中,之间的关系是;②图(g )中,之间的关系是;(3) 请对图(e )的结论加以证明。
考点: 探索图形规律;平行线的性质;~~第2题~~(2019长春.七下期中) 如图1,在△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于点A ,(1) 分别计算:当∠A 分别为70、80时,求∠A 的度数.(2) 根据(1)中的计算结果,写出∠A 与∠A 之间的数量关系.(3) ∠A BC 的角平分线与∠A CD 的角平分线交于点A ,∠A BC 的角平分线与∠A CD 的角平分线交于点A ,如此继续下去可得A ,…,∠A ,请写出∠A 与∠A 的数量关系.100111122234n 5答案答案答案(4) 如图2,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时,有下面两个结论:①∠Q+∠A 的值为定值;②∠D-∠A 的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.考点: 探索图形规律;角的平分线;~~第3题~~(2019泰州.七下期中) 用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1) 如图(1),若AD=7,AB=8,求 与 的值;(2) 如图(1),若长方形ABCD 的面积为35,其中阴影部分的面积为20,求长方形ABCD 的周长;(3) 如图(2),若AD 的长度为5,AB 的长度为 .①当 =,=时, , 的值有无数组;②当 ,时, , 的值不存在.考点: 探索图形规律;整式的加减运算;二元一次方程组的应用-几何问题;~~第4题~~(2019包河.七下期中) 观察图形,解答下列问题:如图①,1号卡片是边长为a 正方形,2号卡片提边长为b 的正方形,3号卡片是一个长和宽分别为a ,b 的长方形。
2020年 中考数学一轮复习之探索规律题补充练习解析版
2020年中考数学一轮复习之探索规律题补充练习解析版一、选择题1.下列图形是用长度相等的火柴棒按一定规律排列的图形,第(1)个图形中有8根火柴棒,第(2)个图形中有14根火柴棒,第(3)个图形中有20根火柴棒,…,按此规律排列下去,第(6)个图形中,火柴棒的根数是()A. 34B. 36C. 38D. 482.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A. 2+7nB. 8+7nC. 4+7nD. 7n+13.仔细观察下列数字排列规律,则a=()A. 206B. 216C. 226D. 2364.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是()A. (63,32)B. (64,32)C. (63,31)D. (64,31)5.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A. 56B. 64C. 72D. 906.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A. (1200,125)B. (600,0)C. (600,125) D. (1200,0) 7.计算 11×3 + 13×5 + 15×7 + 17×9 +…+ 137×39 的结果是( ) A. 1937 B. 1939 C. 3739 D. 38398.如图,在平面直角坐标系中,直线 l 1:y =√33x +1 与直线 l 2:y =√3x 交于点 A 1 ,过 A 1 作 x 轴的垂线,垂足为 B 1 ,过 B 1 作 l 2 的平行线交 l 1 于 A 2 ,过 A 2 作 x 轴的垂线,垂足为 B 2 ,过 B 2 作 l 2 的平行线交 l 1 于 A 3 ,过 A 3 作 x 轴的垂线,垂足为 B 3 …按此规律,则点 A n 的纵坐标为( )A. (32)nB. (12)n +1C. (32)n−1+12D.3n −129.按一定规律排列的单项式:x 3 , -x 5 , x 7 , -x 9 , x 11 , ……第n 个单项式是( ) A. (-1)n -1x 2n -1 B. (-1)n x 2n -1 C. (-1)n -1x 2n +1 D. (-1)n x 2n +110.a 是不为1的有理数,我们把 11−a 称为a 的差倒数,如2的差倒数为 11−2=−1 , −1 的差倒数11−(−1)=12 ,已知 a 1=5 , a 2 是 a 1 的差倒数, a3 是 a 2 的差倒数, a4 是 a 3 的差倒数…,依此类推, a 2019 的值是( )A. 5B. −14 C. 43 D. 4511.公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?( )A. 84B. 86C. 160D. 16212.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第 100 个数是( )A. 9999B. 10000C. 10001D. 1000213.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 2814.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 1815.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到A1,第2次移动到A2……,第n次移动到A n,则△OA2A2018的面积是()A. 504 m2B. 10092m2 C. 10112m2 D. 1009m216.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A. 11B. 13C. 15D. 1717.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A. B. C. D.18.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019B. 2018C. 2016D. 201319.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A. (√2)n﹣1B. 2n﹣1C. (√2)nD. 2n二、填空题20.观察下列式子第1个式子:2×4+1=9=32第2个式子:6×8+1=49=72第3个式子:14×16+1=225=152……请写出第n个式子:________.21.观察下列一组数的排列规律:1 3,15,25,19,29,13,117,217,317,417,133,233,111,433,533…那么,这一组数的第2019个数是________.22.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=________.23.观察一列数:−3,0,3,6,9,12,…,按此规律,这一列数的第21个数是________.24.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依次规律,则点A8的坐标是________.25.我国古代数学家的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图这个三角形的构造法其两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.利用规律计算:25-5×24+10×23-10×22+5×2-1的值为________.26.如图,∠AOB=45∘,过OA上到点O的距离分别为1,3,5,7,9,11…的点作OA的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4…则第一个黑色梯形的面积S1=________;观察图中的规律,第n(n为正整数)个黑色梯形的面积S n=________.27.观察下列顺序排列的等式:1×2×100+25=1522×3×100+25=2523×4×100+25=3524×5×100+25=452…根据以上的规律直接写出结果:2009×2010×100+25=________.28.求21+22+23+…+2n的值,解题过程如下:解:设:S=21+22+23+…+2n①两边同乘以2得:2S=22+23+24+…+2n+1②由②﹣①得:S=2n+1﹣2所以21+22+23+…+2n=2n+1﹣2参照上面解法,计算:1+31+32+33+…+3n﹣1=________.29.如图,填在各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.30.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形-..·△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成________个互不重叠的小三角形.31.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,则第n个图中小黑点的个数为________.32.如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n=________.33.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为________.34.如图,在平面直角坐标系中,直线l1:y=√3x+√3与x轴交于点A1,与y轴交于点A2,过点x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原A1作x轴的垂线交直线l2:y=√33点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个C2019B2019B2020的面积是________.35.如图,点A1,A2,A3…,A n在x轴正半轴上,点C1,C2,C3,…,C n在y轴正半轴上,a,点B1,B2,B3,…,B n在第一象限角平分线OM上,OB1=B1B2=B1B3=…=B n﹣1B n=√32A1B1⊥B1C1,A2B2⊥B2C2,A3B3⊥B3C3,…,A n B n⊥B n C n,…,则第n个四边形OA n B n C n的面积是________.36.如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O n﹣1BA n,记△OO1A的面积为S1,△O1O2A1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n﹣1的面积为S n,则S n=________.(n≥2,且n为整数)37.如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1,再依次作菱形OA2A3B2,OA3A4B3,……,则过点B2018,B2019,A2019的圆的圆心坐标为________.38.如图,在平面直角坐标系中,四边形OA1B1C1,A1 A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=√33x+√33上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是________.39.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC 于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的坐标是________.答案一、选择题1.根据数据,结合图形,不难发现:后边的图形总比前边的图形多6.即第n个图形中,有8+6(n-1)=6n+2.所以,第(6)个图形中,火柴棒的根数是6×6+2=38.故答案为:C.2.解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故答案为:D.3.解:观察发现:2=1×2﹣0;10=3×4﹣2;26=5×6﹣4;50=7×8﹣6;…a=15×16﹣14=226,故答案为:C.4.∵OC1=OA1=B1C1=A1B1=1,∴B1(1,1),∵A2在直线y=x+1上,∴A2(1,2),∴C1C2=B2C2=2∴B2(3,2),同理可得B3(7,4),B4(15,8)…所以B n(2n﹣1,2n﹣1),所以B6的坐标为(63,32);故答案为:A.5.第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;⋯⋯,第n个图形的花盆个数为:(n+1)(n+2);则第8个图形中花盆的个数为:(8+1)(8+2)=90.故答案为:D.6.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB= √OA2+OB2=5,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故答案为:B.7.解:原式=12×(1−12+12−13+13−15+15−17+17−19+ (1)37−139)=12×(1−139)=1939。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 问题拓展:请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题; 第5个点阵中有个圆圈;第n个点阵中有个圆圈.
(3) 小圆圈的个数会等于271吗?如果会,请求出是第几个点阵:如果不会,请说明理由. 考点: 探索图形规律; 3. (新华2019中考) 【探究】 (1) 观察下列算式,并完成填空: 1=12 1+3=4=22: 1+3+5=9=32: 1+3+5+7=16=42: 1+3+5+…+(2n-1)=.(n是正整数) (2) 如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围 是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三
(2) 如图2, 行 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: ;
(3) 【运用】
边形有 个顶点,在它的内部再画 个点,以(
)个点为顶点,把 边形剪成若干个三角形,设最多可以剪
得 个这样的三角形.当 ,
时,如图,最多可以剪得 个这样的三角形,所以
.
①当
,
时,如图, ;当
, 时,
角形地板砖;以此递推。
①第3层中分别含有 ▲ 块正方形和 ▲ 块正三角形地板砖: ②第n层中含有 ▲ 块正三角形地板砖(用含n的代数式表示)。
【应用】
该市打算在一个新建广场中央,采用图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板 砖,问:铺设这样的图案,最多能铺多少层?请说明理由.
①第3层包括块正方形利和块正三角形地砖;
②第n层包括块正三角形地砖(用含n的代数式表示)。
(3) 【应用】该市打算在一个新建广场中央采用如图所示的图案铺设地面,现有1块正六边形、150块正方形和2700
块正三角形,问:铺设这样的图案,最多能铺多少层?请说明理由。 考点: 探索图形规律;
2. (河北2019中考) “分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法。例如:图1有6个点, 图2有12个点,图3有18个点,.…,按此规律,求图10、图n有多少个点? (1) 解决问题:我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图a,b,c),这样图1中黑点个数是6 ×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是个、个.
综合题
1.答案:
2.答案: 3.答案: 4.答案:
5.答案: 2020年 中 考 数 学 热 门 考 点 _数 与 式 _代 数 式 _探 索 图 形 规 律 练 习 题 的 ""点 各 小 题 查 看
考点: 探索图形规律; 4. (常州2019中考真卷) 【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方 法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想. (1) 【理解】 如图,两个边长分别为 、 、 的直角三角形和一个两条直角边都是 的直角三角形拼成一个梯形.用两种不同的方 法计算梯形的面积,并写出你发现的结论;
;
②对于一般的情形,在 边形内画 个点,通过归纳猜想,可得
算两次的方法说明你的猜想成立.
(用含 、 的代数式表示).请对同一个量用
考点: 探索图形规律;定义新运算;勾股定理的证明;
5. (2019中考模拟) 古希腊毕达哥拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们 研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16 ,…,这样的数位正方形数(四边形数). (1) 请你写出既是三角形数又是正方形数且大于1的最小正整数为; (2) 试证明:当k为正整数时,k(k+1)(k+2)(k+3)+1必须为正方形数; (3) 记第n个k变形数位N(n,k)(k≥3).例如N(1,3)=1,N(2,3)=3,N(2,4)=4. ①试直接写出N(n,3)N(n,4)的表达式;
轩爸辅导
每日一练:2020年中考数学热门考点_探索图形规律练习题及答案(拓展版3)
2020年 中 考 数 学 热 门 考 点 _数 与 式 _代 数 式 _探 索 图 形 规 律 练 习 题
综合题 1.
(石家2019中考) 【探究】 (1) 观察下列算式,并完成填空: 1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42
②通过进一步的研究发现N(n,5)= n2﹣ n,N(n,6)=2n2﹣n,…,请你推测N(n,k)(k≥3)的表达式
,并由此计图形规律;完全平方公式及运用;
2020年 中 考 数 学 热 门 考 点 _数 与 式 _代 数 式 _探 索 图 形 规 律 练 习 题 答 案
1+3+5+.……+(2n-1)=(n为正整数)
(2) 如图是某市一广场地面图案的一部分,图案的中央是一块正六边形的地砖,周围用正三角形和正方形的地砖铺 成,环绕正兴动形的那些正三角形和正方形为第一层,第一层包括6块正方形和6块正三角形地砖:环绕第一层的那些正三 角形和正方形为第二层,第二层包括6块正方形和18块正三角形地砖,以此递推。