噬菌体展示肽库的筛选方法及其应用

合集下载

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

8、 DNA结合蛋白:
锌指蛋白是一类 DNA 结合小肽结构物,这些结 构含有锌,能用于构建一个大的蛋白区域,去识别 和结合特殊的 DNA 序列。噬菌体展示技术也可以用 于创造一个大的、具有识别不同 DNA 序列的 锌指 的多肽库。利用这个多肽库,可以研究有关氨基酸 序列与 DNA 结合位点之间的识别规则,可以通过设 计 锌指多肽去控制基因的表达,比如抑制小鼠细胞 系中的癌基因,也可以启动表达质粒的基因,或干 扰病毒感染插入的片段是从 某些组织或细胞中抽提的mRNA 的互补DNA 片 段,它用来筛选与受体特异性结合的片段。一般可 利用M13 噬菌体或其他表 达一部分真核蛋白,而M13 噬菌体和其他E. coli噬 菌体所能表达的真核蛋白更少。研究表明,没有一 个展示系统能够表达所有的真核细胞蛋白。无论 如何,噬菌体表面cDNA 库的表达将是研究蛋白质 之间相互作用的有用工具。cDNA 库的噬菌体展 示提供了一个应用免疫学方法进行酶:
例:碱性磷酸酶,蛋白水解酶类,等等
6、底物与抑制剂:
主要是蛋白酶的底物和其抑制剂。
7、信息传递研究:
利用噬菌体展示多肽库,发现了一些受体,如 凝血致活酶、黑皮质素受体、CD80 和一个 Hantaviral 受体;受体的配体, 如血管促生素、 αbungarotoxin, 和一些大蛋白分子中的折叠区域, 如 SH2、SH3 和 WW 区域。从多肽库中可分离 到与天然激素相似的、与受体结合的高亲和力的 多肽, 因此用完整细胞可以从多肽库中找到受体的 高选择性配体。在不知道任何有关的受体和配体 信息的情况下,用完整细胞和组织或动物,可筛 选到特异与靶组织结合的多肽和蛋白。
一、发展简史

Dulbecco等提出了在病毒表面展示外源抗原 决定簇和肽的概念。 1985年Smith — 首次利用基因工程技术将 EcoRⅠ内切酶的部分基因片段(171 bp和132 bp)与 pⅢ基因融合,获得的重组噬菌体可在体外稳定增 生,表达产物能被抗EcoRⅠ内切酶抗体所识别.。 1988年Parmley — 将已知抗原决定簇与噬菌体 PⅢ N端融合呈现在其表面,并提出通过构建随机 肽库可以了解抗体识别的抗原决定簇表位的设想.。 1990年McCafferty — 用噬菌体展示技术筛选 溶菌酶的单链抗体成功使噬菌体展示技术进入一 个广泛应用的时代。

噬菌体展示肽库技术的研究及应用进展

噬菌体展示肽库技术的研究及应用进展

2010.012010.01的目的基因克隆进表达载体(fuse phage),与噬菌体的外壳蛋白基因融合表达,使得一个噬菌体上含有一种序列的肽。

与有机合成法相比较,该方法有其独特的优越性:它可将特定分子的基因型和其表型统一在同一个病毒颗粒内,并且将选择能力和扩增能力联系在一起,即通过与配体的结合从数量众多的多样性群体中选择出表达有相应配体的噬菌体颗粒,再通过感染大肠杆菌使选择出的噬菌体颗粒得到扩增。

其不足在于肽库的容量及短肽的大小受到了限制,且只能表达L 型天然氨基酸形成的短肽。

3噬菌体肽库的筛选技术如何从噬菌体肽库中筛选到特异的重组噬菌体是肽库技术的关键。

经典的方法有两种:①将纯抗体包被在固相介质上,如酶标板、免疫试管或亲和层析柱,然后加入待筛选的噬菌体,洗去非亲和性的噬菌体,回收高亲和性的噬菌体;②将抗体与生物素基因相连,再将其固定在包被有Streptavidin 的磁珠上对噬菌体进行筛选。

3.1宿主菌直接洗脱经典筛选过程中,一般利用pH 的变化来洗脱与目标分子结合的噬菌体,这可能对噬菌体造成伤害。

利用噬菌体与宿主之间的亲和性可以直接用宿主菌来洗脱,以避免对筛选的影响,并且将洗脱和感染合并到一步[7]。

3.2双层膜筛选系统获得重组噬菌体蛋白的方法是将筛选出的特异噬菌体转入不含校正基因的菌株,将外源蛋白以可溶性蛋白的形式表达出来。

通过细胞膜间隙最终进入培养基质中。

针对这种情况,Skerra 等[8]建立了双层膜筛选系统。

第一层膜为亲水性多孔膜,这种膜对蛋白质的结合能力小,孔径能让蛋白质分子自由通过,但细胞不能通过;第二层膜为疏水膜,膜表面包被目标蛋白(抗原或抗体),两种膜分别覆盖在固体培养基上。

细胞在第一层膜上培养一段时间后,将这层膜转移到第二层膜上培养,分泌的可溶性蛋白透过第一层膜,与第二层膜上的目标蛋白结合,然后再用已知的抗原或抗体筛选。

这种方法避免了蛋白常遇到的细胞碎片的干扰,提高了筛选效率。

噬菌体展示技术筛选脑靶向功能肽及其修饰纳米粒的脑内递药研究

噬菌体展示技术筛选脑靶向功能肽及其修饰纳米粒的脑内递药研究

噬菌体展示技术筛选脑靶向功能肽及其修饰纳米粒的脑内递药研究一、概述在生物医学领域中,脑靶向递药系统一直是研究的热点和难点。

由于血脑屏障的存在,许多药物难以有效进入大脑,从而限制了其在中枢神经系统疾病治疗中的应用。

开发新型的脑靶向递药技术,对于提高药物在脑部的浓度和疗效,降低副作用具有重要意义。

噬菌体展示技术以其独特的优势在药物研发和生物医学领域得到广泛应用。

该技术通过将外源蛋白或多肽的DNA序列插入到噬菌体外壳蛋白结构基因的适当位置,使外源基因随外壳蛋白的表达而表达,同时外源蛋白随噬菌体的重新组装而展示到噬菌体表面。

利用噬菌体展示技术,我们可以筛选到与特定靶标具有高亲和力的多肽或蛋白,为药物研发和疾病治疗提供新的候选分子。

本研究旨在利用噬菌体展示技术筛选具有脑靶向功能的多肽,并将其修饰到纳米粒表面,构建新型的脑靶向递药系统。

通过优化筛选条件和方式,我们成功获得了多个具有脑靶向功能的多肽序列,并通过实验验证了其脑靶向性。

我们还将这些多肽以共价连接的方式修饰到聚乙二醇聚乳酸羟基乙酸共聚物(PEGPLGA)纳米粒表面,以提高药物的稳定性和脑部递送效率。

本研究不仅为脑靶向递药系统的开发提供了新的思路和方法,还为中枢神经系统疾病的治疗提供了新的候选药物和递送策略。

通过进一步的研究和优化,我们相信这种新型的脑靶向递药系统将在未来为更多的患者带来福音。

1. 介绍脑靶向药物递送的重要性与挑战脑靶向药物递送是神经科学领域的一个关键研究方向,对于治疗脑部疾病具有重要意义。

由于血脑屏障的存在,许多药物难以有效穿透并进入脑组织,这使得脑内疾病的治疗面临着巨大的挑战。

开发高效的脑靶向药物递送系统成为当前研究的热点和难点。

脑靶向药物递送的重要性主要体现在以下几个方面:对于脑部疾病如阿尔茨海默病、帕金森病、脑肿瘤等,有效的药物递送能够显著提高治疗效果,改善患者的生存质量。

脑靶向递送系统能够实现药物的精准定位,减少对其他组织器官的副作用。

噬菌体展示技术

噬菌体展示技术

噬菌体展示技术第一篇:噬菌体展示技术介绍噬菌体作为一种针对细菌的病毒,与我们生活息息相关。

除了作为抗生素的发现者,噬菌体还可以被利用于噬菌体展示技术。

这种技术利用噬菌体表面展示的蛋白质,实现对目标蛋白质的快速筛选和鉴定。

本文将介绍噬菌体展示技术的原理、优缺点,以及在生命科学研究和工业生产中的应用。

一、原理噬菌体展示技术是将目的蛋白或肽插入噬菌体表面的一种方法。

噬菌体表面组分主要有三种:1)编码质粒的pIII蛋白质;2)编码细胞毒素E的pVIII蛋白质;3)编码专一结合的pV蛋白质。

它们在噬菌体的组成和结构上有不同的作用。

其中,pIII和pVIII蛋白质被广泛地应用于蛋白质展示,pV 蛋白质则被用于病毒特异性分离。

噬菌体展示技术的基本步骤为:首先,在噬菌体pIII或pVIII蛋白质基因的外侧区域中插入目的蛋白的DNA序列;然后使用这些噬菌体感染大肠杆菌。

噬菌体在感染过程中就会将目的蛋白展示在其表面。

最后,可使用具有亲和力的配体或抗体选择目的蛋白并纯化。

二、优缺点噬菌体展示技术的优点主要集中在以下几个方面:1)大容量:噬菌体可以在感染过程中表达众多的外表面蛋白,其中每个蛋白均可成为一个展示物,针对多种噬菌体展示技术。

2)直接鉴定:在已知多肽的情况下,可以使用特定的抗体直接鉴定噬菌体表面的展示蛋白。

3)高灵敏度:噬菌体展示技术对目标蛋白的识别灵敏,并且可以使用大量病毒颗粒进行检测。

4)高效率:噬菌体展示技术可将展示蛋白直接表达在噬菌体的表面,无需进行分离提纯,从而加快了蛋白纯化过程。

噬菌体展示技术的缺点主要有以下几方面:1)分子大小限制:目前仅适用于直径小于1/3噬菌体直径的蛋白分子。

2)生物安全:组装成噬菌体后,展示蛋白无法及时得到更新,可能会导致噬菌体的生物安全风险。

3)抗原性:由于目的蛋白常常被表达在噬菌体的表面,因此它们可能会被视为异物而引起免疫反应。

三、应用由于噬菌体表面蛋白质的展示,噬菌体展示技术已经被广泛应用于生物医学研究和工业生产中。

噬菌体展示技术的原理和方法

噬菌体展示技术的原理和方法

噬菌体展示技术的原理和方法噬菌体展示技术是一种利用噬菌体表面展示特定肽段或蛋白的技术。

这项技术自20世纪80年代问世以来,已在许多领域显示出广阔的应用前景,包括药物研发、疫苗设计、蛋白质相互作用研究等。

本文将详细介绍噬菌体展示技术的原理和方法,并探讨其优缺点和发展趋势。

噬菌体展示技术利用的是噬菌体的特性,噬菌体是一种病毒,专门感染细菌等微生物。

它们由蛋白质外壳和内部遗传物质组成,其中蛋白质外壳又由多个蛋白亚基组成。

噬菌体展示技术利用噬菌体表面展示特定的肽段或蛋白,这些肽段或蛋白可以来自天然蛋白质,也可以是人工合成的。

展示在噬菌体表面的这些肽段或蛋白能够与特异性受体结合,从而实现表面展示的功能。

噬菌体展示技术的关键之一是选择合适的展示载体。

载体通常是一种丝状噬菌体,其基因组可以容纳较小的外源基因片段。

常用的载体包括M filamentous phage等。

这些载体具有一些共同的特性,如对外源蛋白质的容纳能力较强,能在体内和体外环境中稳定存在等。

在噬菌体展示技术中,需要筛选出能感染特定细菌的噬菌体。

这些噬菌体可以是自生的,也可以是通过基因工程改造得到的。

在筛选过程中,可以利用不同细菌的特性,如受体类型、细胞壁结构等,来选择合适的噬菌体。

还需要考虑噬菌体的毒性、繁殖能力等因素。

在噬菌体展示过程中,需要反复感染以积累足够数量的展示肽段或蛋白。

这个过程中,通常需要使用超滤或凝胶过滤等手段对噬菌体进行纯化,以确保得到的展示肽段或蛋白的纯度和浓度。

反复感染的过程不仅可以增加展示肽段或蛋白的数量,还能帮助排除展示过程中可能产生的突变。

克隆选择是噬菌体展示技术的另一个关键步骤。

这个过程中,通过将展示肽段或蛋白与特定配体结合,筛选出能够与配体结合的克隆。

这些克隆可以进一步扩增和纯化,从而获得高亲和力和高特异性的克隆。

噬菌体展示技术的优点在于其能够将蛋白质或多肽特异性与噬菌体的生物学特性相结合,从而实现表面展示的功能。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用引言:噬菌体展示技术是一种基因工程手段,在生物医学领域得到广泛应用。

它通过利用噬菌体作为载体,将目标蛋白质展示在噬菌体表面,从而实现了某种特定蛋白的高效筛选和研究。

本文将从噬菌体展示技术的原理及应用两个方面进行详细介绍。

第一部分:噬菌体展示技术的原理噬菌体展示技术的核心在于将目标蛋白质与噬菌体连接并展示在噬菌体表面。

这一步骤通常通过融合目标蛋白和噬菌体外壳蛋白的方式实现。

噬菌体外壳蛋白通常包括毒素结合蛋白(pIII)和胶原结合蛋白(pVIII)两种类型。

首先,将目标蛋白的编码序列与噬菌体外壳蛋白的编码序列相连,形成融合蛋白序列。

然后,将融合蛋白序列插入噬菌体基因组中,使其能够在噬菌体感染细胞后被表达。

最后,经过一系列筛选步骤,选择能够正确展示目标蛋白的噬菌体克隆,得到可以继续研究的目标蛋白样品。

噬菌体展示技术的原理其实比较简单,但是其应用范围非常广泛。

接下来,我们将针对几个典型的应用场景进行分析。

第二部分:噬菌体展示技术在药物研发中的应用噬菌体展示技术在药物研发中具有很大的潜力。

通过这一技术,可以筛选出具有特定功能的抗体或蛋白,用于研发新药。

例如,通过对癌细胞表面的特定蛋白进行展示,可以筛选出能够靶向癌细胞的药物。

这种药物在治疗癌症方面具有很大的潜力。

此外,噬菌体展示技术还可以用于筛选其他类型的药物靶点。

例如,许多感染性疾病的病原体表面都存在特定的蛋白结构。

通过将这些蛋白展示在噬菌体表面,可以通过筛选获得能够靶向这些病原体的药物靶点,为抗感染药物的研发提供重要的依据。

第三部分:噬菌体展示技术在生物工程中的应用除了在药物研发领域,噬菌体展示技术还在生物工程领域发挥着重要的作用。

在生物工程中,噬菌体展示技术可以用于筛选和改造特定酶。

通过将目标酶展示在噬菌体表面,可以利用大规模筛选技术快速获得具有特定催化性能的酶。

此外,噬菌体展示技术还可以用于疫苗研发和抗体工程。

通过将疫苗候选抗原或抗体展示在噬菌体表面,可以大大提高其免疫原性和特异性。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用将编码多肽的外源DNA片段与噬菌体表面蛋白的编码基因融合(插入信号肽与衣壳蛋白基因间)后,以融合蛋白的形式呈现在噬菌体的表面,每个噬菌体只含1个外源基因,被展示的多肽或蛋白可保持相对的空间结构和生物活性,展示在噬菌体的表面。

导入了各种各样外源基因的一群噬菌体,就构成一个展示各种各样外源肽的噬菌体展示库。

当用一个蛋白质去筛查一个噬菌体展示库(展示文库为流动相,被筛蛋白为固定相)时,就会选择性地同与其有相互作用的某个外源肽相结合,从而分离出展示库里的某个特定的噬菌体,研究该噬菌体所含外源基因的生物学功能。

技术发展噬菌体展示优越性1、将蛋白与其遗传信息之间提供了直接的物理联系,可有效的对所需功能的克隆进行反复筛选并扩增。

2、被展示多肽或蛋白结构功能与天然状态接近,可简便快速筛选得到与靶分子高亲和力的被展示物。

3、筛选过程中,特定的噬菌体克隆由于对其配体的特意亲和性而不断的得到富集,从而使相对稀少的可以结合配体的克隆能够快速、有效地从一个大文库中被筛选出来。

4、与其它技术相比,容易对库容量较大的文库进行筛选。

噬菌体展示局限性:1、肽库容量受大肠杆菌转化效率影响,容量一般在109,高于此限制的较多基因将难以表达;2、编码多肽的基因带有一定的密码子偏爱性,限制了肽库的复杂度;3、噬菌体宿主大肠杆菌的生物合成系统有自身的限制因素,如缺乏氨基酸修饰、蛋白糖基化、不能合成D型氨基酸。

4、在噬菌体展示过程中必须经过细菌转化、噬菌体包装,有的展示系统还要经过跨膜分泌过程,这就限制了所建库的分子多样性。

5、不是所有的序列都能在噬菌体中获得很好的表达,因为有些蛋白质功能的实现需要折叠、转运、膜插入和络合,导致在体内筛选时需外加选择压力。

应用范围肿瘤研究及药物靶向治疗诊断用疫苗研发酶抑制剂筛选构建抗体/cDNA文库研究蛋白质与核酸相互作用的生物学过程研究新型的基因导向系统Eg1:从HBx(肝癌相关抗原)单抗细胞中克隆重链可变区基因,重组入M13噬菌体,验证表达产物具有活性,然后表达出单链抗体、单域抗体或嵌合抗体,为肝癌导向治疗研究提供基础。

噬菌体展示

噬菌体展示

噬菌体展示
简介
噬菌体是一种能够感染细菌并在其中繁殖的病毒。

它被广泛用于生物学研究和生物技术应用中,特别是在基因工程和基因治疗领域。

噬菌体展示技术是一种将特定蛋白质或肽段展示在噬菌体表面的方法。

通过选择与目标蛋白质相互作用的噬菌体克隆,可以筛选出具有特定功能的蛋白质或肽段。

本文将介绍噬菌体展示技术的原理、应用和优点。

原理
噬菌体展示技术依赖于噬菌体基因组中的一个外源基因,该基因编码目标蛋白质或肽段。

这个外源基因通常被插入到噬菌体的毒力因子基因中,例如毒力因子III基因。

插入后,目标蛋白质或肽段会与细菌细胞的表面结合。

噬菌体携带的基因信息会导致细菌细胞表面展示目标蛋白质或肽段。

通过这种方式,科研人员可以通过筛选和选择的方法找到与目标蛋白质或肽段相互作用的噬菌体克隆。

应用
噬菌体展示技术在生物学研究和生物技术应用中有广泛的应用。

以下是一些常见的应用领域:
抗体库筛选
噬菌体展示技术可用于抗体库筛选,以寻找与特定抗原相互作用的抗体。

通过将抗原展示在噬菌体表面,科研人员可以筛选出具有高亲和力和特异性的抗体,用于治疗和诊断应用。

肽库筛选
噬菌体展示技术也可用于肽库筛选,以寻找具有特定功能的肽段。

通过将肽段展示在噬菌体表面,科研人员可以筛选出与特定靶点相互作用的肽段,用于药物开发和治疗应用。

蛋白质互作网络研究
噬菌体展示技术可以用于研究蛋白质互作网络。

通过将一种蛋白质展示在噬菌体表面,并将其用作识别其他与其相互作用的蛋白质的。

噬菌体展示技术的原理及其应用

噬菌体展示技术的原理及其应用
Smith GP. Filamentous fusion phage : novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228: 1315 - 1317.
1990年Scott等首次将随机序列肽与丝状噬菌体表面蛋 白g 融合展示在噬菌体表面,建立了噬菌体展示随机肽库。
• pVIII (50aa, ~2700 copies) • pVI (112aa, 5~8copies)
http://www.scielo.br/scielo.php?pid=S1415-47572005000100001&script=sci_artt1ex0t
载体的插入位点
11
pIII 和pVIII 噬菌体展示系统
4
特点
该技术的主要特点是将特定分子的基因型和表型统一在 同一病毒颗粒内,即在噬菌体表面展示特定蛋白质,而在噬 菌体核心DNA中则含有该蛋白的结构基因。另外,这项技术 把基因表达产物与亲和筛选结合起来,可以利用适当的靶蛋 白将目的蛋白或多肽挑选出来。
5
Phages
•Filamentous phages
• The combination of the phage and peptide is known as a Fusion Protein
13
选择方法:
淘选(Panning)
而不是
筛选(Screening)
14
非展示系统
展示系统
15
淘选系统 淘选方法
固相 完整细胞 组织,器官
常规法 正负法 竞争法
M13 Fd F1

噬菌体展示实验步骤及总结

噬菌体展示实验步骤及总结

噬菌体展示实验步骤及总结噬菌体展示技术(Phage Display)是一种利用噬菌体(phage)作为载体表达、展示外源蛋白质或肽段的技术。

该技术可以通过体外筛选方式寻找与特定生物分子相互作用的肽段或蛋白质,并在医学、农业、环境科学等多个领域应用广泛。

本文将介绍噬菌体展示实验的步骤及总结。

一、噬菌体展示实验步骤1.分离噬菌体基因组首先需要从所需噬菌体中提取其基因组DNA,进行适当的酶切、纯化、修饰和扩增等操作,以获得高质量的DNA样品。

2.插入外源DNA将需要展示的外源肽段或蛋白质基因克隆到噬菌体基因组中的特定区域(通常是其Capsid蛋白的的N末端),使其与噬菌体基因组融合。

插入操作可采用PCR扩增、克隆或基因合成等方法进行。

3.包装噬菌体将重组噬菌体基因组与一定的病毒包装反应液混合,经过一定的反应时间,使其封装成噬菌体颗粒。

包装操作可在细菌宿主中进行,也可采用体外装配法,将噬菌体基因组与其他组件(例如,在非细菌宿主中回收的Capsid蛋白)进行反应,实现噬菌体的包装。

4.筛选目标配体将噬菌体颗粒通过筛选池,如固体支持物、细胞表面或溶液相应用目标体分别进行生物学或化学实验等。

通过筛选,得到与目标体有特异性、较高亲合力的噬菌体颗粒。

随后将噬菌体提取、扩增等操作,得到一系列具体的孤儿噬菌体(orphan phage)或配体噬菌体。

5.注意事项在实验过程中需注意的一些问题:(1)噬菌体的主要结构是头部和尾部,根据实验需要可对其进行不同的修饰(例如添加标签、调整展示方向等),以增加其展示效率和特异性等。

(2)外源蛋白的表达量、保持稳定性通常受到噬菌体载体、连接方式、插入位置、转化水平等因素的影响,实验中需对其进行合理设计。

(3)噬菌体筛选应选择样品的适当浓度、筛选反应时间等,以保证准确、高效地获得目标配体。

二、噬菌体展示实验总结噬菌体展示技术是一种非常有前景的生物技术,逐渐成为体外筛选的重要手段之一。

噬菌体展示技术和其通用实验技术简介

噬菌体展示技术和其通用实验技术简介
单链。
噬菌体展示技术和其通用实验技术简介
pCANTAB5e噬菌体质粒图谱
噬菌体展示技术和其通用实验技术简介
辅助噬菌体可以提供噬菌粒复制、合成ssDNA和病毒包装所 需的所有蛋白和酶。能够帮助噬菌体载体在大肠杆菌体内包装复制。 比如M13KO7辅助噬菌体。

M13KO7辅助噬菌体是由M13噬菌体改造而来,在M13复制起点
噬菌体展示技术和其通用实验技术简介
3.6 单链丝状噬菌体展示系统
丝状噬菌体是一个能够感染革兰氏阴性细菌的病毒大家族, 他们都含有单链DNA基因组,都包装于由含有几千拷贝的主要 衣壳蛋白(PⅧ)和位于顶端的次要衣壳蛋白(PⅢ)所组成的 少许柔韧性的管状衣壳中。M13和Fd噬菌体均是丝状噬菌体。
噬菌体展示技术和其通用实验技术简介
噬菌体展示技术和其通用实验技术简介
3.6.3主要衣壳蛋白PⅧ展示系统
PⅧ展示系统。PⅧ是丝状噬菌体的主要外壳蛋白, 位于噬菌体外侧,每个病毒颗粒有2 700个左右PⅧ拷贝。 PⅧ的N端附近可融合五肽,但不能融合更长的肽链,因为 较大的多肽或蛋白会造成空间障碍,影响噬菌体装配,使 其失去感染力。但有辅助噬菌体参与时,可提供野生型 PⅧ蛋白,降低价数,此时可融合多肽甚至抗体片段。
噬菌体展示 Phage display
噬菌体展示技术和其通用实验技术简介
1.什么是噬菌体展示技术?
噬菌体展示技术(Phage Display Techniques ,PDT) 是一项筛选技术,将外源多肽或蛋白与噬菌体的衣壳 蛋白融合表 达,融合蛋白展示在病毒颗粒的表面,而 编码该融合子的 DNA则位于病毒粒子内。使大量多肽 与其DNA编码序列之间、表型与基因型之间建立了直接 联系,使各种靶分子(抗体、酶、细胞表面受体等) 的多肽配体通过淘选得以快速鉴定。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用噬菌体展示技术是一种利用噬菌体作为载体来展示特定蛋白质的方法。

噬菌体是一种只依赖于宿主细胞进行复制的病毒,它具有高度的遗传稳定性和生物安全性,因此成为了生物学研究中常用的工具之一、噬菌体展示技术是通过基因工程手段将目标蛋白的编码序列与噬菌体的外壳蛋白基因连接,从而使得噬菌体表面展示目标蛋白,进而实现其在生物学研究和应用领域的应用。

噬菌体展示技术的原理主要包括四个步骤:构建融合基因、转化宿主细胞、筛选目标蛋白、验证和表征目标蛋白。

首先,需要将目标蛋白的编码序列与噬菌体的外壳蛋白基因连接,形成融合基因。

这一步可以通过PCR技术、DNA重组技术或化学合成等方法完成。

然后,将构建好的融合基因导入到宿主细胞中,使其表达出融合蛋白。

这一步通常通过将噬菌体感染宿主细胞实现。

接下来,通过适当的筛选方法,筛选出表达目标蛋白的噬菌体颗粒。

最后,对得到的目标蛋白进行验证和表征,确认其正确展示在噬菌体表面。

噬菌体展示技术具有广泛的应用。

首先,在蛋白质功能研究方面,噬菌体展示技术可以用来筛选和鉴定蛋白质的结合配体、寻找蛋白质的受体等。

其次,在疫苗研制和药物研发方面,噬菌体展示技术可用于筛选具有特定抗原性的肽段和蛋白质,寻找一些新的抗菌药物和肿瘤治疗靶点。

此外,噬菌体展示技术还能用于表位鉴定、抗体库构建、酶工程等领域。

噬菌体展示技术相对于其他展示技术具有许多优势。

首先,噬菌体是一种非常安全的病毒,不会感染人类和其他动物细胞,具有很高的生物安全性。

其次,噬菌体展示技术可以在宿主细胞内直接进行筛选,与体外筛选相比较省时间和成本,并且能够获得更多的样本选择,增加筛选成功率。

此外,噬菌体展示技术还具有高度的遗传稳定性,可以在不同的生理条件下保持构建好的目标蛋白的稳定表达。

总之,噬菌体展示技术是一种重要的蛋白质展示技术,通过利用噬菌体作为载体,可以实现目标蛋白在噬菌体表面的展示,并在生物学研究和药物研发领域中得到广泛应用。

噬菌体展示技术及其在抗原表位筛选中的应用-生物淘

噬菌体展示技术及其在抗原表位筛选中的应用-生物淘

谢谢!
Ph.D.系统类型
根据所用噬菌体类型的不同,又可以分为丝状 噬菌体(M13,fd,f1)展示系统、λ 噬菌体展示 系统、T4噬菌体展示系统、T7噬菌体展示系统、 噬菌粒展示系统等。
λ 噬 菌 体 展 示 系 统
T4噬菌体展示系统
1.T4噬菌体病毒颗粒是在宿 主细胞内组装,被组装的 融合蛋白无需通过质膜, 不需要通过分泌途径,因 而其表面展示多肽和蛋白 的范围广。同时噬菌体还 能在体外组装,这对构建 表面展示噬菌体十分方便。 2. T4噬菌体展示周期在基于 T4生命的非必需衣壳蛋 白SOC和HOC。
近几年来噬菌体展示技术在应用研究方面显示出极大的实用性一些极具应用前景的产品如tpo抗病毒多肽疫苗肿瘤相关抗原p53等正处于国际知名公司和研究机构的研究开发之中
噬菌体展示技术及其在抗原表 位筛选中的应用
报告人:张瑞华 2010年11月
噬菌体
噬菌体是感染细菌、支原体、螺旋体、放线菌 以及蓝细菌等的一类病毒,亦称细菌病毒。 噬菌体的结构简单,基因数较少,已成为分子 生物学研究的重要工具;另外,因其还可作基 因的载体,故又被广泛应用于遗传工程的研究。
Ph.D.概念
噬菌体展示:将外源肽或蛋白与特定噬菌体衣 壳蛋白融合并展示于噬菌体表面,进而通过筛 选表达有目的肽或蛋白质的噬菌体,得到大量 富集,然后通过DNA序列测定进行定性。
融合蛋白
M13噬菌体展示外源基因模式图
因此,噬菌体展示技术堪称表型与基因型的统 一。外源蛋白或多肽的表型和基因型被统一在 了同一噬菌体颗粒内,通过表型筛选就可以获 得其编码基因。
Ph.D.生物淘洗程序示意图
包被靶分子并加入肽库,肽库特异 性吸附靶分子 洗去未结合的噬菌体 洗得特异性结合的噬菌体

噬菌体展示技术的原理及其应用

噬菌体展示技术的原理及其应用

噬菌体展示技术的原理及其应用噬菌体展示技术(phage display technology)是一种重要的蛋白质工程技术,通过利用噬菌体颗粒表面显示多肽、蛋白质域或蛋白质片段,实现了蛋白质和肽段的大规模筛选与优化。

该技术以其广泛的应用领域和高效的功能改造成为生命科学研究的重要手段之一噬菌体是一种病毒,可以感染大肠杆菌等细菌。

噬菌体分为体外和体内表面展示两种形式。

体外展示通过将目标序列与噬菌体表面的一些外膜蛋白基因融合,使其在噬菌体的外膜上显示;体内展示则在噬菌体内部将目标序列与噬菌体结构蛋白基因融合,使其随着噬菌体结构蛋白的表达而自然显示在噬菌体表面。

噬菌体展示技术的原理是基于噬菌体的基因工程技术。

一般来说,噬菌体展示系统由基因插入、包装和扩增等部分构成。

在基因插入部分,需要构建融合蛋白质或多肽序列与噬菌体的表面或结构蛋白融合。

然后,该融合基因由质粒转化到细菌中,在细菌体内表达形成融合蛋白质或多肽与噬菌体结构蛋白的复合物。

该複合物装配成完整的噬菌体骨架,并在细菌体内繁殖增殖。

使用适当的分离方法,如蓝白斑筛选、免疫选择等,可获取目标蛋白质或多肽。

1.抗体工程:通过噬菌体展示技术,可以筛选出具有高亲和力和特异性的抗体。

通过适当的选择、改造和优化,可以用于疾病的诊断和治疗,以及靶向药物的研发。

2.药物筛选:噬菌体展示技术可以快速筛选出与特定靶标相互作用的多肽、蛋白质,用于药物筛选和发现。

通过融合目标肽段或蛋白质,可以在噬菌体库中筛选出具有特定活性的融合蛋白质,用于筛选新药物或开发新的药物靶标。

3.蛋白质结构与功能研究:噬菌体展示技术可以用于鉴定蛋白质的功能区域、反应底物和相互作用结构。

通过在噬菌体表面显示目标蛋白的不同片段或结构域,可以研究其功能和结构,并探究蛋白质间相互作用及其调控机制。

4.疫苗和诊断试剂开发:噬菌体展示技术可用于筛选出具有免疫原性的多肽、蛋白质,用于疫苗开发和诊断试剂的研制。

通过融合目标蛋白序列,可以获得具有特异性与免疫原性的融合蛋白质,从而用于预防一些疾病。

噬菌体展示肽库技术及其在分子病原细菌学研究中的应用

噬菌体展示肽库技术及其在分子病原细菌学研究中的应用

粒上只含有少数几个拷贝 , 因而对于获得 高亲和力 的多肽很 有好处 , Pl几乎是 目前所有 噬菌体展示 库 的骨架 。而 故 l I p 只能融合较小的外 源肽段 , Ⅶ 携带肽段 太大会影响噬菌体粒子的组装与感染能力, 但其拷贝数高 , 重组噬菌体作为免疫 原时 , 可产生 良好的免疫应答反应 , 在疫苗研制中应用价值大 。
噬菌体展示肽库技术在分子病原细菌学 中的应用 ; 并对今后的研究方 向进行 了展望 。 关键词 : 噬菌 体展示肽库 ; 病原 细菌学 ; 应用 中图分 类号 : 82 6 S5 . 1 文献标志码 : A 文章编号 :17 - 8 ( 0 1 0 - 3 -5 6 27 3 2 1 ) 10 40 9 0
的线索和依据 。
噬菌体表 面展示技术是 S i mt 18 h于 9 5年首先建立起来 的~种新 的生物技术 J它将 外源基 因插 入丝状噬菌体基因 , 组 中, 从而使表达的外源肽或蛋 白与噬菌体衣壳蛋 白融合而展示在噬菌体表面 , 被展示 的蛋 白或肽可 以维持相 对稳 定的
空间结构和生 物学 活性 l。19 , o 等 首次将 随机序列肽与丝状 噬菌体表面蛋 白 g 4 90年 S t J ct 融合 展示在噬菌体表面 , 建 立了噬菌体展示随机肽库 。之后 , 噬菌体 肽库技术讯速发展 , 已广泛用 于抗原 表位筛选 、 免疫 学诊断 、 疫苗研制 、 物筛 药 选等方面 , 尤其在蛋 白质结构研 究 、 】抗原表位 分析 、 ” 人工抗体制 备 、 ]激素 或病毒受 体结合序 列及酶 的底 物或抑制 剂序列 的确定 、 因子拮抗剂的研 制和寻找细胞 内信号蛋 白等研究 中发挥 重要作用 。笔者从 噬菌体展示 技术 的基 细胞 J
克隆。以6 肽为例 , 至少应获得 1 1 0 ~0 以上的独立克隆。 肽库的建立基于以下事实:1含有关键残基的小肽可以模 ()

噬菌体展示技术和其应用

噬菌体展示技术和其应用

2020/3/30
26
应用举例:
部分做过的工作
2020/3/30
27
一、半合成噬菌体抗体库的构建
构建一个半合成抗体库,不经免疫制备人源抗Tie2 Fab抗体。通过RT-PCR方法,从人脐带血淋巴细胞总 RNA 扩增轻链基因及重链VH段基因,将轻链基因插入 pCOMb3载体中,得人轻链质粒库;从乙肝表面抗体 (HBsAb)的Fd段基因制备含有不同长度随机化CDR3 的FR3-CDR3-J-CH1片段,然后将VH段基因与随机化 的CDR3融合,得到Fd基因片段,再将其插入轻链质粒 库中,得半合成人Fab质粒库。
2020/3/30
9
抗体库技术简单流程
2020/3/30
10
获得抗体基因
2020/3/30
11
插入载体
2020/3/30
12
2020/3/30
13
表达
2020/3/30
14
筛选
2020/3/30
15
2020/3/30
16
噬菌体展示技术的发展简史
1985年Smith — 证实噬菌体fd基因组能通过基 因工程的手段进行改造[1]。
1988年Parmley — 将已知抗原决定簇与噬菌体 PⅢ N端融合呈现在其表面[2]。
1990年McCafferty — 用噬菌体展示技术筛选溶 菌酶的单链抗体成功使噬菌体展示技术进入一 个广力。
2020/3/30
载体克隆容量大 T7载体比M13克隆容量大,而任何克隆到M13上大于1 kbp的片段都不稳定。
插入片段稳定 洗提条件灵活
T7重组子很稳定,而M13重组子 – 尤其是>1 kb的很不稳定
M13稳定性尚可,但是洗提条件颇受限制,SDS、盐、离液剂等,都能造成 不稳定。而T7在1% SDS,5 M NaCl,4 M尿素,2 M盐酸胍,10 mM EDTA, 100 mM DTT,pH 4-10等条件下稳定。

噬菌体展示技术及其在食品检测上的应用

噬菌体展示技术及其在食品检测上的应用

噬菌体展示技术在及其在食品检测上的应用摘要:本文介绍了噬菌体展示技术的原理、分类和筛选方法,综述了噬菌体表面展示技术在检测食品有害小分子物质中的应用,展望这种技术目前存在的不足与今后发展的方向。

关键词:噬菌体展示技术、食品检测1噬菌体展示技术的原理和内容作为一项已广泛运用的技术,噬菌体展示是一种将外源肽或蛋白质与特定噬菌体衣壳蛋白融合并展示于噬菌体表面的技术[1]。

它将外源基因插入到噬菌体展示载体的信号肽基因和衣壳蛋白编码基因之间,从而使外源基因编码的多肽或蛋白质与外壳蛋白以融合蛋白质形式展示在噬菌体表面,被展示的外源肽或蛋白质可保持相对独立的空间结构和生物活性。

与其他表达系统相比,噬菌体展示技术可将基因型和表型、分子结合活性与噬菌体的可扩增性结合在一起,实现了基因型和表型的转换,是一种高效的筛选系统。

噬菌体显示技术主要包括三方面内容(图1):一是通过DNA重组的方法插入外源基因,形成的融合蛋白表达在噬菌体颗粒的表面,同时保持外源蛋白的天然构象,不影响噬菌体的生活周期,也能被相应的抗体或受体所识别;二是筛选目的噬菌体,利用固定于固相支持物的靶分子,采用适当的淘洗方法,洗去非特异结合的噬菌体,筛选出融合噬菌体;三是外源多肽或蛋白质表达在噬菌体的表面,而其编码基因作为病毒基因组中的一部分可通过分泌型噬菌体的单链DNA测序推导出来[2]。

噬菌体亲和筛选的方法包括直接法和间接法,前者是将蛋白质分子偶联到固相支持物上,加入噬菌体肽库,与固相支持物温育,洗去未结合的噬菌体,既获得亲和噬菌体,其中固相支持物有很多,包括树脂、各种尺寸的珠子、96孔板甚至可用于分析的生物传感芯片;后者是将生物素标记的蛋白质分子与文库噬菌体温育后铺在结合有链亲和素的平皿上,洗去未结合的噬菌体,保留结合状态的噬菌体,再洗脱结合的噬菌体,用这部分噬菌体感染细菌,扩增噬菌体,开始新一轮的筛选,通过吸附、洗脱、扩增的重复过程,就能选择性地富集并特异性扩增结合这种蛋白质或DNA分子的噬菌体。

噬菌体展示肽库的筛选方法及其应用

噬菌体展示肽库的筛选方法及其应用

噬菌体展示肽库的筛选方法及其应用1985年,SmithGP利用基因工程手段将一段外源肽序列展示在丝状噬菌体的表面[1]。

1988年[2]他们又将合成的随机序列的寡核苷酸片段克隆到丝状噬菌体,表达后每个噬菌体粒子的表面展示一种肽段,所有这些展示不同肽段的噬菌体构成了噬菌体展示肽库。

1990年,他们通过亲合筛选,得到了与特定蛋白结合的结合肽,并由于噬菌体表达的肽与编码基因直接相关,扩增和分离目的克隆后,很容易得到其DNA序列[3]。

这样就建立了噬菌体表面展示的随机肽库技术,这项技术一经产生就显示其无与伦比的生命力,被广泛用于生命科学的各个领域,并带来广泛而深远的影响。

传统的药物筛选大多数是从自然界的动、植物及微生物中分离天然的具有特定药理作用的化学物质,然后直接应用或再以此作为药物化学的先导化合物,再进一步设计、加工、合成,筛选有效的功能药物。

此方法具有一定的盲目性,筛选周期长。

而采用分子进化工程技术则会大大加速这一过程。

根据所需要的药物特性,选用适当的方法构建含有大量异质性分子的组合库,用靶分子进行筛选,先筛选药物先导化合物,然后进一步优化设计,最终确定候选的药物结构。

近年来,引入组合策略和模拟进化思想,建立了一种从噬菌体随机肽库中筛选药物先导化合物的新方法[4],即用库容量极大的随机肽库去快速筛选具有较高特异性和亲和力的理想目的肽。

通过此种方法可以快速筛选生物活性肽、蛋白质、受体及其他化合物等新型药物或先导化合物。

这一方法具有传统的药物筛选无法比拟的优越性,将药物开发带入了一个崭新的时代。

1噬菌体展示系统的建立早在1986年Geysen就认为含有关键残基的短肽能够模拟蛋白质上的决定族。

在多数情况下,几个关键残基与它的结合分子所形成的非共价键构成了全部结合的主要部分,即蛋白质之间的相互作用或识别是通过局部残基肽段间的相互作用来实现的。

1982年,Dulbecco提出将病原体的免疫原与λ噬菌体和其他病毒的衣壳蛋白融合,便可产生能够用作疫苗的表面展示外来多肽的病毒颗粒。

噬菌体展示技术的原理及应用

噬菌体展示技术的原理及应用

二、噬菌体展示技术旳应用现状
抗体: 抗狂犬病毒旳单链抗体, 抗HIV-1囊膜糖蛋白旳单链抗体,此抗体可专一性杀死被HIV-1感染并体现有gp120旳淋巴细胞, 中和响尾蛇毒素旳单链抗, 等等。
疫苗: 展示在噬菌体表面旳HIV-1 旳gp120-V3 环 可象天然抗原一样引起明显旳免疫应答, 等等。
噬菌体抗体库旳构建
Antibody IgG structure
Antibody IgG structure
C
L
V
L
V
H
C
H
1
V
L
C
L
V
H
C
H
1
C
H
2
C
H
2
C
H
3
C
H
3
Antibody IgG structure
Hinge
(Fab’)2
Fab
Fc
MembraneExtension
Antibody IgG structure
选择措施: 淘选(Panning)而不是 筛选(Screening)
非展示系统 展示系统
Solid phase selection with immunotubes
B
B
B
B
B
B
Immunotubecoated withantigen
诊疗 被动免疫 抗体 蛋白质构造分析 药物导航 蛋白质纯化
Wash to remove unbound phage particles.
Elute bound phage
Amplify eluted phageRepeat selectionAnalyze a) ELISA b) Specificity c) Sequencing d) Affinity e) Activity
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

噬菌体展示肽库的筛选方法及其应用1985年,SmithGP利用基因工程手段将一段外源肽序列展示在丝状噬菌体的表面[1]。

1988年[2]他们又将合成的随机序列的寡核苷酸片段克隆到丝状噬菌体,表达后每个噬菌体粒子的表面展示一种肽段,所有这些展示不同肽段的噬菌体构成了噬菌体展示肽库。

1990年,他们通过亲合筛选,得到了与特定蛋白结合的结合肽,并由于噬菌体表达的肽与编码基因直接相关,扩增和分离目的克隆后,很容易得到其DNA序列[3]。

这样就建立了噬菌体表面展示的随机肽库技术,这项技术一经产生就显示其无与伦比的生命力,被广泛用于生命科学的各个领域,并带来广泛而深远的影响。

传统的药物筛选大多数是从自然界的动、植物及微生物中分离天然的具有特定药理作用的化学物质,然后直接应用或再以此作为药物化学的先导化合物,再进一步设计、加工、合成,筛选有效的功能药物。

此方法具有一定的盲目性,筛选周期长。

而采用分子进化工程技术则会大大加速这一过程。

根据所需要的药物特性,选用适当的方法构建含有大量异质性分子的组合库,用靶分子进行筛选,先筛选药物先导化合物,然后进一步优化设计,最终确定候选的药物结构。

近年来,引入组合策略和模拟进化思想,建立了一种从噬菌体随机肽库中筛选药物先导化合物的新方法[4],即用库容量极大的随机肽库去快速筛选具有较高特异性和亲和力的理想目的肽。

通过此种方法可以快速筛选生物活性肽、蛋白质、受体及其他化合物等新型药物或先导化合物。

这一方法具有传统的药物筛选无法比拟的优越性,将药物开发带入了一个崭新的时代。

1噬菌体展示系统的建立早在1986年Geysen就认为含有关键残基的短肽能够模拟蛋白质上的决定族。

在多数情况下,几个关键残基与它的结合分子所形成的非共价键构成了全部结合的主要部分,即蛋白质之间的相互作用或识别是通过局部残基肽段间的相互作用来实现的。

1982年,Dulbecco提出将病原体的免疫原与λ噬菌体和其他病毒的衣壳蛋白融合,便可产生能够用作疫苗的表面展示外来多肽的病毒颗粒。

1985年,Smith描述了外源肽段在丝状噬菌体fd表面的展示结果。

1988年,他们建立了新的表达载体——可选择抗体的丝状噬菌体fd载体,能将外源短肽表达并伸展到噬菌体表面,用亲和筛选可选到表达特异肽的噬菌体,通过测定噬菌体序列,就可以知道所表达肽段的氨基酸序列。

这为噬菌体展示肽库的建立提供了技术保障。

2噬菌体展示系统的类别噬菌体展示系统因载体和宿主细胞不同分别有:丝状噬菌体展示系统(包括p 、p 和噬菌体粒展示系统)、λ噬菌体展示系统及T4噬菌体展示系统。

2.1丝状噬菌体展示系统:丝状噬菌体展示系统是外源基因与g3p或g8p基因融合,并将它以外壳蛋白表面多肽的形式展示出来。

它是最早被用来展示外源肽或蛋白质的系统,也是目前应用最广、发展最完善的噬菌体展示系统。

丝状噬菌体是单链DNA病毒,其通过与细菌纤毛的相互作用感染宿主细胞,然后将病毒DNA注入细菌的胞质,利用细菌胞质内的酶转变成复制的双链DNA,并通过滚动复制产生子一代DNA分子。

噬菌体展示技术正是利用丝状噬菌体DNA的结构和复制特点,把丝状噬菌体M13或fd 作为良好的基因工程的载体。

因它的DNA复制与装配不受DNA分子的限制,因此可以将外源DNA插入到其一些非必须区,仅导致噬菌体颗粒的加长,而不影响其感染宿主及装配,这样即可得到一些插入外源DNA的基因重组体。

噬菌体还可把插入的DNA片段以融合蛋白的形式表达在衣壳蛋白上。

2.2λ噬菌体展示系统:是将外源肽或蛋白质与λ噬菌体的主要尾部蛋白PV或λ噬菌体头部组装的必需蛋白——D蛋白融合而被展示。

2.3T4噬菌体展示系统:T4噬菌体展示系统是将外源肽和蛋白质与T4噬菌体的小衣壳蛋白SOC的C端融合而被展示,也有将外源蛋白与T4噬菌体的次要纤维蛋白(Fibritin)的C末端融合而被展示。

由于T4噬菌体是在寄主细胞内组装而不必通过分泌途径,因此它可展示的肽/蛋白质范围较广,尤其适合于展示那些不能被E.coli分泌的复杂蛋白质[6]。

3噬菌体展示肽库的筛选方法3.1生物淘金法:是目前常用的、最早由Smith等设计的一种筛选方法。

将靶分子包被在固相介质上,加入噬菌体肽库与之吸附,洗去非亲和性或低亲和性的噬菌体,回收等亲和性的噬菌体,经过几轮“淘选”,可富集到特异性的噬菌体多肽。

用于噬菌体肽库筛选的目标蛋白可以直接吸附于酶标板,也可固定在生物小磁珠上,或者把经生物素化靶分子固定在包被链霉亲和素的ELISA小孔或生物磁珠上(利用链霉亲和素与生物素的高亲和力)。

而对于无法提纯或靶分子(如抗原)性质不确定的情况,如癌细胞的表面受体,需建立相应的筛选系统如双层膜筛选系统:第一种膜为亲水性膜,第二种膜为疏水性膜,膜表面包被目标蛋白,细胞先在第一种膜上培养,然后移至第二层膜,分泌的可溶性蛋白可透过第一层膜,与第二层膜上的目标蛋白结合,再用已知配体筛选。

3.2选择感染性噬菌体(SIP):用特定的多肽或蛋白替代P 蛋白使噬菌体丧失感染能力,再通过这些多肽或蛋白与其配基的结合恢复感染能力。

此方法将蛋白质配基间的相互作用与噬菌体的感染扩增直接联系[6],能使特异性筛选和噬菌体扩增同时进行。

筛选蛋白或配基无需表达和纯化,只需DNA存在,少量的功能产物表达即可筛选,但缺点是筛选效率受到SIP文库的有效库容的限制。

3.3延迟感染性筛选:由Benhar于2000年建立[7]。

利用细菌表面展示系统中细菌外膜蛋白A(Lpp-Ompa)的多用性特点,将目标蛋白的编码序列融合到杂交的外膜蛋白A来展示[8]。

当噬菌体被捕获或淘洗后,细菌被转入37℃培养,噬菌体因F纤毛得到表达而重新具有感染能力,成为被选克隆。

此法筛选的进程与常规先选择再感染的过程相反,即被选择的细菌才可被捕获的噬菌体感染,所以又称“反向筛选”。

其优点是:筛选所需目标蛋白的浓度很低,比常规方法低103,适合于大文库中有效筛选稀有克隆。

4噬菌体肽库的构建和多肽的进化由于电转化效率的限制,在随机氨基酸数目大于7时,构建的文库很难容纳所有可能的多肽。

因此,从噬菌体展示文库中筛选到的随机多肽还需要进一步的改造,以提高其结合力或专一性。

这一步可以通过以下方法实现:(1)定点突变:Sharon等采用体外定点突变的方法对低亲和力抗体Vh中的一些氨基酸逐个突变,发现三个不同位置的三种氨基酸具有较高亲和力,将这三种氨基酸组合在一起,结果使抗体亲和力提高了200倍。

(2)在致突变株进行体内突变:大肠杆菌MutD5株DNA聚合酶全酶中ε亚基基因MutD一旦发生突变,就丧失了校正功能,在复制时体内基因突变率明显增加。

该菌株的Lac 基因易发生单个突变,其自然突变率比野生型株高100倍。

该株的高突变率可用于抗体V区的基因突变,以改善噬菌体的亲和力。

Low等采用此方法进行噬菌体抗体的亲和力成熟[9]。

(3)错误倾向的PCR:Winter等利用错倾PCR方法引入突变使亲和力提高。

在抗体库中还可以采用以下方法:(1)CDR的突变(walkingmutagenesis):随机合成的CDR区作为引物,通过PCR,特定位点上可发生变化,从而可建立次级突变库。

(2)链更替(chainshuffling):将得到的低亲和力噬菌体肽或抗体的一条链(如轻链)与另一条链(如重链)的全部组合得到次级库,选择亲和力改善的克隆,再次重链固定,与轻链全部组合建库,筛选高亲和力的克隆。

目前可供筛选的噬菌体肽库以线性肽库为主,构象具可变性,在一定程度上,虽可以增加筛选到与特定靶分子特异性结合的配体的可能性,但同时也因结合时的损失较大,难以筛选到高亲和力的结合配体。

针对这一现象,目前采取的策略有:(1)通过对展示肽库的限制来获得高亲和力的克隆,如:将线性肽两端引入半胱氨酸形成环肽,将肽链折叠时取向固定。

(2)预先设计分子构架,构建构象性肽库。

这是一种基于骨架蛋白基础上的噬菌体肽库技术。

以结构稳定的小分子α-螺旋和β-片层构成的分子支架为基础,改造分子表面连接α-螺旋和β-片层的转角、环形区或一些无规则的肽段。

改造的方法可以是其中某些肽段随机化,也可以将其它蛋白和多肽中的活性有关序列插入其间[10]。

目前最常见的是以天然抗体为结构骨架建立的噬菌体抗体库,主要是β-片层结构。

抗体分子经长期进化所产生的基因结构重排,可使抗体库获得的多样性达107以上,也可以通过人工设计改造建立人工抗体库。

5噬菌体展示技术的应用噬菌体展示肽库技术作为研究生物分子间相互作用快捷而有效的工具,广泛适用于抗原抗体系统、细胞因子与受体的作用及酶学等领域,筛选的靶物质包括抗体、酶、受体及其他功能蛋白,或者细胞、血清乃至整个动物。

5.1以单克隆抗体模拟抗原表位:以纯化的单抗为靶分子筛选抗原模拟表位是噬菌体展示技术应用最广泛的方面。

目前,利用肽库已成功地筛选多种病毒的抗原表位,如HCV核心抗原表位[11]、HIVgp120蛋白的表位[12]。

用抗单纯疱疹病毒型(HSV-1)的mAb筛选12肽库,得到HSV-1糖蛋白gC的模拟肽[13]。

王军俭[14]等以抗bFGF单克隆抗体CF22为目标蛋白,采用梯度洗脱,从七肽库中筛选到能特异性抑制bFGF结合到CF22的阳性克隆,经检测序列有高度保守性,且用此小肽免疫小鼠能诱导抗bFGF抗体的产生,其免疫反应阳性率与bFGF非常接近,在寻找抗bFGF肿瘤疫苗上有潜在价值。

杨琨等[15]在确定能阻断PTA1-Fe 融合蛋白与其天然配体结合mAb(LeoA1)的基础上筛选12肽库,得到多个能与LeoA1特异性结合的短肽,这些短肽有较保守而集中的模式序列WP/HXH/TH/C,有可能模拟PTA1分子的功能表位,成为其天然配体的拮抗剂,这为进一步揭开PTA1分子及配体在各种生理和病理状态中可能起的作用及寻找PTA1配体提供有价值的依据。

5.2模拟细胞因子受体等其他分子的表位:采用其他纯化蛋白、细胞因子或膜蛋白等也能筛选到与之结合的噬菌体展示肽。

如用可溶性TNF受体蛋白(sTNFRI)可以筛选模拟TM-TNF-α核心表位。

叶飞[16]等用12肽库筛选到分别能模拟s-TNF-α和TM-TNF-α的噬菌体克隆,序列分析分别获得TM-TNF-α和s-TNF-α细胞毒效应的保守序列。

这两种保守序列既有相关性,又有明显区别,提示两型TNF-α与TNF受体结合位点可能不同,从而引发TNF受体下游的传导信号通路不同。

而且这两个保守序列与TNF-αcDNA序列无同源性,这种与模拟蛋白一级结构的不符表明噬菌体表面的实际序列为构象表位而不是线形表位。

用TM-TNF-α的保守序列合成多肽观察其生物学活性,实验表明该肽段不仅对HL-60细胞具有明显的细胞毒反应,呈剂量依赖性,且主要导致靶细胞凋亡。

相关文档
最新文档