离散数学期末试卷(B)

合集下载

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。

B. 如果今天是周一,则明天不是周二。

答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。

答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。

这种性质称为函数的______。

答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。

如果一个图的直径为1,则该图被称为______。

答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。

布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。

答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。

答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。

例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。

2. 请解释什么是二元关系,并给出一个二元关系的例子。

答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。

例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。

安徽大学-离散数学期末试卷及答案

安徽大学-离散数学期末试卷及答案

安徽大学《离散数学》期末考试试卷(B 卷)(时间120分钟)开课院(系、部) 姓名 学号 .一、选择题(每小题2分,共20分)1.设522:=⨯P ,:Q 雪是黑的,842:=⨯R ,:S 太阳从东方升起,下列命题中真值为T 的是( ) A 、R Q P ∧→; B 、S P R ∧→;C 、R Q S ∧→;D 、)()(S Q R P ∧∨∧。

2.下列命题公式中,为重言式的是( )A 、)(R Q P ∨→;B 、)()(Q P R P →∧∨;C 、)()(R Q Q P ∨↔∨;D 、))()(())((R P Q P R Q P →→→→→→。

3.设x x L :)(是演员,x x J :)(是老师,x y x A :),(钦佩y ,命题“所有演员都钦佩某些老师”符号化为( )A 、)),()((y x A x L x →∀;B 、))),()(()((y x A y J y x L x ∧∃→∀;C 、)),()()((y x A y J x L y x ∧∧∃∀;D 、)),()()((y x A y J x L y x →∧∃∀。

4.设}{φ=A , ))((A B ρρ=,以下各小题中不正确的有( )A 、B ∈}}{{φ; B 、B ∈}}}{{,{φφ ;C 、B ⊆}}}{{,{φφ;D 、B ⊆}}}{,{},{{φφφ。

5.设φ=A , }}{,{φφ=B ,则A B -是( )。

A 、 }}{{φ; B 、}{φ ; C 、 }}{,{φφ; D 、 φ。

6.设},,{c b a A =,R ,S ,T 是集合)(A ρ上的二元关系。

其中,}|,{y x y x R ⊂><=,}|,{φ=><=y x y x S ,}|,{A y x y x T =><= 。

下列哪些命题为真?( ) I.R 是反自反、反对称和传递的 II.S 是反自反和对称的 III.T 是反自反和对称的A 、仅I ;B 、仅II ;C 、I 和II ;D 、全真。

离散数学期末试题及答案完整版

离散数学期末试题及答案完整版

离散数学期末试题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】326《离散数学》期末考试题(B )一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ?}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数.二、1.22,2,m mn mn ., g , g . ,2,4.,不存在,不存在. 5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ?, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}. .四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f =. 由于g f 是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f = 是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{( ,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数65432121211219619431x x x x x x ++++++=,因而38!412194=⋅=a .。

离散数学期末考试复习题及参考答案

离散数学期末考试复习题及参考答案
A. B. C. D.
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )

离散数学复习题

离散数学复习题

离散数学复习题一、单项选择题1.下列命题公式为重言式的是【 A 】。

A.p→(p∨q) B.(p∨┐p)→qC.q∧┐q D.p→┐q2.下列语句中不是..命题的是【 A 】。

A.这个语句是假的。

B.1+1=1.0C.飞碟来自地球外的星球。

D.凡石头都可练成金。

3.设A={Φ,{1},{1,3},{1,2,3}},则A上包含关系“⊆”的哈斯图为【 C 】4.在公式)QyzPyxP∧∀→x∃y∃中变元y是【 B 】。

(z()))y,(()())((,A.自由变元B.约束变元C.既是自由变元,又是约束变元D.既不是自由变元,又不是约束变元5.设A={1,2,3},A上二元关系S={<1,1>,<1,2>,<3,2>,<3,3>},则S是【 D 】。

A.自反关系B.反自反关系C.对称关系D.传递关系6.图中从v1到v3长度为3 的通路有【 D 】条。

离散数学试卷(B)第1页(共6页)离散数学试卷(B )第2页(共6页)A .0;B .1;C .2;D .3。

7.在下列代数系统中,不是环的只有【 C 】。

A .<Z ,+,*),其中Z 为整数集,+,*分别为整数加法和乘法。

B .(Q ,+,*),其中Q 为有理数集,+,*分别为有理数加法和乘法。

C .<R ,+,*>,其中R 为实数集,+为实数加法,a*b=a+2b 。

D .<M n (R),+,*>,其中M n (R)为实数集n×n 阶矩阵结合,+,*是矩阵加法和乘法。

8.下列整数集对于整除关系都构成偏序集,而能构成格的是【 B 】。

A .{l ,2,3,4,5} B .{1,2,3,6,12} C .{2,3,7}D .{l ,2,3,7}9.结点数为奇数且所有结点的度数也为奇数的连通图必定是【 D 】。

A .欧拉图 B .汉密尔顿图 C .非平面图D .不存在的10.无向图G 是欧拉图当且仅当G 是连通的且【 C 】。

《离散数学》期末考试试卷附答案

《离散数学》期末考试试卷附答案

《离散数学》期末考试试卷附答案一、填空题(每小题3分,共15小题,共45分)1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________;ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=_________________________; A⋃B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1•R2 = ________________________,R2•R1 =____________________________,R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| =_____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

2008级离散数学试题B

2008级离散数学试题B

天津师范大学考试试卷2009 —2010学年第一 学期期末考试试卷(B 卷)科目: 离散数学学院: 管理学院专业:08信管、物流一、 单项选择题:在每小题的备选答案中选出一个正确答案,并将正确答案的代(每小题 分,本大题共 分)1.谓词公式(∀x)(P(x) ( ∃y)R(y)) → Q(x)中量词(∀x)的辖域是( )。

A. (∀x) (P(x) ( ∃y)R(y))B. P(x)C. P(x) ( ∃y)R(y)D. P(x),Q(x)2. 下列公式中哪些公式不是前束范式( )。

A. x ∀∃y(P(x) q(y))B. ∀x ∀y(P(x) Q(y) ( ∃z)S(z))C.Q(a,b)D. P3. 给定解释N 如下:个体域为自然数D N ;D N 上特定元素a = 0;D N 上特定函数f(x,y) = x+y , g(x,y) = x ∙y ; D N 上特定谓词E(x,y)为x=y ,下列公式为真的是( )。

A. ∀xE(g(x,a),x) B. ∀x ∀y ∀zE(f(x,y),z) C. ∀x ∀yE(f(x,y),g(x,y)) D. ∃x ∃yE(f(x,y),g(x,y))4. 设集合X≠∅,则空关系∅不具备的性质是()。

xA.反自反性B.自反性C.对称性D.传递性5. 下列各式中,哪个不成立()。

A.(∀x) (P(x) Q(x))⇔(∀x) (P(x) (∀x)Q(x))B.(∃x)(P(x) Q(x))⇔(∃x) (P(x) (∃x)Q(x)C.(∀x) (P(x) Q(x))⇔(∀x) (P(x) (∀x)Q(x)D.(∀x) (P(x) Q)⇔(∀x) (P(x) Q)6. 设个体域A={a,b},则∃x(F(x) G(x))消去量词为()。

A. F(a) G(a)B. F(b) G(b)C. ( F(a) G(a) (F(b) G(b)))D. F(a) G(b)7. 给定A={1,2,3,4},A上的关系R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>}满足的性质是()。

离散数学期末考试题及答案

离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。

东华大学《离散数学》2021-2022学年第一学期期末试卷B卷(B)

东华大学《离散数学》2021-2022学年第一学期期末试卷B卷(B)

东 华 大 学 试 卷2021-2022学年第 1 学期 课号课程名称 离散数学 (期末; 闭卷) 适用班级(或年级、专业)1、对任意两个集合B A 和,证明 ()()A B A B A =⋂⋃-2、构造下面命题推理的证明如果我学习,那么我数学不会不及格;如果我不热衷于玩游戏机,那么我将学习;但我数学不及格,因此我热衷与玩游戏机。

二 、计算(本大题共4小题,第1小题5分,第2、3、4小题各10分,总计35分) 1、画一个有一条欧拉回路和一条汉密顿回路的图。

2、设()(){}212,,,个体域为为,整除为<x x Q y x y x P ,求公式: ()()()()()x Q y x P y x →∃∀,的真值。

3、一棵树有2n 个结点度数为2 ,3n 个结点度数为3,… ,k n 个结点度数为k ,问它有几个度数为1的结点。

4、设集合{}A d c b a A ,,,,=上的关系 {}d c c b a b b a R ,,,,,,,=,求出它的自反闭包,对称闭包和传递闭包。

三、设{}15,9,5,3=A 上的整除关系{}212121,,,a a A a a a a R 整除∈=,R 是否为A 上的偏序关系?若是,则:1、画出R 的哈斯图;2、求A 的极大值和A 的极小值。

(本大题10分)四、用推导法求公式()()R Q P →→的主析取范式和主合取范式。

(本大题10分) 五、设自然数集N 上的关系R 定义为:{}I m n n N n n n n R m ∈=∈=,2/,,,212121,证明:R 是N 上的等价关系。

(本大题10分)六、设+R R 和分别是实数集和正实数集,+和×分别是普通加法和乘法,定义函数+→R R f :为r r f 10)(=,证明 ),(),(⨯++R R f 到是从的同构映射。

(本大题10分)七、设I 是整数集合,+是普通加法,试证明>+<,I 是一个群。

华东理工大学离散数学模拟期末试卷B答案(2004)1

华东理工大学离散数学模拟期末试卷B答案(2004)1

华东理工大学离散数学模拟期末试卷B 答案(2004)1一. 是非题(每小题2分,共40分):2.( T )()()A B B C A C ∈∧⊆⇒∈.3.( F )()()()()A B C D A C B D ⊂∧⊂⇒⊂ .(这里P Q ⊂表示P 是Q 的真子集)4.( T )(()())()A B B A B A T →∧→↔↔⇔(T 表示重言式).6.( F )任意两个不同的布尔大项的合取式必为永真假式.7.( F )若{}112,,,k A A A π=⋅⋅⋅和{}212,,,s B B B π=⋅⋅⋅都是集合A 的划分, 则12ππ-也一定是集合A 的一个划分.9.( F )设1R 和2R 是集合A 上的两个没有对称性的关系,那么12R R 也是没有对称性的关系.10.( F )一个偏序集如果没有最大元,则必不可能有极大元.11.( F )每个全序集必为良序集.14.( F )非素数阶群不可能是循环群.15.( T )4阶群必为可换群.16.( F )24阶群一定不可能是Abel 群.17.( F )有向图的邻接矩阵必为对称阵.18.( T )如果一个连通图有两个奇结点,那么它一定不是Euler 图.19.( F )如果一个有n 个结点的图的任意一对结点的度数之和都小于n ,那么它必不是Hamilton 图.20.( F )完全图n K 都不是平面图.二. 填空题(每小题2分,共20分):1. 设p 与q 的真值为F ,,r s 的真值为T ,则(())(()())p q r p q r s ∧∨∧⌝∧⌝∨⌝∨⌝的真值是 F .2. 有甲乙丙三个人猜测ABC 三个球队中的冠军.各人的猜测如下:甲: 冠军不是乙,也不是丙.乙: 冠军不是乙,而是甲.丙: 冠军不是甲,而是乙.已知其中有一个人说的完全正确.一个人说的都不对,而另外一人恰有一半说对了.据此推算,冠军应该 是 乙 .3. 取个体域为全体整数的集合,给出下列各公式:(1)()()()()x y z x y z ∀∀∃-=(2)()()x xy x ∀=(3)()()(2)x y x y y ∃∀+=其中公式 (1) 的真值为T ,公式 (3) 的真值为F .4.下列4个推理中,错误的推理是 (1)(3) .(1)前提:()(()())x F x G x ∃∧结论:()()y F y ∀(2)前提:()(()()),()x F x H x H y ∀→⌝结论:()(())x F x ∀⌝(3)前提:()(),()()x F x x G x ∃∃结论:()(()())y F y G y ∃∧(4)前提:()()F c H c ∧结论:()(()())x F x H x ∃∧5. 设R 是在正整数集合Z +上如下定义的二元关系 {},(,)(318)R x y x y Z x y +=<>∈∧+=,则它一共有 5 个二元序偶,且有自反性、对称性、传递性、反自反性和反对称性诸性质中的 反自反性 性质。

离散数学试题(2016)_B(答案)-推荐下载

离散数学试题(2016)_B(答案)-推荐下载

第1页 共6页第2页 共 6页一、填空题(每小题3分,共15分)1.设F (x ):x 是苹果,H (x ,y ):x 与y 完全相同,L (x ,y ):x =y ,则命题“没有完全相同的苹果”的符号化(利用全称量词)为∀x ∀y (F (x )∧F (y )∧⌝L (x ,y )→⌝H (x ,y )).2.命题“设L 是有补格,在L 中求补元运算‘′’是L 中的一元运算”的真值是 0 .3.设G ={e ,a ,b ,c }是Klein 四元群,H =〈a 〉是G 的子群,则商群G /H ={〈a 〉,{b ,c }}={{e ,a },{b ,c }}.4.设群G =〈P ({a ,b ,c }),⊕〉,其中⊕为集合的对称差运算,则由集合{a ,b }生成的子群〈{a ,b }〉 ={∅,{a ,b }}.5.已知n 阶无向简单图G 有m 条边,则G 的补图有n (n -1)/2-m 条边.二、选择题(每小题3分,共15分)1.命题“只要别人有困难(p ),小王就会帮助他(q ),除非困难已经解决了(r )”的符号化为 【B 】A .⌝(p ∧r )→q .B .(⌝r ∧p )→q .C .⌝r →(p ∧q ).D .⌝r →(q → p ).2.设N 为自然数集合,“≤”为通常意义上的小于等于关系,则偏序集〈N ,≤〉是 【C 】A .有界格.B .有补格.C .分配格.D .布尔代数.3.设n (n ≥3) 阶无向图G =〈V ,E 〉是哈密尔顿图,则下列结论中不成立的是 【D 】A .∀V 1⊂V ,p (G -V 1)≤|V 1|.B .|E |≥n .C .无1度顶点.D .δ(G )≥n /2.4.设A ={a ,b ,c },在A 上可以定义 个二元运算,其中有 个是可交换的,有 个是幂等的. 【A 】A .39,36,36.B .39,36,33.C .36,36,33.D .39,36,39.5.下列图中是欧拉图的有【C 】A .K 4,3.B .K 6.C .K 5.D .K 3,3.三、计算与简答题(每小题10分,共50分)1.利用等值演算方法求命题公式(p ∨q ) → (q →p )的主合取范式;利用该主合取范式求公式的主析取范式,并指出该公式的成真赋值和成假赋值.(p ∨q ) → (q →p ) ⇔⌝(p ∨q )∨(⌝q ∨p ) ⇔(⌝p ∧⌝q )∨(⌝q ∨p )⇔(⌝p ∨⌝q ∨p )∧(⌝q ∨⌝q ∨p ) ⇔⌝q ∨p ⇔p ∨⌝q哈尔滨工程大学试卷考试科目:离散数学(061121,061131)考试时间: 2008.07.09 9:00-11:00题号一二三四五总分分数评卷人第5页 共6页第6页 共 6页=(a ∧b )∨((a ∨c )∧(b’ ∨c’ ∨c ))=(a ∧b )∨(a ∨c )=(a ∨(a ∨c ))∧(b ∨a ∨c )=(a ∨c )∧(a ∨c ∨b )=a ∨c四、证明题(共20分)1.在自然推理系统中,构造推理证明:前提:∀x (F (x )∨G (x ))结论:⌝∀xF (x )→ ∃xG (x )证明:(1) ⌝∀xF (x ) 附加前提引入(2) ∃x ⌝F (x ) (1)置换(3) ⌝F (c )(2)EI 规则(4) ∀x (F (x )∨G (x )) 前提引入(5) F (c )∨G (c ) (4)UI 规则(6) G (c )) (3)(5)析取三段论(7) ∃xG (x )(6)EG 规则2.设代数系统〈A ,*〉是独异点,e 是其单位元.若∀a ∈A ,有a *a =e ,证明:〈A ,*〉是Abel 群.证明:由于对∀a ∈A ,有a *a =e ,因此,A 中任意元素a 都有逆元,且a=a -1.又〈A ,*〉是有单位元的独异点,从而〈A ,*〉是群.∀a ,b ∈A ,有a *b ∈A ,且a=a -1,b=b -1,(a *b )-1=a *b .又(a *b )-1=b -1*a -1=b *a ,因此 a *b =b *a ,即〈A ,*〉是Abel 群.3.证明:若无向图G 为欧拉图,则G 无桥.证明:(1)假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’一定不连通(G ’至少含有两个连通分支).由于G 为欧拉图,因此它是连通图,且有经过每条边一次且仅一次的回路,这条回路必经过G 的所有顶点.从而存在顶点v 1,v 2,…,v s ,使得uv 1v 2…v s vu 是G 的一条回路.从G 中删去边e =(u ,v )后,所得图G ’仍有从u 到v 的通路uv 1v 2…v s v ,这样G ’仍是连通图.矛盾.因此,G 中一定无桥.(2)由于G 为欧拉图,其每个顶点的度数均为偶数.假设G 中有桥,不妨设e =(u ,v ) 为其一座桥.这样,从中删去边e =(u ,v )后,所得图G ’至少有两个连通分支.而且,顶点u ,v 的度数都是奇数,这与每个连通分支为图矛盾(与握手定理矛盾),因此,G 中一定无桥.。

离散数学-期末复习题及答案

离散数学-期末复习题及答案

离散数学-期末复习题及答案课程名称:《离散数学》一、单项选择题1、 (D)。

下列句子是命题的为。

A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。

2、 (A)。

李平不是不聪明,而是不用功。

p:李平聪明q:李平用功。

符号化为。

A 、 q )p (??∧ B 、q p ??∧ C 、q )p (∧?? D 、q )p (?∨ 3、 (A)。

与)q p (∨?命题公式等值的是。

A 、q p ??∧ B 、q p ??∨ C 、q p ∧ D 、q)(p ∧?4、 (D)。

含有3个命题变项的简单和取式中一定可形成种不同的极小项。

A 、2 B 、4 C 、6 D 、85、 (C)。

q )q p (∧→?此公式的类型为。

A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。

q )q )q p ((→∧→此公式的类型为。

A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。

设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是。

A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。

只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为。

A 、q p → B 、p q → C 、q p →?D 、p q →?9、 (B)。

不经一事,不长一智p:经一事q:长一智,符号化为。

A 、p q →B 、q p ??→C 、p q ??→ D 、q p → 10、 (B)。

R Q P →∧?)(成真赋值为。

A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。

公式Q P→的主析取范式为)3,1,0(∑,则公式的主合取范式为。

A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。

R Q P →∧?成假赋值为。

A 、 100,B 、 001,011,101,110,111C 、全体赋值D 、无13、 (B)。

《离散数学》2011试题及答案

《离散数学》2011试题及答案
而用长为3的等长码字传输需要30000个二进制数字。
解答:用Huffman算法求频率(乘以100)为权的最优2元树,其中w1=5,w2=5,w3=10,w4=10,w5=15,w6=20,w7=35;最优2元树如图所示:
故,可采取如下编码:A---11 B---01 C---101 D---100 E---001
F---0001 G---0000
传输100个按比例出现的7个字母所需二进制数字的个数为w(T)=255个,故传输10000个所用二进制数字的个数为25500个。
1.求命题公式:(PQ)(QP)的主析取范式和主合取范式。
答案:用等值演算法、真值表法均可,根据解题过程及答案正确与否酌情给分。
主吸取范式为:(PQ)(PQ)(PQ)=(0,2,3)
主合取范式为:PQ
2.设A={a,b,c,d},1、2、3是A上的划分,1={{a,b},{c,d}},2={{a},{b},{c},{d}},3={{a,b,c,d}},试求:
⑩x(F(x)R(x)G(x)) T,⑨,EG
(2)设7个字母在通信中出现的频率如下:
A:35% B:20% C:15% D:10%
E:10% F:5% G:5%
采用2元前缀码,求传输数字最少的2元码(即最小前缀码),并求传输10000个按上述比例出现的八进制数字需要多少个二进制数字?若用长为3的等长码字传输需要多少个二进制数字?
答案:QP
2.对命题公式:P(QR)PQ化为仅含和的等价表达式。
答案:(PQ)
3.设S(x):x是火车,L(x):x是卡车,F(x,y):x比y快。在谓词逻辑中符号化命题“所有火车都比所有卡车快”。
答案: x(S(x)→y(L(y) ∧F(x , y))

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。

证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。

东北大学离散数学考试试卷( B 卷)

东北大学离散数学考试试卷( B 卷)

东北大学考试试卷(B卷)2011—2012 学年第 1 学期课程名称: 离散数学总分 一 二 三 四 五 六 七 八一.将下面命题符号化(8分)1.如果天气好,我将去游乐场,否则我将呆在家中。

(P→Q)∧(¬P→R)2.只有计算机专业的学生和非大一学生才可以访问校园网。

R→(P∨Q)3.并非所有学习好的大学生都想成为科学家。

¬∀x((A(x) ∧B(x)) →C(x))4.尽管有人聪明,但未必一切人都聪明。

∃x(A(x) ∧B(x)) ∧¬∀x((A(x) →B(x))二.(10分) 填空(每空1分)1.(3分)A与B是全集E的子集,给定集合X={P,Q,R,S,T,U,V,W,Y,Z},其中的元素都表示命题,如下所示:P: A-B=A Q:A∩B=B R:A⊆B S: A⊆∼B T: B⊆AU: ∼B⊆∼A V:A∩B=Φ W:A∪B=B Y: ∼A⊆∼B Z: B⊆∼A又令R是X上的命题等价关系,则商集X/R=({{P,S,V,Z},{R,U,W},{Q,T,Y}} )2.(每空1分)令R和S都是人类上的关系,且R={<x,y>|x是y的父亲} S={<x,y>|x是y的母亲} 则S o R表示( 祖母和孙子 )关系; R o S C表示( 夫妻 )关系。

3.(每空1分) 设f是从A到B的函数,g是从B到A的函数,如果f go是双射的,则f是__满___射的,g是__入___射的。

4.(每空1分)A,B是有限集合, P(A)表示A的幂集,已知|A|=3,|P(B)|=64,|P(A∪B)|=256, 则|B|=( 6 ), |A-B|=( 2 ), |A⊕B|=( 7 )。

三.(8分)写出命题公式P→((R→Q)∧(¬R→¬Q)) 的主析取范式。

解:P→((R→Q)∧(¬R→¬Q))⇔¬P∨((¬R∨Q)∧(R∨¬Q))⇔(¬P∨¬R∨Q) ∧(¬P∨ R∨¬Q)即命题公式的主合取范式中的大项为M6和M2所以其主析取范式中的小项有m0,m3,m4,m5,m6,m7即主析取范式为:(P∧R∧Q)∨( P∧¬R∧¬Q) ∨(¬P∧R∧Q) ∨(¬P∧R∧¬Q) ∨(¬P∧¬R∧Q) ∨(¬P∧¬R∧¬Q) 四.(15分)已知R1、R2是集合A上的等价关系,问R1∪R2、R1∩R2、R1-R2、r((A×A)-R1)中哪些是A上的等价关系?如果不是说明理由,或举反例。

(完整word版)《离散数学》期末试题及答案

(完整word版)《离散数学》期末试题及答案

326《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f ο是单射,证明f 是单射,并举例说明g不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ∅}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数. 二、1.22,2,m mn mn .2.g , g , g .3.1,2,4.4.8,不存在,不存在.5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ∅, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}.5.9.四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f οο=. 由于g f ο是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f =ο是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{(ο,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为).()()()()()(r q p r q p r q p r q p r q p r q p A ⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧∨∧⌝∧∨∧∧=A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数()x x x x x x x E +⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++=1!21!3!21)(23265432121211219619431x x x x x x ++++++=, 因而38!412194=⋅=a .。

离散数学期末考试试题及答案

离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。

安徽大学 离散数学 期末试卷06-07(2)

安徽大学 离散数学 期末试卷06-07(2)

安徽大学2006—2007学年第 二 学期 《 离散数学 》考试试卷(B 卷)(时间120分钟)院/系 专业 姓名 学号题 号 一 二 三 四 五 六 七 总分得分一、选择题(每小题2分,共20分)1.在自然数集合N 上,下列运算中可结合的是( ) A. b a b a -=*; B. ),max(*b a b a =; C. b a b a 2*+=; D. b a b a -=*。

2.R 为实数集,运算*定义为:R b a ∈,,||*b a b a ⋅=,则代数系统<R,*>是( ) A. 半群; B. 独异点; C. 群; D. 阿贝尔群。

3.下列代数系统中,哪个是独异点( )A. <R,ο>,其中22b a b a +=ο;B. <R,ο>,其中333b a b a +=ο;C. <I,max>,其中max 为求两数中较大数;D. <I +,GCD>,其中GCD 为最大公约数。

(R :实数集,I :整数集,I +:正整数集)4.下列集合对于指定运算,构成群的为( )A. 非负整数集关于数的加法运算;B. 整数集关于数的减法运算;C. 正实数关于数的除法运算;D. 一元实系数多项式集合关于多项式加法。

5.下面哪个集合关于指定运算构成整环( ) A. },|2{3Z b a b a ∈+,关于数的加法和乘法; B. {n 阶实数矩阵},关于矩阵的加法和乘法; C. },|2{Z b a b a ∈+,关于数的加法和乘法;D. },|{Z b a a b b a ∈⎪⎪⎭⎫ ⎝⎛,关于矩阵的加法和乘法。

6.下面给出了一些偏序集的哈斯图,其中哪个不是格( )A.;B.;C.;D.。

7. 下面哈斯图(图1-7)表示的格中哪个元素无补元( )? A. a ; B. c ; C. e ; D. f 。

得分图1-78.给定平面图G如图1-8所示,则G中面的个数及面的总次数分别为()A. 4,20 ;B. 4,22 ;C. 5,22 ;D. 5,24 。

离散数学试卷B

离散数学试卷B

B 卷1. Show that ((p ∨q)∧⌝p) → q are tautologies. (10 scores)2. Suppose that f(x),g(x) and h(x) are functions such that f(x ) is Ω(g(x)) and g(x) is Ω (h(x)).Show that f(x) is Ω (h(x)).(10 scores)3. Let ⎥⎦⎤⎢⎣⎡=0312A and ⎥⎦⎤⎢⎣⎡=3221B .Find B t A t . (10 scores) 4. Find a compatible total ordering for the poset ({2,4,6,9,12,18,27,36,48,60,72},|).(10 scores) 5 . Let R be the relation on the set of ordered pairs of positive integers such that ((a,b),(c,d)) ∈ R if and only if a+d = b + c. Show that R is an equivalence relation. (15 scores)6. Use adjacency matrix to find the numbers paths between U 1 and U 5 in the graph in Figure1 of length 3, determine whether it is planar and if it is planar ,into how many regions does this graph split the plane? (10 scores)7. Suppose there are 7 finals to be scheduled so that no student has two exams at the same time. Suppose the courses are numbered 1 through 7. Suppose that the following pairs of courses have common students : 1 and 2, 1 and 3, 1 and 4, 1 and 5, 2 and 3, 3 and 4 ,4 and 5.Please schedule the final exams for this. (10 scores)8 . Use Prim ’s algorithm to find a minimum spannig tree in the followinggraph,then use Kruskal ‘s algorithm to find a minimum spannig tree in the same graph. (10 scores)9. Suppose T is an ordered rooted tree.And the inorder listing of T is h,d,b,i,e,j,a,f,c,k,gThe preorder listing of T is a,b,d,h,e,I,j,c,f,g,kPlease draw T and find the postorder listing of T. (15 scores)【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.判断题(共10小题,每题1分,共10分)
在各题末尾的括号内画 表示正确,画 表示错误:
1.设p、q为任意命题公式,则(p∧q)∨p ⇔ p ( )
2.∀x(F(y)→G(x)) ⇔ F(y)→∃xG(x)。

( )
3.初级回路一定是简单回路。

( )
4.自然映射是双射。

( )
5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。

( )
6.群的运算是可交换的。

( )
7.自然数集关于数的加法和乘法<N,+, >构成环。

( )
8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。

( )
9.设A={a,b,c},则A上的关系R={<a,b>,<a,c>}是传递的。

( )
10.设A、B、C为任意集合,则A⨯(B⨯C)=(A⨯B)⨯C。

( )
二、填空题(共10题,每题3分,共30分)
11.设p:天气热。

q:他去游泳。

则命题“只有天气热,他才去游泳”可符号
化为。

12.设M(x):x是人。

S(x):x到过月球。

则命题“有人到过月球”可符号
化为。

13.p↔q的主合取范式是。

14.完全二部图K r,s(r < s)的边连通度等于。

15.设A={a,b},,则A上共有个不同的偏序关系。

16.模6加群<Z6,⊕>中,4是阶元。

17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。

.
18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度
列为。

19.n阶无向简单连通图G的生成树有条边。

20.7阶圈的点色数是。

三、运算题(共5小题,每小题8分,共40分)
21.求∃xF(x)→∃yG(x,y)的前束范式。

22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。

23.设A={a,b,c,d,e,f},R=I A⋃{<a,b>,<b,a>},则R是A上的等价关系。

求等价类[a]R、[c]R及商集A/R。

24.求图示带权图中的最小生成树,并计算最小生成树的权。

25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。

试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。

四、证明题(共3小题,共20分)
26 (8分)在自然推理系统P中构造下述推理的证明:
前题:p→(q∨r),⌝s→⌝q,p∧⌝s
结论:r
27 (6分)设<G, *>是群,H={a| a∈G∧∀g∈G,a*g=g*a},则<H, *>是G的子群
28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

2007-2008学年第一学期《离散数学》期末试卷(B)
答案
适用年级专业:2006级软件工程专业
试卷说明:闭卷考试,考试时间120分钟
一.判断题(共10小题,每题1分,共10分)
在各题末尾的括号内画 表示正确,画 表示错误:
1.( ) 2.( ) 3.( ) 4.( ) 5.( )
6.( ) 7.( ) 8.( ) 9.( ) 10.( )
二、填空题(共10题,每题3分,共30分)
11.q→p 12.∃x(M(x)∧ S(x))
13.(⌝p∨q) ∧ (p∨⌝q) 14.r
15.3 16.3
17..R 18.(1,1,1,2)
19.n-1 20.3
三、运算题(共5小题,每小题8分,共40分)
21.解:∃xF(x)→∃yG(x,y)⇔∃xF(x)→∃yG(w,y)
⇔∀x(F(x)→∃yG(w,y))
⇔∀x∃y (F(x)→ G(w,y))
22.解:设图G有n个顶点m条边,则
2m=2(2+3)+4(n-4),即22=10+4(n-4)
解之得n=7。

23.解:[a]R={a,b},[c]R={c},[d]R={d},[e]R={e},[f]R={f},
A/R={{a,b},{c},{d},{e},{f}}
24.解:最小生成树T如图中红线所示,W(T) = 12
25.解:仅< R*,·>是群。

其单位元为1。

任意x∈ R*,其逆元为1/x。

四、证明题(共3小题,共20分)
26 证明:①p∧⌝s 前提引入
②p ①,化简
③p→(q∨r) 前提引入
④q∨r ②③,假言推理
⑤⌝s ①,化简
⑥⌝s→⌝q 前提引入
⑦⌝q ⑤⑥,假言推理
⑧r ④⑦,析取三段论
27 (6分)证:设e是G的单位元,∀g∈G, e*g=g*e,所以e∈H,故H非空。

(1)∀a,b∈H, ∀g∈G,有a*g=g*a, b*g=g*b,那么
(a*b)*g=a*(b*g)= a*(g*b)=(a*g)*b=(g*a)*b=g*(a*b)
所以a*b∈H。

(2)∀a∈H, ∀g∈G,有a*g=g*a,a-1∈G。

a-1*g=a-1*g*e=a-1*g*a*a-1= a-1*(g*a)*a-1=a-1*(a*g)*a-1
=(a-1*a)*g*a-1=e*g*a-1=g*a-1
所以,a-1∈H。

根据子群判定定理一,H是G的子群。

28.(6分)证:极大平面图一定是连通图,由欧拉公式
r=2+m-n (1)
又因为极大平面图每面的次数皆为3,从而
2m=3r (2)
由(1)、(2)式联立解得
r=2n-4。

相关文档
最新文档