核医学知识点整理
核医学汇总
核医学汇总1、核医学的定义:是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。
在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面有独特的优势。
2、核医学的分类:实验核医学和临床核医学3、实验核医学:利用核技术探索生命现象的本质和物质变化规律,其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。
4、临床核医学:是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。
5、临床核医学分类:诊断核医学和治疗核医学6、诊断核医学:包括以脏器显像和功能测定为主要内容的体内(in vivo)诊断法和以体外放射分析为主要内容的体外(in vitro)诊断法。
7、治疗核医学:是利用放射性核素发射的核射线对病变进行高度集中照射治疗。
8、核医学的特点:1、安全、无创2、分子功能现象3、超敏感和特异性强4、定量分析5、同时提供形态解剖和功能代谢信息。
9、分子功能影像:核医学功能代谢显像是现代医学影像的重要组成内容之一,其显像原理与X线、B超、计算机体层摄影(CT)和核磁共振(MR)等检查截然不同,它通过探测接收并记录引入体内靶组织或器官的放射性示踪物发射的γ射线,并以影像的方式显示出来,这不仅可以显示脏器或病变的位置、形态、大小等解剖学结构,更重要的是可以同时提供有关脏器和病变的血流、功能、代谢甚至是分子水平的化学信息,有助于疾病的早期诊断。
单光子发射型计算机断层仪(SPECT)和正电子发射型计算机断层仪(PET)10、锝-99m(99mTc)特点:核性能优良,为纯γ光子发射体,能量140keV,T1/2为6.02h,99mT c是现象检查中最常用的放射性核素。
11、氟[18F]脱氧葡萄糖(18F-FDG)是目前临床应用最为广泛的正电子放射性药物。
131I是治疗甲状腺疾病最常用的放射性药物12、放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。
核医学复习重点总结
第一章总论核医学定义:是一门研究核素和核射线在医学中的应用及其理论的学科。
主要任务是用核技术进行诊断、治疗和疾病研究。
核医学三要素:研究对象放射性药物核医学设备一、核物理基础(一)基本概念:元素---凡质子数相同的一类原子称为一种元素核素---质子数、中子数、质量数及核能态均相同的原子称为一种核素。
放射性核素----能自发地发生核内结构或能级变化,同时从核内放出某种射线而转变为另一种核素,这种核素称为放射性核素。
(具有放射性和放出射线)稳定性核素----能够稳定地存在,不会自发地发生核内结构或能级的变化。
不具有放射性的核素称为稳定性核素。
(无放射性)同位素----具有相同的原子序数(质子数相同),但质量数(中子数)不同的核素互为同位素。
同质异能素----- 核内质子数、中子数相同,但处在不同核能态的一类核素互为同质异能素。
(质量数相同,能量不同,如99mTc和99Tc)(二)核衰变类型四种类型五种形式α衰变释放出α粒子的衰变过程,并伴有能量释放。
β衰变放射出β粒子或俘获轨道电子的衰变。
β衰变后,原子序数可增加或减少1,质量数不变。
•β-衰变•β+衰变•电子俘获(EC)γ衰变核素由激发态或高能态向基态或低能态跃迁时,放射出γ射线的衰变过程γ衰变后子核的质量数和原子序数均不变,只是核素的能态发生改变。
放射性核素的原子核不稳定,随时间发生衰变,衰变是按指数规律发生的。
随时间延长,放射性核素的原子核数呈指数规律递减。
N=N0e-λtN0:t=0时原子核数N:t时间后原子核数e:自然对数的底(e≈2.718)λ:衰变常数(λ=0.693/T1/2)物理半衰期(T1/2)生物半衰期(Tb)有效半衰期(Te)1/Te=1/T1/2+1/ Tb放射性活度描述放射性核素衰变强度的物理量。
用单位时间内核衰变数表示,国际制单位:贝可(Becquerel,Bq)定义为每秒1次衰变(s-1),旧制单位:居里(Ci)、毫居里(mCi)、微居里(μCi)换算关系:1Ci=3.7×1010Bq比活度单位质量物质内所含的放射性活度。
核医学重点整理
核医学重点整理核素:原子核的质子数,中子数和原子核所处的能量状态均相同的原子属于同一种核素同位素:质子数相同而中子数不同的核素互称为同位素。
同质异能素:质子数和中子数都相同,所处的核能状态不同的原子称为。
核衰变的原因:当原子核中质子数过多或过少,或者中子数过多或过少时,原子核便不稳定,这时的原子核就会自发地放出射线,转变为另一种核素,同时释放出一种或一种以上的射线。
半衰期:指放射性核素由于衰变减少一半所需的时间,又称物理半衰期。
放射性活度(有效半衰期):表示为单位时间内原子核的衰变数量。
贝克勒尔(Bq)带电粒子的相互作用1电离:带电粒子通过物质时,和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。
2激发:原子从稳定状态变成激发状态,这种作用称为激发。
3散射:带电粒子通过物质时运动方向发生改变的现象。
4韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分或全部动能转化为连续能量的X射线发射出来。
5湮灭辐射:正电子衰变产生的正电子,在介质中运行一定距离,当其能量耗尽时,可与物质中的自由电子结合,而转化为两个方向相反、能量各为0.511MeV 的γ光子而自身消失。
6吸收:射线使物质的原子发生电离和激发的过程中,射线的能量全部耗尽,射线不再存在,称为吸收,其最终结果是使物质的温度升高。
光子与物质的相互作用1光电效应:γ光子和原子中内层壳层电子相互作用,将全部能量交给电子成为自由光子的过程。
2康普顿效应:能量较高的γ光子与原子中的核外电子作用时,只将部分能量传递给核外电子,使之脱离原子核束缚成为高速运行的自由电子,而γ光子本身能量降低,运行方向发生改变,称为康普顿效应。
3电子对生成放射性药物:放射性核素和放射性核素标记化合物。
特点:1具有放射性。
2具有特定的物理半衰期和有效期。
3计量单位和使用量。
4脱标及辐射自分解。
来源:放射性核素发生器,医用回旋加速器和反应堆生产,从裂变产物中提取。
核医学要点总结
核医学要点总结核医学要点总结1、放射性核衰变:原子核只有在中子和质子的数目之间保持一定的比例时才稳定。
当原子核中质子数过多或过少,或者中子数过少或过多,原子核便不稳定。
这时的原子核就会自发地放出射线,转变成另一种核素,同时释放出一种或一种以上的射线。
这个过程称~或蜕变(简称核衰变)。
2、核衰变的类型:(1)α衰变:不稳定原子核自发地放射出α粒子而变成另一个核素的过程称~(2)β衰变:放射性核素的核内放射出β粒子的衰变。
(3)β+衰变(正电子衰变):β+衰变主要发生在中子相对不足的核素。
可以看做是β衰变相反的过程,即核中一个质子转化为中子,同时释出一个正电子及一个中微子,故核子总数也不变,原子序数减少1而原子质量数不变。
(4)电子俘获衰变:(5)γ衰变:即γ跃迁/同质异能跃迁,原子核从激发态回复到基态,通过发射γ光子释放过剩能量的过程。
3、韧致辐射:快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分货全部动能转化为连续能量的某射线发射出来,称~。
韧致辐射释放的能量与所通过介质的原子序数的平方成正比,与带电粒子的质量成反比,并且随带电粒子的能量增大而增大。
4、电离辐射的作用机制:(1)电离辐射的原发作用:①直接作用:指放射线直接作用于具有生物活性的大分子,使其发生电离、激发或化学键的断裂而造成分子结构和性质的改变,从而引起功能和代谢的障碍。
②间接作用:指放射线作用于体液中的水分子,引起水分子的电离和激发,形成化学性质活泼的产物自由基,继而作用于生物大分子引起损伤。
(2)电离辐射的继发作用:5、外照射防护的基本原则:(1)时间防护:缩短受照时间,时间与剂量成正比。
应避免一切不必要的辐射场逗留。
(2)距离防护:增大与辐射源的距离,距离与剂量成反比。
(3)屏蔽保护:人与源之间设置防护屏障。
根据辐射源种类,采用不同的屏蔽材料。
6、γ闪烁探测器的工作原理:注入人体的放射性核素发射出γ射线,经过准直器准直进入NaI晶体,使晶体分子受激发产生荧光光子,后入射到光电倍增管,通过光电效应产生光电子,光电倍增管有多个联极可以倍增光电子,光电子聚集在阳极产生电位差,随之阳极电压又恢复到原来水平,不断重复形成一系列脉冲讯号经前置器放大,再经计算机处理还原成图像或数据。
核医学知识总结
核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。
它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。
核医学在临床诊断、治疗和科研方面都有着广泛的应用。
二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。
核辐射可以分为电离辐射和非电离辐射两类。
在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。
因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。
三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。
在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。
标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。
四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。
目前常用的核医学成像技术包括SPECT、PET和PET/CT等。
这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。
五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。
通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。
核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。
六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。
体外分析技术具有高灵敏度、高特异性和定量准确等优点。
常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。
七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。
放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。
核医学重点知识整理
第一章核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。
我国核医学分为临床核医学和实验核医学。
核素(nuclide):具有相同的质子数、中子数和核能态的一类原子同位素(isotope):是表示核素间相互关系的名称,凡具有相同的原子序数(质子数)的核素互称为同位素,或称为该元素的同位素。
同质异能素(isomer):具有相同质子数和中子数,处于不同核能态的核素互称为同质异能素。
稳定性核素(stable nuclide):原子核极为稳定而不会自发地发生核内成分或能态的变化或者变化的几率极小放射性核素(radionuclide):原子核不稳定,会自发地发生核内成分或能态的变化,而转变为另一种核素,同时释放出一种或一种以上的射线核衰变(nuclear decay):放射性核素自发地释放出一种或一种以上的射线并转变为另一种核素的过程,核衰变实质上就是放射性核素趋于稳定的过程衰变类型:α衰变(产生α粒子);β–衰变(产生β¯粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。
α粒子的电离能力极强,故重点防护内照射。
β-粒子的射程较短,穿透力较弱,而电离能力较强,因此不能用来作显像,但可用作核素内照射治疗。
γ衰变(γdecay):核素由激发态向基态或由高能态向低能态跃迁时发射出γ射线的衰变过程,也称为γ跃迁。
γ衰变只是能量状态改变,γ射线的本质是中性的光子流。
电子俘获衰变:一个质子俘获一个核外轨道电子转变成一个中子和放出一个中微子。
电子俘获时,因核外内层轨道缺少了电子,外层电子跃迁到内层去补充,外层电子比内层电子的能量大,跃迁中将多余的能量,以光子形式放出,称其为特征x射线,若不放出特征x射线,而把多余的能量传给更外层的电子,使其成为自由电子放出,此电子称为俄歇电子内转换(internal conversation)核素由激发态向基态或由高能态向低能态跃迁时,除发射γ射线外也可将多余的能量直接传给核外电子(主要是K层电子),使轨道电子获得足够能量后脱离轨道成为自由电子,此过程称为内转换,这种自由电子叫做内转换电子衰变公式:Nt=No e衰变常数:某种放射性核素的核在单位时间内自发衰变的几率它反映该核素衰变的速度和特性;λ值大衰变快,小则衰变慢,不受任何影响不同的放射性核素有不同的λ一定量的放射性核素在一很短的时间间隔内发生核衰变数除以该时间间隔,即单位时间的核衰变次数;A=dN/dt放射性活度是指放射性元素或同位素每秒衰变的原子数,目前放射性活度的国际单位为贝克(Bq),也就是每秒有一个原子衰变,一克的镭放射性活度有3.7×1010Bq。
核医学知识点汇总
核医学知识点总结绪论+第一章核物理知识1、湮灭辐射:18F、11C、13N、15O等正电子核素在衰变过程中发射(产生)正电子,正电子与原子核周围的轨道电子(负电子)发生结合,同时释放两个能量相等方向相反的γ光子(511kev),这种现象就叫正电子湮灭辐射现象。
2、物理半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,如131碘的半衰期是8.04天。
3、临床核医学:是将核技术应用于临床领域的学科,是用利用放射性核素诊断、治疗疾病和进行医学研究的学科。
4、核素:指具有特定的质子数、中子数及特定能态的一类原子。
5、放射性衰变的定义:放射性核素的原子由于核内结构或能级调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。
6、放射性活度:表示单位时间内原子核的衰变数量:单位为Ci(居里),1Ci=3.7x1010Bq7、放射性核素发射器:从长半衰期的母体分离短半衰期的子体的装置,又称为“母牛”。
8、个人剂量监测仪:是从事放射性工作人员用来测量个人接受外照射剂量的仪器,射线探测器部分体积较小,可佩戴在身体的适当部位。
9、放射性核素示踪原理:是以放射性核素或其标记化合物作为示踪剂,应用射线探测仪器来检测其行踪,借此研究示踪剂在生物体内的分布代谢及其变化规律的技术。
10、阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。
由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。
11阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。
正常的脏器、组织因摄取显像剂而显影,其中的病变组织因失去正常功能不能摄取显像剂或摄取减少而呈现放射性缺损或减低,故又称“冷区”显像(cold spot imaging)12放射性药物:含有放射性核素,用于临床诊断或治疗的药物。
核医学基础知识
基础知识1. 细胞是人体结构和功能的基本单位。
2.细胞的结构包括细胞膜、细胞质和细胞核三部分。
3.细胞膜:又称质膜,既是细胞的屏障,又是细胞与环境之间进行物质和信息交换的媒介。
4.细胞核:细胞的控制中心,是遗传物质的主要存在部位5.细胞核由核膜、核仁、染色质和核基质组成。
6.细胞质:包括细胞器、基质和内含物。
7.细胞增殖的方式:无丝分裂,有丝分裂,减数分裂。
人体细胞以有丝分裂方式为主。
组织8.组织由细胞和细胞间质组成。
9.组织分成:上皮组织、结缔组织、肌组织和神经组织10.上皮组织无血管、淋巴管,其营养由深部结缔组织内的血管透过基膜供给,有丰富的神经末梢,可感受各种刺激。
11.上皮组织主要分为被覆上皮和腺上皮两大类,具有保护、吸收、分泌和排泄等功能。
12.腺分为外分泌腺和内分泌腺。
13.外分泌腺的分泌物经导管排泌到体表或器官腔內,如汗腺、唾液腺、胃腺、胰腺等。
14.内分泌腺无导管,腺细胞周围有丰富的毛细血管,其分泌物(称激素)直接释入血液,如甲状腺、肾上腺等。
15.结缔组织由细胞和大量细胞间质组成。
16.细胞间质包括基质、纤维和组织液。
细胞散居于细胞间质内,分布无极性。
17.结缔组织在体内广泛分布,具有连接、支持、营养、保护、防和修复等多种功能。
18.固有结缔组织:疏松结缔组织、致密结缔组织、网状组织、脂肪组织19.疏松结缔组织:又称蜂窝组织,由细胞和细胞间质组成。
20.疏松结缔组织有连接、支持、传送营养物质和代谢产物以及防御等功能。
21.致密结缔组织:主要特征是纤维丰富致密,以胶原纤维为主要成分。
22.网状组织:是造血器官和淋巴器官的基本组成成分。
主要由网状细胞和网状纤维构成。
23.网状组织为血细胞发生和淋巴细胞发育提供适宜的微环境24.脂肪组织:是一种以脂肪细胞为其主要成分的结缔组织。
它的主要作用是为机体的活动贮存和提供能量。
正常男性脂肪含量占体重的10%~20%;女性占15%~25%。
25.软骨组织:由软骨细胞和软骨基质构成。
核医学重点
1核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。
2核素(nucliide)是指质子数.中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。
3同位素(isotope)凡具有相同质子数但中子数不同的核素互称同位素4同质异能素(isomer)质子数和中子数都相同,所处的核能状态不同的原子5放射性衰变类型;a衰变;B衰变;正电子衰变;电子俘获;r衰变.6a衰变:放射性核衰变时释放出a射线的衰变;B衰变:原子核释放出B射线而发生的衰变称为B``衰变(B``衰变放射出的射线分为B`` B`+射线);正电子衰变:原子核释放出正电子(B+射线)的衰变方式.7SPECT:单光子发射计算机断层成像术. PET:正电子发射计算机断层成像术8核探测仪器的基本原理;电子作用,荧光作用,感光作用9放射性探测仪器按探测原理可分为电离探测仪和闪烁探测仪两类10r照相机基本结构:准直器,晶体,光电倍增管,脉冲幅度分析器,信号分析和数据处理系统.11图像融合技术:是将来自相同或不同成像方式的图像进行一定的变化处理,使其之间的空间位置,空间坐标达到匹配的一种技术。
12放射性药物(radio pharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。
用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。
13放射性药物具有的特点:具有放射性;具有特定的物理半衰期和有效期;计量单位和使用量;脱标及辐射自分解.14放射化学纯度:是指以特定化学形式存在的放射性活度占总放射性活度的百分比。
15化学纯度:是指以特定化学形式存在的某物质的质量占总质量的比例,与放射性无关。
16辐射生物效应(电离辐射作用于机体后,其传递的能量对机体的分子、细胞、组织和器官所造成的形态和(或)功能方面的后果):确定性效应和随机性效应17确定性效应;是指辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。
核医学重点
核医学第一章1.放射性核素:是一类原子核能自发的,不受外界影响也不受元素所处状态的影响,只和时间有关而转变成其它原子核的核素。
2放射性活度:单位时间内发生衰变的原子核数。
3元素:指质子数、核外电子数和化学性质都相同的同一类原子。
4核素:质子数,中子数,能量状态均相同的原子称为核素。
5同位素:质子数相同,中子数不同的元素互称同位素。
6同质异能素:质子数相同,中子数相同,而处于不同能量状态的元素。
7电离:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。
8激发:原子的电子所获得的能量不足以使其脱离原子,而只能从内层轨道跳到外层轨道,是原子从稳定状态变成激发状态的作用。
9湮灭辐射:正电子衰变产生的正电子,在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,而转化为两个方向相反、能量各自为的y光子而自身消失的现象。
10光电效应:y光子和原子中的内层壳层电子相互作用,将全部能量交给电子,使其脱离原子成为自由光子的过程。
11康普顿效应:能量较高的y光子与原子核中的核外电子作用时,只将部分能量传递给核外电子,使其脱离原子核束缚成为高速运行的自由电子,而y光子本身能量降低、运行方向发生改变的现象。
12有效半衰期:由于物理衰变与生物代谢共同作用而使体内放射性核素减少一半所需要的时间。
13放射性核素的特点是什么放射性核素具有核衰变和物理半衰期两个特点。
(1)核衰变是指不稳定的核素自发放出射线转变成另一种核素的过程,包括a,B+,B-,y衰变。
(2)物理半衰期是指放射性核素从No衰变到No的一半所需要的时间。
14核衰变的方式a衰变:不稳定原子核放出a粒子(即一个氦核)转变成另一个核素的过程。
每次衰变母核便失去两个质子和两个中子。
B+衰变:指放射性核素放出B+的衰变。
每次衰变时核中一个质子转化为中子,同时释放出一个正电子及一个中微子。
B-衰变:指放射性核素放出B-的衰变。
临床医学专业课程《核医学》知识要点和重点
临床医学专业《核医学》内容要点
一、核医学总论
1.元素:凡质子数相同的一类原子称为一种元素。
2.同位素:凡原子核具有相同的质子数而中子数不同的元素互为同位素。
3.同质异能素:核内中子数和质子数都相同,但能量状态不同的核素彼此称
为同质异能素。
4.核素:原子核的质子数、中子数和原子核所处的能量状态均相同的原子属
于同一种核素。
-稳定性核素:指原子核不会自发地发生核变化的核素。
-放射性核素:是一类不稳定的核素,具有放射性衰变的特性。
5.核衰变的类型:α衰变、β-/β+衰变、核外电子俘获、γ衰变。
6.核衰变的规律:自发性、随机性、时间性。
物理半衰期、生物半衰期、有效半衰期
7.放射性活度:单位时间内原子核的衰变数量。
单位:秒-1、国际单位:贝
克勒尔
8.放射性药物:指含有放射性核素,能直接用于人体临床诊断、治疗和科学
研究的放射性核素及其标记化合物。
(利用放射素的物理特性而非本身的药物效应。
)
①诊断用放射性药物:
SPECT: 99m Tc(锝)及其标记化合物(如99m Tc-MIBI);
PET:18F标记化合物,如18F-FDG
《核医学》第 1 页共22 页。
核医学知识点笔记复习整理
核医学知识点笔记复习整理第一章中枢神经系统1.脑血流灌注显像及负荷显像的原理、方法、适应症、结果判断和临床应用。
2.脑脊液间隙显像的原理、方法、适应症、影像分析和临床应用。
第二章骨骼系统1.骨显像原理,骨显像的放射性药物,骨显像的方法以及适应证。
2.影像分析要点正常影像,异常影像。
3.骨显像的临床应用第三章泌尿系统1.肾图的原理、适应症、检查方法、正常肾图及其分析指标、异常肾图及临床意义。
2.肾动态显像的原理、适应症、正常影像、异常影像及临床意义。
3.介入试验巯甲丙脯酸试验的原理、适应症、方法及结果分析;利尿剂介入试验的原理、适应症、方法、及曲线结果分析与临床意义。
4.肾有效血浆流量与肾小球滤过率测定的原理、适应症、显像剂、方法、影像分析与临床价值。
5.肾静态显像的原理、适应症、显像方法、正常影像、异常影像及临床意义。
6.膀胱输尿管返流测定的原理、适应症、显像方法及结果分析。
7.生殖器官显像阴囊及睾丸显像的原理;放射性核素子宫输尿管造影术的方法及影像解释第四章消化系统1.胃肠道出血的原理、方法、影像分析和临床应用。
2.异位胃粘膜显像的原理、影像分析和临床应用。
3.唾液腺显像的原理、方法、影像分析和临床应用。
4.放射性核素肝胆动态显像的原理、显像剂、方法、适应症、影像分析和临床应用。
5.肝血流灌注和肝血池显像的概述、原理、显像技术、适应证、影像分析和临床应用。
6.胃幽门螺杆菌检测的原理、方法、适应证、结果分析和临床应用第五章内分泌系统1.甲状腺摄131碘试验的原理、方法、结果判定、影响因素和临床意义;血清甲状腺激素水平测定的原理、正常值、影响因素和临床应用;甲状腺功能测定的综合评价。
2.甲状腺显像的原理、方法、正常影像和临床应用;甲状腺结节的功能判断。
3.甲状旁腺显像的原理、方法、正常影像和临床应用;肾上腺髓质显像的原理、方法、正常影像和临床应用。
第六章血液、淋巴系统1.血液和淋巴显像的原理。
2.血液和淋巴显像的显像剂。
核医学要点归纳指南
绪论核医学:是一门研究核技术在医学中的应用及其理论的学科,是用放射性核素诊断、治疗疾病和进行科学研究的医学学科。
第一章 核物理1.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子2.同位素(isotope):具有相同质子数但中子数不同的核素互称同位素,同位素具有相同的化学性质。
3.同质异能素(isomer ):质子数和中子数都相同,所处的核能状态不同的原子称为同质异能素,激发态的原子和基态的原子互为同质异能素。
4.核衰变的类型:① α衰变:放射性衰变时释放出α射线的衰变。
这种衰变方式主要发生于原子序数大于82的核素中。
衰变后母核的质子数减少2,质量数减少4,在元素周期表中子核的位置比母核左移两位。
α射线实质上是由氦核组成,用衰变反应式可表示为: ② β衰变:原子核释放出β射线而发生的衰变。
β- 衰变时放射出的β- 射线分为β- 和β+ 射线。
β- 射线的本质是高速运动的电子流。
发生β- 衰变后质子数增加1,原子序数增加1,原子的质量数不变,原子核释放出一个β- 粒子和反中微子(ν),衰变反应式如下:③ 正电子衰变:原子核释放出正电子(β+ 射线)的衰变方式。
正电子衰变发生在贫中子核素,原子核中的一个质子转变为中子。
衰变时发射一个正电子和一个中粒子(ν),质子数减少1,质量数不变,衰变反应式表示为:④ 电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。
母核经电子俘获后,子核比母核中子数增加1,质子数减少1,质量数不变。
电子俘获衰变时原子核结构的变化与正电子衰变类似,发生在贫中子的原子核。
衰变反应式表示为:⑤ γ衰变:原子核从激发态回复到基态时,以发射γ光子形式释放过剩的能量,这一过程称为γ衰变。
这种激发态的原子核是在α衰变、β衰变或核反应之后形成的,衰变反应式为:各种衰变的比较5.放射性活度(radioactivity ,A ):表示为单位时间内原子核的衰变数量。
核医学完整版-复习考试必备,全面有重点资料
第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。
2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。
同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。
5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。
6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。
10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。
r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。
核医学知识点总结最终版
一、前三章: 1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。
②核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。
③同位素isotope :具有相同质子数而中子数不同的核素互称同位素。
同位素具有相同的化学性质和生物学特性,不同的核物理特性。
④同质异能素isomer :质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。
⑤放射性活度radioactivity 简称活度:单位时间内原子核衰变的数量。
⑥放射性药物(radiopharmaceutical )指含有放射性核素供医学诊断和治疗用的一类特殊药物。
⑦SPECT :即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。
⑧PET :即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。
⑨小PET :即经济型PET ,也叫SPECT_PET_CT ,是对SPECT 进行稍加工后,使其可行使PET 的功能。
⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。
⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。
“闪烁现象 (flare phenomenon ): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。
2、人工放射性核素的来源:加速器生产11C 、13N 、15O 、18F 、反应堆生产、从裂变产物中提取、放射性核素发生器淋洗99mTc 3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET 显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。
核医学知识点总结
一、前三章:1、基本概念:①核医学:是用放射性核素诊断、治疗疾病和进行医学研究的医学学科。
②核素nuclide:指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。
③同位素isotope:具有相同质子数而中子数不同的核素互称同位素。
同位素具有相同的化学性质和生物学特性,不同的核物理特性。
④同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。
⑤放射性活度radioactivity简称活度:单位时间内原子核衰变的数量。
⑥放射性药物(radiopharmaceutical)指含有放射性核素供医学诊断和治疗用的一类特殊药物。
⑦SPECT:即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。
⑧PET:即正电子发射型计算机断层仪,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。
⑨小PET:即经济型PET,也叫SPECT_PET_CT,是对SPECT 进行稍加工后,使其可行使PET的功能。
⑩放射性核素(radionuclide):是指原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。
⑾放射性核素纯度:也称放射性纯度,指所指定的放射性核素的放射性活度占总放射性活度的百分比,放射性纯度只与其放射性杂质的量有关;⑿放射化学纯度:指以特定化学形式存在的放射性活度占总放射性活度的百分比。
“闪烁现象(flarephenomenon):在肿瘤病人放疗或化疗后,临床表现有显着好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。
2、人工放射性核素的来源:加速器生产11C、13N、15O、18F、反应堆生产、从裂变产物中提取、放射性核素发生器淋洗99mTc3、核衰变的类型和用途:①α衰变:放射性核衰变时释放出α射线的衰变,射程短,穿透力弱,对局部的电离作用强,因此在放射性核素治疗方面有潜在优势;②β衰变:指原子核释放出β射线的衰变,穿透力弱,可用于治疗;③正电子衰变:原子核释放出正电子(β+射线)的衰变,可用于PET 显像;④电子俘获:原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程,电子俘获导致核结构的改变可能伴随放出多种射线,因此可用于核医学显像、体外分析和放射性核素治疗;⑤γ衰变:原子核从激发态回复到基态时,以发射γ光子的形式释放过剩的能量,这一过程称为…,穿透力强,电离作用小,适合放射性核素显像。
核医学知识点总结笔记复习整理
一、核医学基础核医学使用的射线为核射线,包括α、β-、β+、γ四种;而放射科使用的射线为X射线。
A、原子结构核素(nuclide):具有特定的质量数、原子序数与核能态,且其平均寿命长得足以被观测的一类原子称为核素。
同质异能素(isomer):具有相同的原子序数及核子数而核能态不同的核素为同质异能素。
B、放射性衰变放射性核素(radionuclide):不稳定核素的原子核能自发地放出各种射线而转变为另一种核素,称为放射性核素。
放射性核衰变(radiation)/核衰变(decay):放射性核素的原子核自发的放出射线,并转变成新的原子核的过程称为放射性核衰变,简称核衰变。
β―衰变(β―decay):因核内中子数过多,中子、质子数不平衡,由中子转化为质子的同时由核内放射出β―射线的过程,核素质量数不变,原子序数增加1。
β+衰变(β+decay):因核内质子数过多,质子、中子数目不平衡,由质子转化为中子同时由核内放射出β+射线的过程,核素的质量数不变,原子序数减少1。
γ衰变(γdecay):是一种能量跃迁。
激发态的原子核以放出γ射线(光子)的形式释放能量而跃迁到较低能量级的过程称γ衰变,也称γ跃迁。
放射性活度(radioactivity)/活度(activity):单位时间内发生衰变的原子核数,单位时间为“秒”。
其单位为贝可(Bq),1Bq表示放射性核素在一秒内发生一次核衰变,即1Bq=1/s。
物理半衰期(physical half life):在单一的放射性核素衰变过程中,放射性活度降至其原有值一半时所需要的时间称为物理半衰期,简称半衰期(T1/2)。
有效半衰期(effective half life):某生物系统中某单一放射性核素的活度,由物理衰变与生物代谢共同作用而使放射性活度减少至原有值的一半所需要的时间(T c)。
C、射线与物质的作用电离(ionization):带电粒子通过物质时,同原子的核外电子发生静电作用,使原子失去轨道电子而形成自由电子(负离子)和正离子的过程称电离。
核医学完整版-复习考试必备,全面有重点资料
第一章核物理1、核医学(nuclear medicine)研究核技术在医学的应用及其理论的学科,是放射性核素诊断,治疗疾病和进行医学研究的医学学科。
2、元素(element)——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I;3、核素(nuclide)——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。
同一元素可有多种核素,如131I、127I、3H、99mTc、99Tc分别为3种元素的5种核素;4、同质异能素(isomer)——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc 。
5、同位素(isotope)——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。
6、稳定核素(stable nuclide)——原子核稳定,不会自发衰变的核素;7、放射性核素(radionuclide)原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素8、放射性衰变(radiation decay)——放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程9、放射性衰变方式:1)α衰变;2)β- 衰变:实质:高速运动的电子流;3)正电子衰变(β+衰变);4)电子俘获;5)γ衰变。
10、半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间11、放射性活度(activity, A)单位时间内发生衰变的原子核数12、韧致辐射(bremsstrahlung)湮灭辐射(annihilation radiation) 康普顿效应(compton effect)光电效应(photoelectric effect)γ光子与介质原子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失。
r射线与物质相互作用产生哪些效应?光电效应康普顿效应电子对生成13、物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。
核医学知识点总结
核医学知识点总结1. 核医学的基本原理核医学是利用放射性同位素进行医学诊断和治疗的一种方法。
放射性同位素是指原子核具有相同的原子序数,但质子数或中子数不同的同一元素。
放射性同位素的原子核不稳定,会发出粒子或电磁辐射进行衰变,这种衰变过程是放射性同位素的特征。
核医学主要有三种应用方式:核医学诊断、核医学治疗和分子影像学。
核医学诊断主要是通过放射性同位素在体内的分布和代谢特点,来观察生物组织和器官的生理功能和病理状态,从而实现疾病的早期诊断和治疗效果评估。
核医学治疗则是利用放射性同位素的放射性衰变作用,直接破坏肿瘤细胞或者调节机体的生理代谢,达到治疗疾病的目的。
分子影像学是指利用放射性同位素标记的生物分子,来研究生物体内的分子生物学过程和病理生理学过程。
2. 核医学的放射性同位素及其应用核医学常用的放射性同位素有:碘-131、钴-60、钴-57、镉-109等。
这些放射性同位素在医学领域有着广泛的应用:碘-131广泛用于甲状腺诊断和治疗。
在甲状腺诊断中,碘-131被甲状腺摄取,通过放射性衰变产生γ射线,从而实现对甲状腺功能和结构的评估;在甲状腺治疗中,碘-131被甲状腺直接摄取,在体内发射β射线,破坏甲状腺组织,达到治疗目的。
钴-60是一种常用的放射源,广泛用于放射治疗、癌症治疗等。
钴-57可用于心肌灌注显像,可用于心肌缺血、心肌梗死等疾病的早期诊断和评估。
镉-109可用于骨矿物质密度测定,对于骨质疏松症的诊断和骨质疏松治疗效果的评估有重要意义。
3. 核医学的临床应用核医学在临床上有着广泛的应用,主要包括以下几个方面:(1)肿瘤的诊断和治疗:核医学可以通过肿瘤的代谢活性和血液灌注情况等特征,对肿瘤进行早期诊断和治疗效果评估。
例如,利用正电子发射计算机断层显像技术(PET-CT)可以实现对肿瘤的精准定位和评估,为肿瘤的精准治疗提供重要信息。
(2)心血管疾病的诊断和治疗:核医学可以通过心肌灌注显像和心脏功能评价等技术,对冠心病、心肌梗死等心血管疾病进行早期诊断和治疗效果评估,为心血管疾病的诊治提供重要的辅助信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核医学整理核医学显像核医学的PET、SPECT显像侧重于显示功能、血流、代谢、受体、配体等的改变,能早期为临床、科研提供有用的信息。
1.通过放射性核素显像仪(如SPECT)对选择性聚集在或流经特定脏器或病变的放射性核素或其标记物发射出的具一定穿透力的射线进行探测后以一定的方式在体外成像,借以判断脏器或组织的形态、位置、大小、代谢及其功能变化,从而对疾病实现定位、定性、定量诊断的目的。
2.基本条件:用于示踪的放射性核素能够在靶组织或器官中与邻近组织之间形成放射性分布的差异。
3.用于显像的放射性核素或其标记物通称为显像剂(imaging agent),显像剂在机体内的生物学特性决定了显像的主要机制4.诊断和治疗用(含正电子)体内放射性药品浓集原理1)合成代谢2)细胞吞噬3)循环通路:血管、蛛网膜下腔或消化道,暂时性嵌顿。
4)选择性浓聚5)选择性排泄6)通透弥散7)离子交换和化学吸附8)被动扩散9)生物转化10)特异性结合11)竞争性结合12)途径和容积指示5.核医学仪器的基本结构:探头、前置放大器、主放大器、甄别器、定标电路、数字显示器常用显像仪器:γ照相机、SPECT、PET等。
二、分为诊断用放射性药物(显像剂和示踪剂)和治疗用放射性药物。
放射性药品指含有放射性核素供医学诊断和治疗用的一类特殊药品。
γ射线能量为:141KeV三、SPECT显像方法:1.每例检查均需使用显像剂2.给药方式:iv,po,吸入,灌肠,皮下注射等3.仪器:SPECT4.给药后等待检查时间:即刻,20--30min, 1h, 2--3h5.每次机器检查时间:1—20min6.检查次数:1—10次(一)显像的方式和种类1、静态显像:当显像剂在脏器内和病变处的浓度处于稳定状态时进行的显像,可采集足够的放射性计数用以成像,影像清晰可靠,可详细观察脏器和病变的位置、形态、大小和放射性分布;脏器的整体功能和局部功能;计算出一些定量参数, 如局部脑血流量、局部葡萄糖代谢率(参数影像或称功能影像).2、动态显像:显像剂引入体内后,迅速以设定的显像速度动态采集脏器多帧连续影像或系列影像,即电影显示;利用感兴趣区技术提取每帧影像中同一个感兴趣区域内的放射性计数,生成时间--放射性曲线。
3、局部显像:信息量大,图像清晰,临床最为常用。
4、全身显像:利用放射性探测器沿体表匀速移动,注射一次显像剂即可全身显像,常用于全身骨显像、探寻肿瘤或炎性病灶等。
5、平面显像:将放射性探测器置于体表一定位置,是脏器或组织某一方位在放射性探测器的投影即放射性叠加构成。
6、断层显像:用可旋转的或环形的探测器在体表连续或间断采集多体位平面影像数据,可检出较小的病变,并可进行较为精确的定量分析,研究脏器局部血流量和代谢率。
7、早期显像:显像剂注入人体后2h内,主要反映脏器血流灌注、血管床和早期功能状况。
8、延迟显像:显像剂注入人体2h后,或在常规显像时间之后延迟数小时至数十小时。
一些病变细胞吸收功能差,早期显像血液本底较高,图像显示不清,延迟显像可降低本底,给病灶足够时间吸收显像剂。
或由于显像剂被靶组织摄取缓慢,周围的非靶组织的清除也较慢,需足够时间让显像剂从非靶组织洗脱。
9、阳性显像/热区显像:显像剂主要被病变组织摄取,正常组织一般不摄取或摄取很少,病灶呈“热区”改变,如心肌梗死灶显像、亲肿瘤显像、放射性免疫显像等。
分为特异性和非特异性。
这种显像的敏感性较阴性显像为高。
10、阴性显像/冷区显像:显像剂主要被有功能的正常组织摄取,病变组织基本不摄取,病变呈放射性分布稀疏或缺损。
如心肌灌注显像、肝胶体显像、甲状腺显像等。
11、静息显像:受检者无生理刺激或药物干扰的安静状态下。
12、负荷显像/介入显像:在药物或生理性活动干预下,以增加脏器的功能或负荷,观察其应激能力,可判断脏器或组织的血流灌注储备功能,增加正常组织和病变组织间放射性分布的差异。
13、单光子显像:如γ照相机、SPECT,临床最常用。
14、正电子显像:如PET、符合线路SPECT。
探测的是正电子产生湮没辐射时发出的一对能量相等、方向相反的光子。
用于代谢、受体和神经递质显像。
【PET和SPECT比较】♊PET使用正电子核素显像,多是组成人体的固有元素,半衰期超短,可以进行SPECT所不能进行的代谢显像,在短时间内多次显像,更真实、更直接反应机体生理、病理变化。
灵敏度、分辨率高,能准确进行各种定量分析。
♋SPECT结构较简单,价格低,所用的放射性示踪剂半衰期相对较长,使用方便,放射性药物的来源较广,不需要配置加速器,容易推广普及。
但空间分辨率不高。
♌PET只能进行正电子核素显像,中、低能核素显像只能用SPECT仪进行。
四、SPECT检查种类(一)神经系统1.脑血流灌注显像2.脑受体显像3.脑脊液显像4.脑代谢显像(二)心脏和大血管1.心肌灌注显像2.心功能显像3.心肌代谢显像4.心肌受体显像(三)骨骼和关节系统1.全身骨显像2.关节显像(四)消化系统1.肝胶体显像2.肝血流血池显像3.肝胆功能显像4.食管通过时间5.胃-食道返流6.胃肠道出血显像7.异位胃粘膜显像(美克氏室显像)8.胃排空时间测定(五)呼吸系统1.肺灌注显像2.肺通气显像(六)淋巴和骨髓1.淋巴显像2.骨髓显像(七)泌尿系统功能测定和显像1.肾血流灌注显像,肾图2.肾小球滤过率测定3.有效肾血浆流量4.阴囊显像(八)肿瘤、炎症1、18F-FDG2、201Tl和99m Tc-MIBI3、67Ga4、炎症显像(九)内分泌系统检查1.甲状腺摄碘率2.甲状腺显像3.甲状旁腺显像4.肾上腺髓质显像一、内分泌系统显像剂、原理、临床应用1.甲状腺结节、异位甲状腺2.甲亢显像3.亚急性甲状腺炎4.找甲状腺癌转移灶5.甲亢甲状腺癌的治疗6.甲状旁腺显像剂、临床应用7. 肾上腺皮质髓质显像剂内分泌系统甲状腺功能的体内试验:甲状腺摄131I试验,过氯酸盐释放试验,甲状腺激素抑制试验,促甲状腺激素兴奋试验,促甲状腺激素释放激素兴奋试验。
一、甲状腺摄131I试验1、原理甲状腺具有选择性摄取和浓聚碘的能力,其摄取的速度和数量以及碘在甲状腺内的停留时间与甲状腺功能有关。
131I(释放γ射线)与127I(稳定碘)具有相同的生化性质,测定甲状腺部位的放射性计数率,即可了解甲状腺的功能状态。
2、正常参考值2h:10%~30%;4h:15%~40%;24h:25%~60%逐渐增高,24h达高峰,青少年和儿童略高于成人,女性略高于男性(受试者需要停用停用甲状腺功能的药物、含碘食物药物及影响甲功的药物2-6w后方可检查。
空腹口服131I溶液)3、计算:甲状腺摄131I率=(甲状腺部位计数率cpm-本底计数率cpm)/(标准源计数率cpm-本底计数率cpm)*100% 3、临床意义正常人摄131I率随时间逐渐上升,24h达到高峰。
♊甲亢的诊断和治疗:诊断:摄131I率增高,部分可见高峰提前。
摄131I率高低不代表甲亢病情严重程度。
A:各时间点摄131I率均高于正常参考值之上B:摄131I率高峰提前出现♌2h摄131I率与24h摄131I率之比>0.8或4h与24h之比>0.85。
符合A+B或者A+C提示甲亢。
♋甲减的诊断:各时间点摄131I率均低于正常参考值下限且高峰延迟。
诊断准确率不如甲亢,要结合血清学检测。
♌甲状腺肿的诊断:各时间点摄131I率均高于正常参考值之上,但无高峰前移。
♍甲状腺炎的诊断:亚甲炎,“分离现象”——摄131I率明显降低,而血清甲状腺素水平升高。
♎有效半衰期的测定:测定131I在甲状腺内的半衰期,评估131I的代谢速度,为治疗剂量提供数据。
二、过氯酸盐释放试验1、原理:过氯酸盐阻止甲状腺从血中摄取碘离子和促进碘离子从甲状腺内释放。
给予碘后再口服过氯酸盐只能阻止甲状腺继续摄碘,不能使有机化的碘从甲状腺内释放。
当与碘有机化相关酶(如碘化酶、氧化酶)缺乏,甲状腺摄取的碘离子不能有机化,口服过氯酸盐使甲状腺内碘离子释放,甲状腺也不再摄取无机盐。
测量口服前后甲状腺摄131I率变化,计算释放率,判断是否存在有机化障碍。
2、适应症:疑有甲状腺有机化代谢障碍相关甲状腺疾病的辅助诊断慢性淋巴细胞性甲状腺炎(桥本病)的辅助诊断三、甲状腺激素和抑制试验1、原理和方法:甲亢时,下丘脑-垂体-甲状腺轴的反馈调节破坏,甲功处于自主状态,甲状腺摄取碘,合成、分泌甲状腺激素均不受抑制。
在第一次甲状腺摄131I试验后,口服甲状腺片,再重复测定,计算吸131I抑制率。
2、适应症:甲亢的辅助诊断;甲状腺相关性眼病的鉴别诊断;功能自主性甲状腺结节的辅助诊断。
四、促甲状腺激素兴奋试验1、原理给患者注入适量外源性TSH,观察前后两次甲状腺摄131I率变化,可鉴别甲低的病因在垂体或甲状腺。
2、适应症甲减的鉴别诊断;功能自主性甲状腺结节的鉴别诊断;甲状腺储备功能的判断。
3、临床意义主要是鉴别继发性和原发性甲减,原发性甲减是由于甲状腺本身病变所致,注射TSH后摄131I率不提高,兴奋值低下。
继发性的病变在下丘脑或垂体,注射TSH后摄131I率提高,兴奋值高。
五、促甲状腺激素释放激素兴奋试验1、原理给受试者注射一定量的TRH后,动态观察血清TSH浓度的变化,可了解垂体和甲功,用来鉴别病变部位。
TRH呈强反应,可排除甲亢。
♋原发性甲减:TSH基础值很高,注射TRH后,TSH升高更明显。
♌垂体性甲减:TSH基础值很低,注射TRH后,TSH不升高。
单纯性甲肿可↑抑制- T3T4-T S H-原发性甲减↓未兴奋过度反应T3T4↓T S H↑垂体性甲减↓明显兴奋低反应、无反应T3T4↓T S H↓下丘脑甲减↓明显兴奋延迟反应T3T4↓T S H↓亚甲炎↓↓T3T4↑T S H↓桥本氏病+一、甲状腺显像(一)甲状腺静态显像(Thyroid Static Imaging)1、原理甲状腺具有特异性摄取和浓聚碘的能力,因此碘在甲状腺内的分布状态可以反映其形态和功能。
口服放射性碘后,通过观察甲状腺部位放射性分布,可判断甲状腺病变。
2、显像剂:♊131I(发射β、γ射线,射线能量较高,半衰期较长,辐射剂量较大,多用于诊断异位甲状腺或甲状腺癌转移灶);♋123I(纯γ射线发射体,能量适中,辐射剂量小,需回旋加速器产生,贵);♌99m TcO4-(常规甲状腺显像,半衰期短,发射单一的γ射线,辐射剂量小,但特异性低于131I)3、图形分析♊正常图像●位置:正常甲状腺影位于颈前正中。
●形态:呈蝴蝶形,分左右两叶,前下方通过峡部相连。
约17%的正常人可见锥状叶显示。
●大小:每叶上下径约4.5cm,横径约2.5cm,重20-25g。
两叶发育可不一致,甚至一叶缺如或峡部缺如。
●放射线分布:甲状腺内显像剂分布基本均匀。