概率论与数理统计:协方差和相关系数
第13讲 协方差与相关系数 太原理工大学工程硕士概率论与数理统计
22
[例] 已知 解
X 服从 0, 2π
上的均匀分布,求 E ( X 2 ), E (sin X )
X 的概率密度
1 , 0 ≤ x ≤ 2π, f ( x) 2 π 其他, 0,
E( X 2 )
1 2 x f ( x)dx 2π
2π 0
3 2 2 π 1 x 4 π x 2 dx 2π 3 0 3
则: 2 X Y ~ N (0,25)
( 2) D(2 X Y ) 4 DX DY 2 2COV ( X , Y ) 1 25 - 4 XY DX DY 25 4 2 3 13 2
则: 2 X Y ~ N (0,13)
20
小结
本讲首先介绍二维随机向量 (X,Y) 的分量 X与Y 的协方差及相关系数的概念、性质和计 算;然后介绍随机变量的各种矩(k 阶原点矩、 k 阶中心矩、k+m 阶混合原点矩、k+m 阶混 合中心矩),n 维随机向量的协方差阵的概念、 性质和计算;最后简单介绍了n 元正态分布 的概念和三条重要性质。
则(Y1,Y2, …, Yk)'服从k 元正态分布。
这一性质称为正态变量的线性变换不变性。
17
(3) 设(X1,X2, …,Xn)服从n元正态分布,则 “X1, X2, …, Xn 相互独立” 等价于 “X1,X2, …,Xn两两不相关”。
18
例2 设X和Y相互独立,且X~N(1, 2), Y~N(0, 1)。 求 Z = 2X-Y+3 的概率密度。 解: 由X~N(1,2), Y~N(0,1),且X与Y相互独立,
c22 E{[ X 2 E ( X 2 )]2 } c11 c12 排成一个2×2矩阵 , c 21 c 22
概率论与数理统计-协方差和相关系数01
=
9
证: 对任意的 对任意的a,b,令 令
刻画了Y与 刻画了 与a+bX的偏离程度 的偏离程度 e=E{[Y-(a+bX)]2}=E(Y2)+b2E(X2)+a2 -2bE(XY)+2abE(X)-2aE(Y)
要使 与 的某个线性函数 最为接近 就是要找a,b使得误差 最为接近 就是要找 数 要使Y与X的某个线性函数a+bX最为接近,就是要找 使得误差 视为关于a,b的二元函数 视为关于 的二元函数,求驻点: 平方e值最 值最小 平方 值最小. 将e视为关于 的二元函数,求驻点: 字 特 征 解得
X与Y不相关 只说明 与Y之间没有线性关系,但可以有 与 不相关 只说明X与 之间没有线性关系 不相关,只说明 之间没有线性关系, 非线性关系; 非线性关系; 而X与Y独立是指 独立是指X,Y之间既无线性关系, 之间既无线性关系, 与 独立是指 之间既无线性关系 也无非线性关系, 也无非线性关系,故“独立”必然不相关,但反之不然。 独立”必然不相关,但反之不然。 不相关 但是,对于二维正态分布,独立与不相关等价。 但是,对于二维正态分布,独立与不相关等价。 与不相关等价 2 若二维r.v ( X , Y ) ~ N ( µ 1 , µ 2 ; σ 12 , σ 2 ; ρ ) 即:若二维 则X与Y相互独立 与 相互独立
D(X)=p (1-p ) D(X)=np(1-p) D(X)=
E(X) = µ
a +b E(X) = 2 1 E(X) =
D(X)= σ
λ
2
(b − a)2 D(X)= 12
(5) 切比雪夫不等式 =
概率论与数理统计 5.3 协方差与相关系数
概率论
均值 EX是X一阶原点矩,方差DX是X的二阶
中心矩。
四、课堂练习
概率论
1、设随机变量(X,Y)具有概率密度
f (x, y) 81(x y) 0 x 2,0 y 2
0
其它
求E(X ), E(Y ),Cov(X ,Y ), D(X Y )。
2、设X ~ N(, 2),Y ~ N(, 2),且设X,Y相互独立 试求Z1 X Y和Z2 X Y的相关系数(其中,
Cov(aX b,cY d ) acCov( X ,Y ); Cov(aX bY ,cX dY ) acDX bdDY (ad bc)Cov( X ,Y ).
(6) D(XY) = DX+ D Y 2 Cov(X, Y) .
一般地, D(aXbY) =a 2DX + b2DY 2 abCov(X, Y).
1
1
dx
1 x 8xydy 8
0
x
15
EY
yf ( x, y)dxdy
o
1x
1
dx
1 y 8xydy 4
0
x
5
EXY
xyf ( x, y)dxdy
1
dx
0
1 xy 8xydy 4
x
9
Cov( X ,Y ) EXYEXEY 4
225
类似地,EX 2
1
X与Y不独立.
EX EY EXY 0, Cov( X ,Y ) 0, XY 0,
X与Y不相关.
例6 设 X 的分布律为
X 1 0 1 P 13 13 13
Y X 2, 求 XY , 并讨论 X 与Y 的独立性. 解 EX 0, EY EX 2 2 3, E( XY ) EX 3 0,
概率论与数理统计课件 协方差与相关系数
试求二维正态随机变量的边缘概率密度 .
p( x, y)
1
e 1 2(1 ρ2
)
(
x
μ1 σ12
)2
2
ρ(
x
μ1 )( σ1σ2
y
μ2
)
(
y
μ2 σ22
)2
2πσ1σ2 1 ρ2
pX (x) pY ( y)
1
e ,
(
x μ1 2 σ12
)2
2πσ1 1
e
(
y μ2 2σ22
)2
1
2πσ1σ2
1 ρ2
( x μ1 )( y μ2 )
e e d y d x.
(
x μ1 2σ12
)2
1 2(1
ρ2
)
y
μ2 σ2
ρ
x
μ1 σ1
2
令t
1 1
ρ2
y
μ2 σ2
ρ
x
μ1 σ1
,
u x μ1 , σ1
2019/4/24
4-3—协方差和相关系数
3 .不相关与相互独立的关系
相互独立 不相关
2019/4/24
4-3—协方差和相关系数
10
例1 设 ( X ,Y ) 在圆域 x2 y2 1 上服从均匀分布, (1)问X与Y是否独立? (2)求相关系数
例2 X ~N(0,1),Y X 2, 证明X与Y不相关且不独立
解:E( XY ) E( XX 2 ) x3 ( x)dx 0 Cov( X ,Y ) E( XY ) E( X )E(Y ) 0 故X与Y不相关
2019/4/24
4-3—协方差和相关系数
概率论与数理统计复习4-5章
∑ g ( x ) p 绝对收敛,则Y的期望为 ∞
k =1 k k
∑ g(x
k =1
k
) pk
(2) 设X是连续型随机变量,概率密度为 f ( x) , 如果积分 ∫−∞ g ( x) f ( x)dx 绝对收敛,则Y的期望为
E (Y ) = E[ g ( X )] = ∫ g ( x ) f ( x )dx
例 设X的概率分布律为
X −1
0 12
1
2
p 1 3 1 6 1 6 1 12 1 4
试求Y=-X+1及 Z = X 2 的期望和方差。 X -1 0 1/2 解 由于 P 1/3 1/6 1/6 Y =-X+1 2 1 1/2 Z = X2 1 0 1/4
1 1 1 1 1 1 2 E (Y ) = ( −1) ⋅ + 0 ⋅ + ⋅ + 1⋅ + 2 ⋅ = 4 12 2 6 6 3 3
2 2
D( Z ) = E ( Z 2 ) + [ E ( Z )]2 = 2.23264
1 + x − 1 < x < 0 例 设随机变量X的概率密度为 f ( x ) = 1 − x 0 ≤ x < 1 1)求D(X), 2)求 D ( X 2 )
解 (1) E ( X ) = ∫ x(1 + x)dx + ∫ x(1 − x)dx
第四章 随机变量的数字特征
离散型随机变量的数学期望 连续型随机变量的数学期望 数学期望的性质及随机变量函数的期望 方差及其性质
4.1数学期望 数学期望
数学期望——描述随机变量取值的平均特征 数学期望——描述随机变量取值的平均特征 一、离散型随机变量的数学期望 定义 设离散型随机变量X的概率分布为
关于协方差、相关系数与相关性的关系
在实际中,人们为什么总是用(线性)相关系数 XY ,而不是用协方差 CovX ,Y 来判断两个随机变量
X 与Y 的线性相关程度呢?关于这个问题,只要我们注意 CovX ,Y EX EX Y EY 与
XY
CovX DX
,Y DY
的单位,就不难发现:
XY
是一个无量纲的量,用它来描述
X
于是 XY 是一个可以用来表征 X ,Y 之间线性关系紧密程度的量,当 XY 较大时,我们通常说 X ,Y
线性相关的程度较好;当 XY 较小时,我们通常说 X ,Y 线性相关的程度较差;当 XY 0 时,称 X ,
Y 不相关(实际上,按照严格的线性相关的定义,只有在 XY 1时,X 与Y 才是线性相关的, XY 1
概率论与数理统计
关于协方差、相关系数与相关性的关系
前言
z
y x
(概率论与数理统计(茆诗松),Page 147)
高等学校教科书中,关于协方差、相关系数的概念,都是直接给出定义,再由定义导出几个基本
性质,然后是一些关于相关系数的计算或相关性的判断,至于定义这两个量的根据是什么,为什么它
们就是衡量随机变量 X ,Y 的线性相关程度的两把尺子?代数学与概率论中两个变量存在线性关系的
---------------------------------------------------------------------------------------------------------------------------------
Reproduction Forbidden
时二者是线性无关的,不过为了研究 XY 的不同取值下, X ,Y 的关系,我们分为严格线性相关和线 性相关(一定程度)来讨论。)(注意:这里指的是线性不相关,但它们还会存在其他的相关关系,否 则如果什么关系都不存在,那就是 X ,Y 相互独立的情况了。)
概率论与数理统计(第三版)第三章4协方差与相关系数-PPT精品文档
o 3 X , Y 不相关 E ( XY ) E ( X ) E ( Y ).
3. 相关系数的性质
是一个用来表征 X ,Y之间线性关系紧密 XY
程度的量 .
1 . 1 ρ XY
a , b使 1 的充要条件是 :存在常数 2 ρ XY
P { Y a bX } 1 .
0.3 0.7
0 . 3 0 0 . 7 1 0 . 7
0 . 6 1 0 . 4 2 1 . 4
0 . 9 50 . 7 1 . 4 0.03
c o v (,) X Y E X Y E X E Y
三、 相关系数的意义
1 . 当 ρ 表明 X,Y的线性关系联 XY 较大时
例1 已知 (X,Y)的分布律求Cov(X,Y)
x 0 1 y 1 2 0.15 0.15 0.45 0.25
解: c o v (,) X Y E X Y E X E Y
EX ( Y ) 0 .9 5
x 0 1
EX ( ) EY ( )
y 1 0.15 0.45 0.6
2 0.15 0.25 0.4
3.设X和Y是随机变量,若
E(XkYL)
k, L=1,2,…
存在,
称它为X和Y的k+L阶混合(原点)矩.
k L 4.若 E {[ X E ( X )] [ Y E ( Y )] } 存在,
称它为X和Y的k+L阶混合中心矩.
二、协方差与相关系数的概念及性质
1. 问题的提出
若随机变量 X 和 Y 相ቤተ መጻሕፍቲ ባይዱ独立 ,那么
3 Cov( X X , Y ) Cov( X , Y ) Co X , Y ). 1 2 1 2
概率论与数理统计协方差和相关系数
X -1 0 1
pk 3/8 2/8 3/8
Y -1 0 1
pk 3/8 2/8 3/8
E( X ) (1) 3 0 2 1 3 0 同理 E(Y ) 0
8
8
8
1
②说明E(:XY虽)然 Cov(Xx,iYy)=j p0i,j 但1
i,i1
P{ X
1P{ X0 8 0}
10,Y101} P{8Y 0} 8
=相关系数刻划了X和Y间“线性相关”的程度.
=
2021/4/4
8
8
皮肌炎图片——皮肌炎的症状表现
数
• 皮肌炎是一种引起皮肤、肌肉、
字
心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时
伴有恶性肿瘤。它的1症状表现如 特 下:
• 1、早期皮肌炎患者,还往往伴 征 有全身不适症状,如-全身肌肉酸
=ቤተ መጻሕፍቲ ባይዱ
2021/4/4
3
3
§3 协方差和相关系数 Covariance and
correlation coefficient
2021/4/4
4
一、协方差
1、定对于义向: 量设X(和X,YY,)是期一望随和机方向差量只,反称映E{了[X变-E(量X)各][Y自-E(的Y)情]} 况,没有
相互之间的关系。 若X、Y相互独立, E{[X-E(X)][Y-E(Y)]}=0, 因此为EX{[与X-YE的(X)协][Y方-E差(Y,)记]} 作在C一ov定(程X,度Y上)反,映即了X与Y之间的关系,称为X 与Y的协方差。 Cov(X,Y)= E{[X-E(X)][Y-E(Y)]}
② 若 E X E( X ) k 存在,则称之为X的 k阶中心矩
概率论与数理统计 第4章 随机变量的数字特征
解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15
范文:概率论与数理统计复习
概率论与数理统计复习概率论与数理统计复习一、概率论的基本概念:1、事件的运算律:交换律:,;结合律:,;分配律:,;德·摩根法则:,;减法运算:。
2、概率的性质:性质1;性质2(有限可加性)当个事件两两互不相容时,;性质3对于任意一个事件,;性质4当事件满足时,,;性质5对于任意两个随机事件,;性质6对于任意一个事件;性质7(广义加法法则)对于任意两个事件,。
3、条件概率:在已知发生的条件下,事件的概率为:()。
注意:所有概率的性质对条件概率依然适用,但使用公式必须在同一条件下进行。
4、全概率公式与贝叶斯公式:设个事件构成样本空间的一个划分,是一个事件,当()时,全概率公式:;贝叶斯公式:当时,,。
应用全概率公式和贝叶斯公式计算事件的概率或其在已知条件下的条件概率时,关键的问题是找到一个完备事件组,使得能且仅能与之一同时发生,然后运用古典概型、概率的加法和乘法法则计算出和,,并套用全概率公式或贝叶斯公式即可。
若一个较复杂的事件是由多种“原因”产生的样本点构成时,多考虑用全概率公式,而这些样本点就构成一个完备事件组;若已知试验结果而要追查“原因”时,往往使用贝叶斯公式,这些“原因”的全体即是所求的完备事件组。
5、随机事件的独立性:事件独立性的结论:(1)事件与独立;(2)若事件与独立,则与,与,与中的每一对事件都相互独立;(3)若事件与独立,且,,则,;(4)若事件相互独立,则;(5)若事件相互独立,则。
注意:(1)事件相互独立只要求满足,而事件互斥(互不相容)只要求,这两个概念前一个与事件的概率有关,后一个与事件有关,两者之间没有必然的联系;(2)如果事件相互独立,则与不相关,反之一般不成立。
(3)对于任意个随机事件,相互独立则两两独立,反之未必;(4)对于任意个相互独立的随机事件,它们中任意一部分事件的运算结果(和、差、积、逆等)与其他一部分事件或它们的运算结果都相互独立,如:与,与,与都相互独立;6、贝努利概型与二项概率公式:设一次试验中事件发生的概率为,则重贝努利试验中,事件恰好发生次的概率为,。
概率论与数理统计协方差及相关系数详解演示文稿
故有 D[Y (a0 b0 X )] 0 E[Y (a0 b0 X )] 0
从而有 P{Y (a0 b0 X )} 1,即P{Y a0 b0 X} 1
第十四页,共35页。
(2) 若存在常数a*,b*使得P{Y=a*+b*X}=1,则有P{[Y(a*+b*X)]2=0}=1.即得E {[Y-(a*+b*X)]2}= 0,又由
特别, 若X=Y,则 cov(X,X)=E(X-E(X))2=D(X) 因此,方差是协方差的特例,协方差刻画两个随机
变量之间的“某种”关系.
第七页,共35页。
3. 计算 对于任意随机变量X与Y,总有
D( X Y ) D( X ) D(Y ) 2Cov( X ,Y )
由协方差定义得
cov(X ,Y ) E{[ X E( X )][Y E(Y )]}
Cov(X ,Y ) E[(XY ) YE(X ) XE(Y ) E(X )E(Y )]
Cov(X,Y)=E(XY)-E(X)E(Y)
这是计算协方差的常用公式.
可见,若X与Y独立,则 Cov(X,Y)= 0 .
第八页,共35页。
4.协方差的性质
(1) Cov(X,Y)=Cov(Y,X)
(对称性)
(1) 求 Z 的数学期望和方差. (2) 求 X 与 Z 的相关系数.
解 (1)由E( X ) 1, D( X ) 9, E(Y ) 0, D(Y ) 16.
得 E(Z ) E( X Y ) 1 E( X ) 1 E(Y )
32 3
2
1. 3
第二十五页,共35页。
D(Z ) D( X ) D(Y ) 2Cov( X ,Y )
0 E{[Y (a* b*X )]2}
概率论与数理统计 第四章
矩,它们都是随机变量函数的数学期望。
河南理工大学精品课程
概率论与数理统计
【例3】[P.115:eg6]
〖解〗设X为随机取一球的标号,则r.v.X等可 能地取值1,2,3,4,5,6;
又Y=g(X),且
g(1)= g(2)= g(3)=1; g(4)= g(5)=2, g(6)=5. 故随机摸一球得分的期望为
河南理工大学精品课程 概率论与数理统计
显然, 方差D(X)就是随机变量X的函数 g ( X ) [ X E( X )]2 的数学期望.因此,当X的分布律 p 或概率密度 k 已知时,有
2 [ x E ( X )] pk , 离散型 k k 1 D ( X ) [ x E ( X )]2 f ( x)dx, 连续型
1500 (分) □
河南理工大学精品课程 概率论与数理统计
二、随机变量函数的数学期望 利用随机变量函数的分布可以证明下列两定理: 定理1 设Y=g(X)是随机变量X的连续函数,则 Y 也是随机变量,且其数学期望为
离散型 g ( xk ) pk , k 1 E (Y ) E[ g ( X )] g ( x) f ( x)dx, 连续型
X2 Pk 3X2+5 Pk 0 0.3 5 0.3 4 0.7 17 0.7
于是,
E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2;
河南理工大学精品课程 概率论与数理统计
例6-续
E(X2)=0×0.3+4×0.7=2.8; E(3X2+5)=5×0.3+17×0.7=13.4.
方法2(定义+性质法) 因为 E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2; E(X2)=(-2)2×0.4+02×0.3+22×0.3=2.8; 所以, E(3X2+5)=3E(X2)+5=3×2.8+5=13.4. □
概率论与数理统计(协方差及相关系数、矩)
实验步骤: 实验步骤: (1) 整理数据如图 所示. 整理数据如图4-5所示 所示.
图4-5 整理数据
(2) 计算边缘概率 计算边缘概率P{X = xi}和P{Y = yj} 和 在单元格G2中输入公式 : 在单元格 中输入公式: = SUM(B2:F2), 并将 中输入公式 , 其复制到单元格区域G3:G6 其复制到单元格区域 在单元格B7中输入公式: 在单元格 中输入公式:=SUM(B2:B6),并将其 中输入公式 , 复制到单元格区域C7:F7 复制到单元格区域 (3) 计算期望 计算期望E(XY) 首先在单元格B9中输入公式: 首先在单元格 中输入公式: 中输入公式 =MMULT(B1:F1,B2:F6), ,
−
π
∫ πcos zdz = 0, ∫ πsin z cos zdz = 0
−
1 E ( XY ) = 2π
π
因而Cov(X,Y) = 0,ρXY = 0. , 因而 , . 不相关, 相关系数ρXY = 0,说明随机变量 与Y不相关, ,说明随机变量X与 不相关 但是, 所以X与 不独立 不独立. 但是,由于 X 2 + Y 2 = 1 ,所以 与Y不独立.
Cov ( X , Y ) = E ( XY ) − E ( X ) E (Y ) = 19 / 400,
所以
ρ XY =
Cov( X , Y ) 19 / 400 133 = = = 0.87 D( X ) D(Y ) 153 / 2800 153
4.3.2 相关系数 下面不加证明地给出相关系数的两条性质: 下面不加证明地给出相关系数的两条性质: (1) |ρXY | ≤ 1; ; 的充要条件是, (2) |ρXY | = 1的充要条件是,存在常数 ,b,使 的充要条件是 存在常数a, P{Y = aX + b} = 1. . 定义4.6 若ρXY = 0,称X与Y不相关.0 < ρXY ≤ 1,称 定义 , 与 不相关. , 不相关 X与Y正相关,– 1 ≤ ρXY < 0,称X与Y负相关. 正相关, 负相关. 与 正相关 , 与 负相关 事实上,相关系数 事实上 相关系数ρXY是X与Y线性关系强弱的一个 与 线性关系强弱的一个 度量,X与 的线性关系程度随着 的线性关系程度随着| 的减小而减弱, 度量 与Y的线性关系程度随着 ρXY|的减小而减弱 的减小而减弱 的线性关系最强, 时 与 的线性关系最强 当|ρXY| = 1时X与Y的线性关系最强, 的不存在线性关系, 当ρXY = 0时,意味 与Y的不存在线性关系,即X 时 意味X与 的不存在线性关系 不相关. 与Y不相关 不相关
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf
第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。
概率论与数理统计第四章期末复习
概率论与数理统计第四章期末复习(一)随机变量的数学期望1.数学期望的定义定义1设离散随机变量X 的分布律为)()(i i i x X P x p p ===, ,2,1=i .若+∞<∑+∞=1i i i p x ,则称∑+∞==1)(i i i p x X E 为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.定义2设连续随机变量X 的密度函数为)(x f .若+∞<⎰∞+∞-x x f x d )(,则称xx xf X E d )()(⎰∞+∞-=为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.2.随机变量函数的数学期望定理1设随机变量Y 是随机变量X 的连续函数:)(X g Y =.设X 是离散型随机变量,其分布律为)(i i x X P p ==, ,2,1=i ,若∑+∞=1)(i i i p x g 绝对收敛,则有∑+∞===1)()]([)(i i i p x g X g E Y E .设X 是连续型随机变量,其概率密度为)(x f ,若⎰∞+∞-x x f x g d )()(绝对收敛,则有x x f x g X g E Y E d )()()]([)(⎰∞+∞-==.【例1】设随机变量X 的分布律为X 2-1-0123P1.02.025.02.015.01.0求随机变量X 的函数2X Y =的数学期望.【解】1.0315.022.0125.002.0)1(1.0)2()(222222⨯+⨯+⨯+⨯+⨯-+⨯-=Y E 3.2=.【例2】设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤=,其他.;,001)(ππx x f X ,求X Y sin =的数学期望.【解】x x f x g X g E Y E d )()()]([)(⎰∞+∞-==πππ2d 1sin 0=⋅=⎰x x .【例3】某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X (单位:吨)服从)500,300(上的均匀分布.每售出1吨该原料,公司可获利1.5(千元);若积压1吨,则公司损失0.5(千元).问公司应该组织多少货源,可使平均收益最大?【解】设该公司应该组织a 吨货源,则显然应该有500300≤≤a .又记Y 为在a 吨货源条件下的收益额(单位:千元),则收益额Y 为需求量X 的函数,即)(X g Y =.由题设条件知:当a X ≥时,此a 吨货源全部售出,共获利a 5.1.当a X <时,则售出X 吨(获利X 5.1),且还有X a -吨积压(获利)(5.0X a --),所以共获利a X X a X 5.02)(5.05.1-=--.由此知⎩⎨⎧<-≥=.,;,a X a X a X a X g 5.025.1)(则x x g x x f x g Y E X 2001)(d )()()(500300⎰⎰==∞+∞-]d 5.1d )5.02([2001500300x a x a x a a ⎰⎰+-=)300900(200122-+-=a a .易知,当450=a 时,能使)(Y E 达到最大,即公司应该组织450吨货源.定理2设随机变量Z 是随机变量X ,Y 的连续函数:),(Y X g Z =.设),(Y X 是二维离散型随机变量,其联合分布律为),(j i ij y Y x X P p ===,,2,1,=j i ,若∑∑+∞=+∞=11),(i j ij j i p y x g 收敛,则有∑∑+∞=+∞===11),()],([)(i j ij j i p y x g Y X g E Z E .设),(Y X 是二维连续型随机变量,其联合概率密度函数为),(y x f ,若y x y x f y x g d d ),(),(⎰⎰∞+∞-∞+∞-收敛,则有y x y x f y x g Y X g E Z E d d ),(),()],([)(⎰⎰∞+∞-∞+∞-==.【例4】设随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<--=其他.,,,,010102),(y x y x y x f 求)(X E ,)(XY E .【解】⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(125d d )2(1010=--=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x f xy XY E d d ),()(61d d )2(1010=--=⎰⎰y x y x xy .3.数学期望的性质性质1若a 是常数,则a a E =)(.性质2对任意常数a ,有)()(X aE aX E =.性质3对任意的两个函数)(1x g 和)(2x g ,有)]([)]([)]()([2121X g E X g E X g X g E +=+.性质4设),(Y X 是二维随机变量,则有)()()(Y E X E Y X E +=+.推广到n 维随机变量场合,即)()()()(2121n n X E X E X E X X X E +++=+++ .性质5若随机变量X 与Y 相互独立,则有)()()(Y E X E XY E =.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X E X E X E X X X E =.【例5】设随机变量X 与Y 相互独立,X ~)4,1(-N ,Y ~)2,1(N ,则=-)2(Y X E .【解析】因为X ~)4,1(-N ,Y ~)2,1(N ,所以1)(-=X E ,1)(=Y E ,故3)(2)()2(-=-=-Y E X E Y X E .(二)随机变量的方差1.方差的定义定义1设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为)(X D ,即})]({[)(2X E X E X D -=.称方差的平方根)(X D 为随机变量X 的标准差,记为)(X σ或X σ.定理1(方差的计算公式)【例1】设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<<-+=其他.,;,;,0101011)(x x x x x f ,求)(X D .【解】0d )1(d )1()(101=-++=⎰⎰-x x x x x x X E ,61d )1(d )1()(120122=-++=⎰⎰-x x x x x x X E ,所以61)]([)()(22=-=X E X E X D .2.方差的性质性质1常数的方差为0,即0)(=c D ,其中c 是常数.性质2若a ,b 是常数,则)()(2X D a b aX D =+.性质3若随机变量X 与Y 相互独立,则有)()()(Y D X D Y X D +=±.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X D X D X D X X X D +++=±±± .【例2】已知2)(-=X E ,5)(2=X E ,求)31(X D -.【解】9})]([)({9)()3()31(222=-=-=-X E X E X D X D .(三)常见随机变量的数学期望、方差1.两点分布X ~),1(p b p X E =)(,)1()(p p X D -=.2.二项分布X ~),(p n b np X E =)(,)1()(p np X D -=.3.泊松分布X ~)(λP λ=)(X E ,λ=)(X D .4.均匀分布X ~),(b a U )(21)(b a X E +=,12)()(2a b X D -=.5.指数分布X ~)(λE λ1)(=X E ,21)(λ=X D .6.正态分布X ~),(2σμN μ=)(X E ,2)(σ=X D .【例1】设X ~),(p n b 且6)(=X E ,6.3)(=X D ,则下列结论正确的是()A .15=n ,4.0=pB .20=n ,3.0=pC .10=n ,6.0=p D .12=n ,5.0=p 【解析】6)(==np X E ,6.3)1()(=-=p np X D ,解之得15=n ,4.0=p .正确选项为A .【例2】若X ~)5,2(N ,Y ~)1,3(N ,且X 与Y 相互独立,则=)(XY E ()A .6B .2C .5D .15【解析】因为X ~)5,2(N ,所以2)(=X E ,因为Y ~)1,3(N ,3)(=Y E ,故6)()()(==Y E X E XY E ,正确选项为A .【例3】X 与Y 相互独立,X ~)2(P ,Y ~)1(E ,则=-)2(Y X D .【解析】因为X ~)2(P ,所以2)(=X D ,因为Y ~)1(E ,所以1)(=Y D ,又因为随机变量X 与Y 相互独立,所以9)()1()(2)2(22=-+=-Y D X D Y X D .(四)协方差、相关系数与矩1.协方差定义1设),(Y X 是一个二维随机变量,若)]}()][({[Y E Y X E X E --存在,则称其为X 与Y 的协方差,记为),(Cov Y X .即)]}()][({[),(Cov Y E Y X E X E Y X --=.定理1)()()(),(Cov Y E X E XY E Y X -=.【例1】设二维随机变量),(Y X 的联合分布律为:求协方差),(Cov Y X .【解】由题易得32)(=X E ,0)(=Y E ,0311131003111)(=⨯⨯+⨯⨯+⨯⨯-=XY E .于是0)()()(),(Cov =-=Y E X E XY E Y X .定理2若X 与Y 相互独立,则0),(Cov =Y X ,反之不然.定理3对任意二维随机变量),(Y X ,有),(Cov 2)()()(Y X Y D X D Y X D ±+=±.关于协方差的计算,还有下面四条有用的性质.性质1协方差),(Cov Y X 的计算与X ,Y 的次序无关,即),(Cov ),(Cov X Y Y X =.性质2任意随机变量X 与常数a 的协方差为零,即0),(Cov =a X .性质3对任意常数a ,b ,有),(Cov ),(Cov Y X ab bY X a =.性质4设X ,Y ,Z 是任意三个随机变量,则),(Cov ),(Cov ),(Cov Z Y Z X Z Y X +=+.2.相关系数定义2设),(Y X 是一个二维随机变量,且()0D X >,()0D Y >,则称Y X XY Y X Y D X D Y X σσρ),(Cov )()(),(Cov ==为X 与Y 的相关系数.性质11≤XY ρ.性质21=XY ρ的充要条件是X 与Y 间几乎处处有线性关系,即存在)0(≠a 与b ,使得1)(=+=b aX Y P .其中当1=XY ρ时,有0>a ;当1-=XY ρ时,有0<a .性质3设随机变量X 与Y 独立,则它们的相关系数等于零,即0=XY ρ.【例2】设1)()(==Y D X D ,21=XY ρ,则=+)(Y X D 3.【解析】因为21)()(),(Cov ==Y D X D Y X XY ρ,所以)()(21Y D X D XY =ρ21=,故),(Cov 2)()()(Y X Y D X D Y X D ++=+3=.【例3】已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E 6.【解析】)]2([3)]2(3[22-=-X E X E }2)]([)({32-+=X E X D 6=.【例5】设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,,,,02020)(81),(y x y x y x f 求),(Cov Y X ,)(Y X D +和XY ρ.【解】⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(67d d )(822=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(2235d d )(820202=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f xy XY E d d ),()(34d d )(82020=+=⎰⎰y x y x xy ,由轮换对称性,有67)(=Y E ,35)(=Y E ,361)()()(),(Cov -=-=Y E X E XY E Y X ,3611)]([)()()(22=-==X E X E X D Y D ,95),(Cov 2)()()(=++=+Y X Y D X D Y X D ,111)()(),Cov(-==Y D X D Y X XY ρ.。
概率论与数理统计:4-3协方差及相关系数
协方差的计算公式
1 CovX ,Y EXY EX EY 2 DX Y DX DY 2CovX ,Y .
性质
1. CovX ,Y CovY , X . 2. CovaX ,bY abCovX ,Y . a ,b为常数. 3. CovX1 X2 ,Y CovX1,Y CovX2 ,Y .
易知E(X)=0,E(Y)=5/2,E(XY)=0,于是 xy 0,
X,Y不相关.这表示X,Y不存在线性关系.
但,P{X=-2,Y=1}=0 P{X=-2}P{Y=1},知X,Y不
是相互独立的.事实上,X和Y具有关系:Y=X2,Y 的值完全可由X的值所确定.
例2
设X ,Y ~
N
1
,
2
,
2 1
2
1 2
1
2tu
1 2u2
u2 t2
e 2 2 dtdu
1 2 2
u2e
u2 2
du
e
t2 2
dt
1
2
1
2
2
ue
u2 2
du
te
t2 2
dt
1 2 2 2 , 2
故有 CovX ,Y 1 2 .
于是
XY
CovX ,Y DX DY .
得出结论
二维正态分布密度函数中,参数代表了X与Y
协方差及相关系数
协方差与相关系数的概念及性质 相关系数的意义
一、协方差与相关系数的概念及 性质
提出问题
若随机变量X和Y相互独立
DX Y DX DY 若随机变量X和Y不相互独立 DX Y ?
DX Y EX Y 2 EX Y 2 DX DY 2EX EX Y EY .
概率论与数理统计电子教案:c4_3 协方差.相关系数与矩
3)C是非负定矩阵;
4)ci2j cii c jj , i, j 1,2,..., n
2020/8/27
4
协方差、相关系数、矩
二. 相关系数
定义:设二维随机变量X,Y的D(X)>0,D(Y)>0
称
XY
covX ,Y DX DY
为随机变量X与Y的相关系数。
注:1)ρXY是一无量纲的量。
a1a2 a1a2
XY
证明
相关系数是衡量两个随机变量之间线性相关程度 的数字特征.
2020/8/27
6
协方差、相关系数、矩
定义:设随机变量X,Y的相关系数存在
1)ρXY=1 称 X,Y正相关. 2)ρXY=-1 称 X,Y负相关. 3)ρXY=0 称 X,Y不相关.
注:ρXY=0仅说明X,Y之间没有线性关系,但可以 有其他非线性关系. 参见书上P116 例4.4.4.
2) XY
E
X
EX DX
Y
E
Y
D Y
E X * Y * cov X * ,Y *
2020/8/27
5
协方差、相关系数、矩
性质:设随机变量X,Y的相关系数ρ存在,则
1) |ρ|1
证明
2) |ρ|=1
X与Y依概率为1线性相关。即
, 0 s .t PY X 1
证明
3)若=a 1X+b1 , = a 2Y+b2 则
PY X 1
证明:" " 必要性 1时 由1)有
D X Y 0 E X Y 0
由 方 差 的 性 质4) 得
P X Y E X Y 1 即
P X Y 0 1
PY -
《概率论与数理统计》六
E( X ) xk pk . k 1
例1 设甲、乙两射手在同样条件下进行射击,其命中环数是一
随机变量,分别记为X、Y,并具有如下分布律
X 10 9 8 7
Y 10 9 8 7
Pk 0.6 0.1 0.2 0.1
Pk 0.4 0.3 0.1 0.2
试问甲、乙两射手的射击水平哪个较高?
解 100.6 90.180.2 70.1 100.4 90.3 80.1 70.2
i1 j1
2
E(Y )
yf ( x, y)dxdy dx
ydy
0
0
3
1
2(1 x )
1
E(XY )
xyf ( x, y)dxdy dx
xydy
0
0
6
三、数学期望的性质
假设以下随机变量的数学期望均存在. 1. E(C)=C, (C是常数) 2. E(CX)=CE(X), (C是常数) 3. E(X+Y)=E(X)+E(Y), 4. 设X与Y相互独立, 则 E(XY)=E(X)E(Y)
1
e
x
,
0,
x0 x0
( 0)
求将这5个元件串联组成的系统的平均寿命.
解
Xk的分布函数为
F
(
x)
1
e
x
,
0,
x0 x0
串联时系统寿命 N min( X1 , X2 , , X5 ) ,
其分布函数为 Fmin ( x) 1
[1
F(
x)]5
1
e
5x
,
0,
x 0, x 0.
fmin
2 X 3, 一台付款 2500 元; X 3, 一台付款3000元.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协方差和相关系数
对二维随机变量),(Y X ,我们除了讨论X 与Y 的期望和方差之外,还
需讨论X 与Y 之间相互关系的数字特征,本节主要讨论这方面的数字特征。
§ 协方差和相关系数 协方差的定义与性质
定义 设(,)X Y 是二维随机变量.若{[()][()]}E X E X Y E Y --存在,则称它为随
机变量
X 与Y 的协方差,记为Cov(,)X Y ,即
Cov(,){[()][()]}X Y E X E X Y E Y =--.
常用下面的式子计算协方差
Cov(,){[()][()]}X Y E X E X Y E Y =--()()()E XY E X E Y =-.
注:(1)X 与Y 的协方差),(Y X Cov 实质上是二维随机变量X 与Y 的函数
)]([()]([(Y E Y X E X -⋅-的期望,它是一个常数。
(2)当),(Y X 为二维离散型随机变量时,其分布律为
}{),2,1,,2,1(,, =====j i y Y x X P P j i ij ,则
ij i i j
i P Y E y X E x Y X Cov )]()][([),(1
1
--=
∑∑∞=∞
=;
(3)当),(Y X 为二维连续型随机变量时,),(y x f 为),(Y X 的联合概率密度函数,则dxdy y x f Y E y X E x Y X Cov ),())(())((),(--=
⎰⎰
+∞∞-+∞
∞
-。
(4)利用期望的性质可得到协方差有下列计算公式:
)()()(),(Y E X E XY E Y X Cov -=
证明:
)
()()( )()()()()()()( )]
()()()([ )]
())(([(),(Y E X E XY E Y E X E Y E X E Y E X E XY E Y E X E Y XE Y X E XY E Y E Y X E X E Y X Cov -=+--=+--=--=
此公式是计算协方差的重要公式,特别地取Y X =时,有
)()]())(([(),(X D X E X X E X E X X Cov =--=,易见,方差是协方差的特例,协
方差是方差的推广。
例4.39 已知),(Y X 的联合分布律为
求),(Y X Cov 。
解:X 的边缘分布:
Y 的边缘分布:
8.08.012.00)(2
1=⨯+⨯==
•
=∑i i
i p x X E ,
1.01.019.00)(21
=⨯+⨯==
•
=∑j i
i p y Y E ,
0118.0011.0101.000)(21
2
1
=⨯⨯+⨯⨯+⨯⨯+⨯⨯==
∑∑==ij i j j
i p y x XY E 08.01.08.00)()()(),(-=⨯-=-=Y E X E XY E Y X Cov 一般讲,)()
()(Y E X E XY E ≠ 例4.40 已知二维随机变量),(Y X 的分布律为
求Cov(,)X Y .
解 易知,
X
的分布律为
{0}0.4P X ==, {1}0.25P X ==, {2}0.35P X ==.
Y 的分布律为
{1}0.5P Y =-=, {0}0.3P Y ==, {2}0.2P Y ==.
因而 ()00.410.2520.350.95E X =⨯+⨯+⨯=,
()(1)0.500.320.20.1E Y =-⨯+⨯+⨯=- ()0(1)0.15000.25020E XY =⨯-⨯+⨯⨯+⨯⨯1(1)0.15100.05+⨯-⨯+⨯⨯+120.05⨯⨯
2(1)0.2200220.15+⨯-⨯+⨯⨯+⨯⨯0.15=.
于是 Cov(,)()()()X Y E XY E X E Y =-0.150.95(0.1)0.245=-⨯-=.
例4.41 设二维随机变量(,)X Y 的概率密度为
01,01,
(,)0x y x y f x y +≤≤≤≤⎧=⎨
⎩,,
其他, 求 Cov(,)X Y . 解 因为
11
00
()(,)d d ()d d E X x f x y x y x x y x y +∞
+∞
-∞
-∞
=⋅=⋅+⎰
⎰
⎰
⎰
1
017
()d 212
x x x =+=⎰, 11
00
()(,)d d ()d d E Y y f x y x y y x y x y +∞+∞
-∞
-∞
=
⋅=⋅+⎰⎰
⎰
⎰
1017()d 212
y y y =+=⎰
11
001()(,)d d ()d d 3
E XY xyf x y x y xy x y x y +∞
+∞
-∞
-∞
==⋅+=
⎰
⎰
⎰
⎰ 所以
Cov(,)()()()X Y E XY E X E Y =-.1441
12712731-=⨯-
=
例4.42 设),(Y X 服从在D 上的均匀分布,其中D 由X 轴、Y 轴及1=+y x 所围成,
求X 与Y 的协方差 ),(Y X Cov 。
解:∵D 的面积为2
1
=
S ⎩
⎨⎧∈=∴其他,0),(,2),(D
y x y x f
3
1)22(2)(10
2
1010=-==
⎰⎰⎰-dx x x xdydx X E x
3
1
)1(2)(1021010=-==⎰⎰⎰-dx x ydydx Y E x
12
1
)2()1(2)(1
322
1
1010
=
+-=-==
⎰⎰⎰⎰
-dx x x x dx x x xydydx XY E x
, 36
1
3131121)()()(),(=
⨯-=
-=Y E X E XY E Y X Cov 协方差的性质: 性质1 Cov(,)
Cov(,)X Y Y X =.
性质2
2
Cov(,){[()]}()X X E X E X D X =-=
.
性质3 Cov(,)
Cov(,)aX bY ab X Y =,其中,a b 为任意常数.
性质4 Cov(,)0c X =, c 为任意常数.
性质5 Cov()Cov(,)Cov(,)X Y Z X Z Y Z +=+,. 性质6 ()()()2Cov(,)D X
Y D X D Y X Y ±=+±.
例 4.43设随机变量
X ~)5.0,
12(B ,Y ~)1,0(N ,1),(-=Y X Cov ,求134++=Y X V 与Y X W 42+-=的方差与协方差。
解:3)5.01(5.012)1()(,65.012)(=-⨯⨯=-==⨯==p np X D np X E
1)(,0)(2====σμX D Y E
33),(24)(9)(16)134()(=++=++=Y X Cov Y D X D Y X D V D
44),(16)(16)(4)42()(=-+=+-=Y X Cov Y D X D Y X D W D
22
)(12),(6),(16)(8 )
42,134(),(-=+-+-=+-++=Y D X Y Cov Y X Cov X D Y X Y X Cov W V Cov。