人教版高中数学必修四学案 任意角的三角函数及弧度制小结

合集下载

必修4--三角函数知识点归纳总结

必修4--三角函数知识点归纳总结

《三角函数》一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π9、弧长与面积计算公式弧长:l R α=⨯;面积:21122S lRR α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,度0o 30o 45o 60o 90o 120o 135o 150o 180o︒270360o弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α122232132 22121cos α132 221212- 22- 32-1- 0 1tan α 0331 3无3-1-33-无ry)(x,αP4、同角三角函数基本关系式22sin cos 1αα+=sin tan tan cot 1cos ααααα=⇒=g ααααcos sin 21)cos (sin 2+=+ ααααcos sin 21)cos (sin 2-=-(ααcos sin +,ααcos sin -,ααcos sin •,三式之间可以互相表示)5.诱导公式口诀:奇变偶不变,符号看象限(所谓奇偶指的是απ+2n 中整数n 的奇偶性,把α看作锐角)212(1)sin ,sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数;212(1)s ,s()2(1)sin ,nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数. ①.公式(一):α与()2,k k Z απ+∈απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k②.公式(二):α与α-()sin sin αα-=-;()cos cos αα-=;()tan tan αα-=-③.公式(三):α与πα+()sin sin παα+=-;()cos cos παα+=-;()tan tan παα+=④.公式(四):α与πα-()sin sin παα-=;()cos cos παα-=-;()tan tan παα-=-⑤.公式(五):α与2πα+sin cos 2παα⎛⎫+= ⎪⎝⎭;cos sin 2παα⎛⎫+=- ⎪⎝⎭; ⑥.公式(六):α与2πα-sin cos 2παα⎛⎫-= ⎪⎝⎭;cos sin 2παα⎛⎫-= ⎪⎝⎭; ⑦.公式(七):α与32πα+3sin cos 2παα⎛⎫+=- ⎪⎝⎭;3cos sin 2παα⎛⎫+= ⎪⎝⎭; ⑧.公式(八):α与32πα- 3sin cos 2παα⎛⎫-=- ⎪⎝⎭;3cos sin 2παα⎛⎫-=- ⎪⎝⎭;三、三角函数的图像与性质1、将函数sin y x =的图象上所有的点,向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y A x ωϕ=+的图象。

高中数学必修4《三角函数》知识点归纳总结

高中数学必修4《三角函数》知识点归纳总结

《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈锐角:{}090αα<< 小于90的角:{}90αα<任意角的概念弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角和角公式 倍角公式 差角公式 应用应用 应用 应用应用 应用 应用5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π8、角度与弧度对应表: 角度 0︒ 30︒ 45︒ 60︒90120︒ 135︒ 150︒ 180︒ 360︒弧度6π 4π 3π 2π 23π 34π 56π π2π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α 01222 32132 22121 0cos α132 221212- 22-32-1- 0 1tan α 0 331 3无3- 1-33-无ry)(x,αP口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, c o s 1x x x OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

高中数学必修4三角函数知识点归纳总结【经典】

高中数学必修4三角函数知识点归纳总结【经典】

《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2α在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=︒π815730.571801'︒=︒≈︒=π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα= 其中(),x y 为角α终边上任意点坐标,r =2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin >0,cos >0,tan >0, 第二象限:0,0.><y x sin >0,cos<0,tan<0,第三象限:0,0.<<y x sin <0,cos <0,tan >0, 第四象限:0,0.<>y x sin<0,cos>0,tan<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x xx OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

高一数学人教A版必修4第一章(三角函数)本章小结课件

高一数学人教A版必修4第一章(三角函数)本章小结课件

1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,

24任意角与弧度制知识点总结

24任意角与弧度制知识点总结
②几何法:即利用三角函数线来作出正弦函数在0,2 内的图象,再通过平移得到
y sin x 的图象。
③五点法:在函数 y sin x , x 0,2 的图象上,起关键作用的点有以下五个:
0,0, 2 ,1,,0, 32 ,1,2,0
必修四第一章知识点总结
一、意角的概念
(1)、角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。 (2)、角的分类 ①按逆时针方向旋转形成的角叫做正角。 ②按顺时针方向旋转形成的角叫做负角。 ③如果一条射线没有作任何旋转,我们称它形成了一个零角。这样,零角的始边与终 边重合。 这样,我们就把角的概念推广到了任意角,包括正角、负角和零角。
量角的单位制
无关
以省略
有关
五、任意角的三角函数
(1)、直角坐标系内用点的坐标表示锐角三角函数
设锐角 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,那么它的终边在第一象
限。在 的终边上任取一点 P a,b ,它与原点的距离 r a2 b2 0 ,过 P 作 x 轴的
垂线,垂足为 M ,则线段 OM 的长度为 a , MP 的长度为 b 。根据初中学过的三角函数定
(4)、正弦函数、余弦函数的奇偶性
正弦函数 y sin x ( x R )是奇函数,余弦函数 y cos x ( x R )是偶函数。
(5)、正弦函数、余弦函数的单调性 ①由正弦曲线和余弦曲线可得正弦函数和余弦函数的单调性如下:
函数
y

sin
x

2k

2
,2k

2

3 2



sin

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。

高中数学必修4 第一章 三角函数的小结与复习

高中数学必修4 第一章 三角函数的小结与复习

必修4 第一章三角函数的小结与复习
知识与技能:
理解本章知识结构体系(如下图),了解本章知识之间的内在联系。

过程与方法:
三角函数值的符号是由对应的三角函数线的方向确定的;具有相同性质的角可以用集合或区间表示,是一种对应关系;弧度制的任意角是实数,这些实数可以用三角函数线进行图形表示,因此,复习的目的就是要进一步了解符号确定方法,了解集合与对应,数与形结合的数学思想与方法。

另外,正弦函数的图象与性质的得出,要通过简谐运动引入,分析、确定三角函数图象的关键点画图象,观察得出其性质,通过类比、归纳得出余弦函数、正切函数的图象与性质,所以,复习本章时要在式子和图形的变化中,学会分析、观察、探索、类比、归纳、平移、伸缩等基本方法.
教学过程:
试题讲评,作业讲评,问题研究。

见作业纸。

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。

必修四三角函数知识点经典总结

必修四三角函数知识点经典总结

必修四三角函数知识点经典总结高一必修四:三角函数一任意角的概念与弧度制(一)角的概念的推广 1、角概念的推广:在平面,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角算是多少度角。

按别同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。

适应上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。

射线旋转停止时对应的边叫角的终边。

2、特别命名的角的定义:(1)正角,负角,零角:见上文。

(2)象限角:角的终边降在象限的角,依照角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边降在坐标轴上的角终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合: {}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ (4)终边相同的角:与α终边相同的角2x k απ=+ (5)与α终边反向的角:(21)x k απ=++终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 (7)成特别关系的两角若角α与角β的终边对于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边对于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 注:(1)角的集合表示形式别唯一.(2)终边相同的角别一定相等,相等的角终边一定相同. 3、本节要紧题型: 1.表示终边位于指定区间的角.例1:写出在720-?到720?之间与1050-?的终边相同的角. 例2:若α是第二象限的角,则2,2αα是第几象限的角?写出它们的普通表达形式.例3:①写出终边在y 轴上的集合.②写出终边和函数y x =-的图像重合,试写出角α 的集合. ③α在第二象限角,试确定2,,23ααα所在的象限.④θ角终边与168?角终边相同,求在[0,360)??与3θ终边相同的角.(二)弧度制1、弧度制的定义:l Rα=2、角度与弧度的换算公式:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一具式子中别能角度,弧度混用. 3、题型(1)角度与弧度的互化例:74315,330,,63ππ?? (2)L R α=,211,22l r s lr r αα===的应用咨询题例1:已知扇形周长10cm ,面积24cm ,求中心角.例2:已知扇形弧度数为72?,半径等于20cm ,求扇形的面积.例3:已知扇形周长40cm ,半径和圆心角取多大时,面积最大. 例4:12123 7570,750,,53ααβπβπ=-?=?==- a.求出12,αα弧度,象限.b.12,ββ用角度表示出,并在720~0-??之间找出,他们有相同终边的所有角. 二任意角三角函数(一)三角函数的定义 1、任意角的三角函数定义正弦r y =αsin ,余弦r x=αcos ,正切xy =αtan 2(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1)PM表示α角的正弦值,叫做正弦线。

人教版数学必修四三角函数知识点总结

人教版数学必修四三角函数知识点总结

人教版数学必修四三角函数知识点总结三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

下面是整理的人教版数学必修四三角函数知识点,仅供参考希望能够帮助到大家。

人教版数学必修四三角函数知识点三角函数常用公式正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-si nα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sin α·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-t anβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2同角三角函数关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin(α)+cos(α)=1 1+tan(α)=sec(α) 1+cot(α)=csc(α)诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαc os(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα倍角公式Sin2A=2SinA?CosACos2A=CosA-SinA=1-2SinA=2CosA-1tan2A=(2tanA)/(1-tanA)(注:SinA是sinA的平方sin2(A) )半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sin α降幂公式sin(α)=(1-cos(2α))/2=ver,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.数学直线、平面、简单多面体知识点1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.7.球体积公式。

人教A版高中数必修四三角函数单元小结.doc

人教A版高中数必修四三角函数单元小结.doc

高中数学学习材料马鸣风萧萧*整理制作三角函数单元小结一、基本概念、定义、公式:1、角是一条射线饶着它的端点旋转形成的几何图形,它由 、 、 组成。

2、角的概念推广后,包括 、 、 ,与α终边相同的角表示为=β 。

角的集合:终边在x 轴上 在y 轴上 在第一象限 在第二象限 在第二四象限 在直线y =x 上 3、弧度制:把 叫1弧度的角。

公式:|α|=换算:180°= 弧度; 1弧度= 度; 1°= 弧度 扇形: 弧长L = ,面积S = = = 4、 任意角的三角函数:① 定义:在角α终边上任取一点P(x ,y),它与原点的距离r = (r >0),六个三角函数的定义依次是 、 、 、 、 、 。

②三角函数的定义域:αsin 、αcos 的定义域为 ;αtan 、αsec 的定义域为 ;αcot 、αcsc 的定义域为 。

③三角函数值的符号:当α在 象限时,0sin >α;当α在 象限时,0cos >α;当α在 象限时,0tan >α。

④三角函数线:如图,角α的终边与单位圆交于点P ,过点P 作 轴的垂线,xyo MT PA垂足为M ,则 。

过点A(1,0)作 , 交 于点T ,则 。

⑤同角三角函数关系式: 平方关系:商数关系: 倒数关系:⑥诱导公式:=β―α(或2π―α)π+α π-α2k π+αsin =β cos =β tan =β二、 习题训练(一)选择题1、若角α满足sin αcos α<0,cos α-sin α<0,则α在 ( ) A .第一象限 B.第二象限 C .第三象限 D .第四象限2、如果1弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长为 ( )A .1sin0.5B .sin0.5C .2sin0.5D .tan0.53、已知圆中一段弧长正好等于该圆的外切正三角形的边长,那么这段弧所对的圆心角的弧度数为 ( )A .32B .33C . 3D .2 34、(04浙江)在△ABC 中,“A >30°”是“sinA >12”的 ( )A .仅充分条件B .仅必要条件C .充要条件D .既不充分也不必要条件5、已知sin α>sin β,则下列命题成立的是 ( )A .若α.β是第一象限角,则cos α>cos β.B .若α.β是第二象限角,则tan α>tan β.C .若α.β是第三象限角,则cos α>cos β.D .若α.β是第四象限角,则tan α>tan β.6、以下各式能成立的是 ( )A .sin α=cos α=12;B .cos α=13且tanα=2;C .sin α=12且tan α=33;D .tan α=2且cot α=-127、cot(α-4π)·cos(α+π)·sin 2(α-3π)tan(π+α)·cos 3(-α-π)的结果是( )A .1B .0C .-1D .128、设sin123°=a ,则tan123°= ( )A .1-a2aB .a 1-a2C .1-a 21-a2D .a 1-a 2a 2-19、α为第二象限角,P(x, 5)为其终边上一点,且cos α=24x ,则x 值为 ( ) A . 3 B .± 3 C .- 3 D .- 210、若α满足sin α-2cos αsin α+3cos α=2,则sin α·cos α的值等于 ( )A .865B .-865C .±865D .以上都不对(二)填空题:11、已知sin θ-cos θ=12,则sin 3θ-cos 3θ= .12、函数y =|sinx|sinx +cosx |cosx|+|tanx|tanx +cotx|cotx|的值域为 .13、已知cos(75°+α)=13,其中α为第三象限角,则cos(105°-α)+sin(α-105°)= .14、若θ满足cos θ>21-,则角θ的取值集合是 . (三)解答题:15、已知扇形的周长为L ,问当扇形的圆心角α和半径R 各取何值时,扇形面积最大?16、已知a a x +-=11sin ,aa x +-=113cos ,若x 是第二象限角,求实数a 的值.17、已知α为第三象限角,且f(α)=sin(π-α)cos(2π―α).tan(―α+3π2)cot α.sin(π+α).(1)化简f(α); (2)若cos(α-3π2)=15,求f(α)的值; (3)若α=-1920°,求f(α)的值.18、已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:sinθ1-cotθ+cosθ1-tanθ的值; (2)m的值; (3)方程的两根及此时θ的值.(1)参考答案:(一)选择题:BADB DCAD CB (二)填空题:11.1116 12.{-2,0,4} 13、 22-13 14、Z k k k ∈⎪⎭⎫ ⎝⎛+-,322,322ππππ提示:13、α为第三象限角,cos(75°+α)=13 ,∴sin(75°+α)=-223,cos(105°-α)=―cos[180°―(105°―α)]=-cos(75°+α)=-13,sin(α-105°)=-sin[180°+(α-105°)]=-sin(75°+α)=223,∴原式=22-13. (三)解答题:15、解:∵L =2R +αR ,S =12αR 2.∴α=2S R 2.∴L =2R +2S R⇒2R 2-LR +2S =0.△=L 2-16S ≥0⇒S ≤L 216.故当α=2.R =L 4时,Smax =L216.16、解:依题意x 是第二象限角,∴1sin 0<<x ,0cos 1<<-x ,又1cos sin 22=+x x ,从而得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-++-<+-<-<+-<)3(1)113()11()2(01131)1(111022 a a a a a a a a由(3)解得1=a 或91=a ,把1=a 代入不符合不等式(1)故舍去,从而91=a 17.(1)f(α)=-cos α. (2) f(α)=265. (3) f(α)=12.18、解:依题得:sin θ+cos θ=3+12,sin θcos θ=m2. ∴(1)原式=sin 2θ sin θ-cos θ+cos 2θ-sin θ+cos θ=sin θ+cos θ=3+12;(2)m =2 sin θcos θ=(sin θ+cos θ)2-1=32. (3)∵sin θ+cos θ=3+12.∴| sin θ-cos θ|=3-12.3 2,12.∴θ=π6或π3.∴方程两根分别为。

《任意角的三角函数》教学反思6篇

《任意角的三角函数》教学反思6篇

《任意角的三角函数》教学反思《任意角的三角函数》教学反思6篇作为一名人民老师,课堂教学是重要的任务之一,写教学反思可以快速提升我们的教学能力,那么你有了解过教学反思吗?以下是小编为大家收集的《任意角的三角函数》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《任意角的三角函数》教学反思1“任意角的三角函数”是三角函数这一章里最重要的一节课,是本章的基础,也是学生难以理解的地方。

因此,本节课的重点放在了任意角的三角函数的理解上。

在本节课的开头以学生所熟悉的直角三角形的锐角入手,引导学生尝试探究,逐步深入,引出任意三角函数的定义,以问题的形式巩固深化任意角三角函数值的`计算。

引导学生自主探究任意角的三角函数的生成过程,让学生在活动中体验数学与社会的联系,新旧知识的内在联系。

通过任意角三角函数的定义,启发学生找到各个三角函数在每个象限的符号以及在坐标轴上的值。

并用“一全正,二正弦,三余弦,四正切”这一句话来概括了各个象限的符号。

在例题的设置上,例1是已知一个角终边上一点的坐标,求这个角的三个三角函数值。

通过这个例题的练习,让学生更好地巩固了任意三角函数的定义,会求任意一个角的三角函数。

例2和例3的设置是让学生进一步熟记各个三角函数在每个象限的范围以及坐标轴上的值。

例4是把几个三角函数组合在一起,形成一个新的函数,结合函数的表达形式求定义域,能够让学生反过来已知三角函数值的符号去判断角的大小。

但是,要想让学生真正的学会并且灵活运用所学的知识,只靠老师上课讲是远远不够的,还需要学生在课下多做练习才行,所以,在讲课的基础上,我们还需要督促学生多做练习,因为只有熟才能够生巧,在以后的教学中,我还需要多多反思,多多探索。

《任意角的三角函数》教学反思2任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义,《任意角的三角函数》教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识掌握】:弦长公式,扇形的面积公式、三角函数的定义、单位圆与三角函数线 【知识点精讲】
1. 弦长公式、,扇形的面积公式
2.任意角的三角函数的定义:
3.三角函数线:
(1)三条有向线段的位置: (2)三条有向线段的方向: (3)三条有向线段的正负: (4)三条有向线段的书写:
4.三角函数的定义域:
函数
定义域 x y sin
o
x y
M T
P A
x y
o
M
T
P
A
(Ⅳ)
(Ⅱ)
(Ⅰ)
(Ⅲ)
5.三角函数值在各象限的符号(一全二正弦,三切四余弦)
6.诱导公式(一)
所以终边相同的角的同一三角函数的值相等,诱导公式(1) 用途:
5.同角三角函数的基本关系式:
(1)平方关系: (2)倒数关系: (3)商数关系:
【达标训练】
A 组
1.已知角α 终边上一点P 的坐标为(2+5,2-5),求这个角的六个三角函数值.
2.作出下列各角的正弦线、余弦线、正切线:
(1)70°; (2)-110°; (3)π54
; (4)3
π7-. 3.给出下列命题:
(1)正角的三角函数值是正的,负角的三角函数值是负的;
(2)设),(y x P 是角α 终边上的一点,因为sin α =r
y
,所以α 的正弦值与点P 的纵坐标y 成正比;
(3)若sin θ·cos θ >0,则θ 一定在第一象限;
(4)两个角的差是2π 的整数倍,则这两个角的同一个三角函数的值必相等; (5)若角α 的终边落在y 轴上,则角α 的正弦线是单位长度的有向线段.其中正确命题的序号是⎽⎽⎽⎽⎽⎽⎽⎽.(将正确的都写出来) 4.确定下列各三角函数值的符号:
(1) 182sin ; (2))40cos(
-; (3)4
π7tan
; (4) 980sin ; (5)3π10cos ; (6)6
π
25tan .
5.求满足下列条件的角x 的范围:
(1)0tan sin <⋅x x ; (2)x x cos |cos |-=-. 6.如果角
3
π
2的始边与x 轴正半轴重合,顶点与原点O 重合,角的终边上有一点P ,|OP |=2,那么P 点的坐标为( ).
A .(1,-3)
B .(-1,3)
C .(-3,1)
D .(-3,-1)
7.α 是第二象限角,其终边上一点为)5,(x P ,且cos α =
x 4
2
,则sin α 的值为( ). A .
x 4
10 B .46 C .42 D .-410
8.求下列各式的值:
(1)4
π
9tan
4π5cos 2π5sin
2π4cos 2P P P --+; (2)πcos 6
π
sin 213πcos 4πtan 4222++-.
9.已知x x x x f 2tan 2cos 3sin )(-+=,则)6π
(f =________;)2
π(f =________;
)2
π
3(
f =________. 10.求证:
(1)角θ 为第三象限角的充分必要条件是sin θ <0且tan θ >0; (2)角θ 为第二或第四象限角的充分必要条件是sin θ ·cos θ <0. 11.求下列三角函数值: (1) 780sin ; (2))π6
23tan(-
; (3)cos (-675°); (4))π635
sin(-; (5)π6tan ; (6)2π9cos
; (7))π311cos(-; (8))π4
13
tan(-; B 组
1.下列对三角函数线的描述正确的是( ). A .只有象限角,才存在三角函数线
B .若α 为第一象限角且sin α 用MP 表示,则π+α 的正弦应该用PM 表示
C .用有向线段表示三角函数值,线段越长,则相应的三角函数值越大
D .当角α 终边落在y 轴上时,正切线不存在
2.作出下列各角的正弦线、余弦线、正切线:
(1)
4π11; (2)4π11-; (3)5
π
21-.
3.确定下列三角函数值的符号:
(1)sin182°3′; (2)sin (-4896°); (3))3
π
44tan(-
; (4);5
π
129cos
(5)sin1; (6)cos2. 4.判定下列各式的值是正还是负:
(1)cos40°-cos140°; (2)9π2tan
7π5cos ⋅; (3);5
π3tan 9π4tan 5π7cos
5π9cos
-- (4)cos2-sin2; (5)4
π
5tan
5π3cos 6π7sin
⋅⋅. 5.求下列三角函数值:
(1) 720cos ; (2))π3
17tan(-
; (3)π637
sin
(4))π2
7
cos(-
; (5))1071sin( -; (6) 1865tan . 6.在直角坐标系中,角α 的终边过点)4,3(a a P -(a ≠0),则sin α =________.
7.设α 为第一象限角,那么在sin2α 、cos2α 、tan2α 、2
sin α
、2
cos
α
、2
tan
α
中一
定取正值的有( ).
A .1个
B .2个
C .3个
D .4个 8.由下列条件决定的θ 角中,一定是第二象限角的是( ). A .sin θ·cos θ <0 B .sin θ ≥0且cos θ <0
C .2θ 是第四象限角
D .
2|
tan |tan sin |sin |=-θθ
θθ 9.化简求值
|
tan |tan cos |cos ||sin |sin θθ
θθθθ++.
10.设),2(x P 是角θ的终边上的点,按下列条件求cos θ. (1)515sin -
=θ;(2)2
2
tan -=θ. 11.设α =

,β =4
π3,求下列各式的值:
(1))4
π3cos(32cos 4)4πsin(2)4πsin(++--++
ββαα; (2))cos(5)2tan(3)tan(βααββα++--+.
12.已知y x ,都是实数,且0)2()6(2
2
=++-y x ,求)π4
15
tan()π325cos(-+-y x 的值. 【拓展练习】
1.若角α 的终边经过直线0732=--y x 和直线0423=-+y x 的交点,则
=αtan ⎽⎽⎽⎽⎽⎽⎽⎽.
2.已知α 、β 均为第二象限角,且sin α>sin β,则( ). A .tan α >tan β B .cos α <cos β C .cos α>cos β D .α >β
3.已知sin α >sin β ,那么下列命题成立的是( ). A .若α 、β 是第一象限角,则cos α >cos β
B .若α 、β 是第二象限角,则tan α >tan β
C .若α 、β 是第三象限角,则cos α >cos β
D .若α 、β 是第四象限角,则tan α >tan β。

相关文档
最新文档