全国各类成人高等学校招生复习考试大纲专升本高等数学
专升本的数学考试大纲
专升本的数学考试大纲专升本的数学考试是高等教育自学考试中的重要组成部分,它旨在检验学生对高等数学基础知识的掌握程度和应用能力。
考试大纲通常包括以下几个主要部分:函数、极限与连续性、导数与微分、积分、无穷级数、多元函数微分学、常微分方程等。
以下是对这些部分的概述:# 函数、极限与连续性- 函数:理解函数的概念,包括定义域、值域、函数的表示方法等。
- 极限:掌握极限的基本概念,包括数列极限和函数极限,以及极限的运算法则。
- 连续性:理解连续函数的定义,连续函数的性质,以及间断点的分类。
# 导数与微分- 导数:掌握导数的定义、几何意义、基本求导公式和求导法则。
- 微分:理解微分的概念,微分与导数的关系,以及一阶微分的计算。
# 积分- 不定积分:掌握基本积分公式,换元积分法和分部积分法。
- 定积分:理解定积分的定义、性质和计算方法,包括几何意义和物理意义。
- 反常积分:了解反常积分的概念和计算方法。
# 无穷级数- 数项级数:掌握正项级数的收敛性判别方法,包括比较判别法、比值判别法等。
- 幂级数:理解幂级数的收敛半径和收敛区间,以及幂级数的运算。
# 多元函数微分学- 偏导数:理解偏导数的定义和计算方法。
- 全微分:掌握全微分的概念和计算。
- 多元函数的极值:了解多元函数极值的概念和求法。
# 常微分方程- 一阶微分方程:掌握可分离变量方程、一阶线性微分方程的解法。
- 高阶微分方程:理解高阶微分方程的基本概念,包括齐次和非齐次方程的解法。
- 微分方程的应用:了解微分方程在实际问题中的应用,如物理、工程等领域。
# 线性代数基础- 矩阵:理解矩阵的概念,矩阵的运算,包括加法、乘法、转置、求逆等。
- 行列式:掌握行列式的定义、性质和计算方法。
- 向量空间:了解向量空间的概念,基、维数、线性组合等。
- 线性变换:理解线性变换的定义和矩阵表示。
# 概率论与数理统计基础- 随机事件:掌握随机事件的概率计算,包括加法公式、乘法公式等。
高等数学专升本考试大纲修订版
高等数学专升本考试大纲修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】《高等数学(二)》专升本考试大纲《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。
考试时间为2小时,满分150分。
考试内容和基本要求一、函数、极限与连续(一)考试内容函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。
(二)考试要求1.理解函数的概念,了解函数的基本性态(奇偶性、单调性、周期性、有界性)。
了解反函数的概念,理解复合函数的概念,理解初等函数的概念。
会建立简单经济问题的函数关系。
掌握常用的经济函数(需求函数、成本函数、收益函数、利润函数)。
2.了解数列极限、函数极限的概念(不要求做给出ε,求N或δ的习题);了解极限性质(唯一性、有界性、保号性)。
3.掌握函数极限的运算法则;熟练掌握极限计算方法。
掌握两个重要极限,会用两个重要极限求极限;4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。
5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。
6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。
二、导数与微分(一)考试内容导数的概念及求导法则;隐函数所确定函数的导数;高阶导数;微分的概念与运算法则。
(二)考试要求1.理解导数的概念及几何意义和经济意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程。
2.掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数的求导法则;掌握隐函数及取对数求导法。
会熟练求函数的导数。
3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。
4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。
《高等数学(二)》专升本考试大纲
高等数学(二)专升本考试大纲一、考试内容本次高等数学(二)专升本考试内容主要包括以下几个方面:1.函数的连续性与一致连续性2.曲线的切线与法线3.微分学的应用4.不定积分5.定积分与应用6.微分方程二、考试要求1.掌握函数的连续性与一致连续性的判定方法,并能灵活应用于解题过程中。
2.理解曲线的切线与法线的概念,并能运用导数的定义和性质求解切线和法线的方程。
3.了解微分学的基本概念,并能应用微分学知识解决实际问题。
4.掌握不定积分的定义和基本性质,并能进行常见函数的积分运算。
5.熟悉定积分的定义和基本性质,并能运用定积分求解简单的几何问题。
6.理解微分方程的概念,并能根据给定的微分方程解决实际问题。
三、考试形式本次高等数学(二)专升本考试采取闭卷形式,包括选择题和解答题。
1.选择题:共计50道选择题,每题2分,满分100分。
选择题主要测试考生对基本概念和理论的理解程度。
2.解答题:共计3道解答题,每题30分,满分90分。
解答题主要测试考生的问题分析和解决能力。
四、复习重点1.函数的连续性与一致连续性–连续函数的定义–连续函数的性质–一致连续函数的定义和判定方法2.曲线的切线与法线–切线的概念和性质–法线的概念和性质–切线和法线的方程求解方法3.微分学的应用–极值与最值–函数的增减与凹凸性–求解最值和极值问题4.不定积分–不定积分的定义和基本性质–常见函数的积分运算方法–积分表的使用技巧5.定积分与应用–定积分的定义和基本性质–定积分的计算方法–几何应用和物理应用6.微分方程–微分方程的基本概念和分类–解微分方程的一般步骤–常微分方程的应用五、备考建议1.提前制定复习计划,合理安排学习时间。
2.多做习题,加强对知识点的理解和应用。
3.注意整理复习笔记,方便日后的复习和回顾。
4.多参考往年的真题和模拟试卷,了解考试形式和难度。
5.针对考试要求的不同部分,进行有针对性的复习和训练。
六、考前注意事项1.睡眠充足,保持良好的精神状态。
2020年成人高等学校招生全国统一考试专升本 高等数学(一)
6.设函数y =x +2s i n x ,则d y =( )A .(1+c o s x )dx B .(1+2c o s x )dx C .(1-c o s x )dx D .(1-2c o s x )d x 7.设函数z =x 2-4y 2,则d z =( )A .x d x -4y d yB .x d x -y d yC .2x d x -4y d yD .2x d x -8y d y8.方程x 2+y 2-z 2=0表示的二次曲面是( )A .圆锥面B .球面C .旋转抛物面D .柱面9.l i m x ң1x 2+x +1x 2-x +2=( )A .2B .1C .32D .1210.微分方程y '+y =0的通解为y =( )A .C x e xB .C x e -x C .C exD .C e-x 第Ⅱ卷(非选择题,共110分)得分评卷人二、填空题(11~20小题,每小题4分,共40分)11.ʏ1-ɕe xd x =.12.设函数y =e 2x,则d y =.13.l i m x ң0s i n x2x2=.14.ʏ(3x +2s i n x )dx =.15.曲线y =a r c t a n (3x +1)在点0,π4处切线的斜率为.16.若函数f (x )x 2-2,x ɤ0,a +s i n x ,x >0在x =0处连续,则a =.17.过点(-1,2,3)且与直线x -12=y +23=z -24垂直的平面方程为.18.函数f (x )=x 3-6x 的单调递减区间为.19.区域D ={(x ,y )|1ɤx ɤ2,1ɤy ɤx 2}的面积为.20.方程y 3+l n y -x 2=0在点(1,1)的某邻域确定隐函数y =y (x ),则d y d xx =1=.得分评卷人三、解答题(21~28题,共70分.解答应写出推理㊁演算步骤) 21.(本题满分8分)计算ʏx s i n x d x .22.(本题满分8分)已知函数f (x )=e xc o s x ,求f ᵡπ2.23.(本题满分8分)计算l i m x ң01-c o s x -x 22s i n 2x.24.(本题满分8分)计算ʏ1031+x dx.参考答案一㊁选择题1.ʌ答案ʏʌ解析ɔʏ1-ɕex d x =ex1-ɕ=e -0=e.12.ʌ答案ɔ2e 2xdx ʌ解析ɔy '=(e 2x )'=2e 2x ,故d y =y'd x =2e 2xd x .13.ʌ答案ɔ1ʌ解析ɔx ң0时,x 2ң0,故有l i m x ң0s i n x 2x2=1.14.ʌ答案ɔ32x 2-2c o s x +C ʌ解析ɔʏ(3x +2s i n x )dx =32x 2-2c o s x +C .15.ʌ答案ɔ32ʌ解析ɔy '=[a r c t a n (3x +1)]'=31+(3x +1)2,故曲线在点0,π4处的切线斜率为y'x =031+(3x +1)2x =0=32.16.ʌ答案ɔ-2ʌ解析ɔ由于f (x )在x =0处连续,故有l i m x ң0-f (x )=l i m x ң0+f (x )=f (0),而f (0)=-2,l i m x ң0-f (x )=l i m x ң0-(x 2-2)=-2,l i m x ң0+f (x )=l i m x ң0+(a +s i n x )=a ,因此a =-2.17.ʌ答案ɔ2x +3y +4z =16ʌ解析ɔ已知直线与所求平面垂直,故所求平面的法向量为n =(2,3,4),因此所求平面的方程为2(x +1)+3(y -2)+4(z -3)=0,即2x +3y +4z =16.18.ʌ答案ɔ(-2,2)ʌ解析ɔ易知f '(x )=3x 2-6,令f '(x )<0,则有-2<x <2,故f (x )的单调递减区间为(-2,2).19.ʌ答案ɔ43ʌ解析ɔ区城D 的面积为ʏ21(x 2-1)d x =13x 3-x21=43.20.ʌ答案ɔ12ʌ解析ɔ方程两边对x 求导,得3y 2㊃d y d x +1y ㊃d y d x -2x =0,即d y d x =2x y 3y 3+1,故有d y d x x =1=2x y 3y 3+1x =1=2ˑ1ˑ13ˑ13+1=12.三、解答题21.ʏxs i n x d x =-ʏx d (c o s x )=-(x c o s x -ʏc o s xd x )=-xc o s x +ʏc o s xd x =-xc o s x +s i n x +C .22.f'(x )=e x c o s x +e x ㊃(c o s x )'=e xco s x -e xs i n x =e x(c o s x -s i n x ),fᵡ(x )=e x (c o s x -s i n x )+e x (c o s x -s i n x )'=e x(c o s x -s i n x )+e x(-s i n x -c o s x )=-2e xs i n x ,故有f ᵡπ2=-2e π2s i n π2=-2e π2.23.l i m x ң01-c o s x -x 22s i n 2x =l i m x ң01-c o s x 2s i n 2x -l i m x ң0x 22s i n 2x=l i m x ң012x 22x 2-12l i m x ң0x 2x 2=14-12=-14.24.ʏ1031+x d x =ʏ10(1+x )13d (x +1)=11+13(1+x )13+110=34(1+x )4310=34(243-1).25.原方程对应的特征方程为r 2-r -2=0,。
《高等数学》(专科升本科)复习资料
《高等数学》(专科升本科)复习资料一、复习参考书:全国各类专科起点升本科教材高等数学(一)第3版 本书编写组 高等教育出版社 二、复习内容及方法:第一部分 函数、极限、连续复习内容函数的概念及其基本性质,即单调性、奇偶性、周期性、有界性。
数列的极限与函数的极限概念。
收敛数列的基本性质及函数极限的四则运算法则。
数列极限的存在准则与两个重要的函数极限。
无穷小量与无穷大量的概念及其基本性质。
常见的求极限的方法。
连续函数的概念及基本初等函数的连续性。
函数的间断点及其分类与连续函数的基本运算性质,初等函数的连续性。
闭区间上连续函数的基本性质,即最值定理、介值定理与零点存在定理。
复习要求会求函数的定义域与判断函数的单调性、奇偶性、周期性、有界性。
掌握数列极限的计算方法与理解函数在某一点极限的概念,同时会利用恒等变形、四则运算法则、两个重要极限等常见方法计算函数的极限。
掌握理解无穷小量与无穷大量的概念及相互关系,在求函数极限的时候能使用等价代换。
理解函数连续性的定义,会求给定函数的连续区间及间断点;;能运用闭区间上连续函数的性质证明一些基本的命题。
重要结论1. 两个奇(偶)函数之和仍为奇(偶)函数;两个奇(偶)函数之积必为偶函数;奇函数与偶函数之积必为奇函数;奇(偶)函数的复合必为偶函数; 2. 单调有界数列必有极限;3. 若一个数列收敛,则其任一个子列均收敛,但一个数列的子列收敛,该数列不一定收敛;4. 若一个函数在某点的极限大于零,则一定存在该点的一个邻域,函数在其上也大于零;5. 无穷小(大)量与无穷小(大)量的乘积还是无穷小(大)量,但无穷小量与无穷大量的乘积则有多种可能6. 初等函数在其定义域内都是连续函数;7. 闭区间上的连续函数必能取到最大值与最小值。
重要公式1. 若,)(lim ,)(lim 0B x g A x f x x x x ==→→则AB x g x f x g x f x x x x x x =⋅=⋅→→→)(lim )(lim )]()([lim 0;BA x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000。
2024专升本高数考试大纲
2024专升本高数考试大纲2024年专升本高等数学考试大纲主要包括以下内容:一、总体要求考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论。
考生应学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系,并具有一定的数学思维能力。
二、考试形式与题型范围考试采用闭卷、笔试形式,试卷满分100分,考试时间120分钟。
题型范围包括选择题、填空题和解答题。
选择题主要考察基本概念和基本计算,填空题涉及到的知识点较为广泛,解答题则注重综合运用能力和逻辑分析能力的考察。
三、考试内容与要求1. 函数、极限和连续:理解函数的概念,掌握函数的表示方法;了解函数的有界性、单调性、周期性和奇偶性;理解复合函数及分段函数的概念,了解反函数及一些常用的初等函数;掌握极限的概念,了解无穷小量和无穷大量的概念及其关系,了解极限的性质及极限存在准则,掌握极限的四则运算法则及复合函数的极限法则;理解函数的连续性概念,会判断函数间断点的类型;了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质。
2. 一元函数微分学:理解导数的概念及几何意义,会求平面曲线的切线方程,理解导数作为函数变化率的物理意义;掌握导数的四则运算法则、复合函数的导数公式、基本初等函数的导数公式,了解初等函数的求导公式;掌握几种基本的函数单调性判定法、函数的极值及求法,会求函数的值域与最值。
3. 一元函数积分学:理解原函数和不定积分的概念,理解不定积分的基本性质和积分公式,掌握不定积分的换元积分法和分部积分法;了解定积分的概念和基本性质,理解积分中值定理,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法;了解定积分的几何应用(如求面积、体积等)。
4. 向量代数与空间解析几何:了解空间向量的概念,理解向量的运算及其性质;掌握向量的数量积、向量积和混合积的运算方法及其几何意义;理解向量的向量积的性质,掌握向量的混合积的性质及其几何意义;掌握空间直线和平面的方程及其性质;会求点到直线和点到平面的距离;了解空间直线、平面间的位置关系。
《高等数学》(专升本)考试大纲
《高等数学》(专升本)考试大纲函数极值与极值点,最值;曲线的凹凸性、拐点;曲线的水平渐近线与垂直渐近线。
要求:会用罗尔中值定理证明方程根的存在性。
会用拉格朗日中值定理证明简单的不等式。
熟练掌握洛必达法则求未定式的极限方法。
掌握利用导数判定函数单调性的方法,会利用增减性证明简单的不等式。
掌握求函数的极值和最值的方法,并且会解简单的应用问题。
会判定曲线的凹凸性,会求曲线的拐点。
会求曲线的水平渐近线与垂直渐近线。
(三)一元函数积分学1.不定积分考试内容:不定积分的概念;换元积分法;分部积分法;一些简单有理函数的积分。
要求:理解原函数与不定积分概念及其关系。
熟练掌握不定积分换元法,分部积分法。
会求简单有理函数的不定积分。
2.定积分考试内容:定积分的概念;定积分的性质;定积分的计算;无穷区间的广义积分;定积分的应用:平面图形的面积、旋转体的体积。
要求:掌握定积分的基本性质。
理解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。
掌握牛顿—莱布尼茨公式。
掌握定积分的换元积分法与分部积分法。
掌握无穷区间广义积分的计算方法。
掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。
(四)多元函数的微积分学及应用1.多元函数的微分学考试内容:多元函数的概念;二元函数的极限与连续的概念;多元函数偏导数的概念与几何意义;全微分的概念;全微分存在的必要条件和充分条件;多元复合函数,隐函数的求导方法;二阶偏导数。
要求:理解多元函数的概念;了解二元函数的几何意义;了解二元函数的极限与连续的概念。
理解多元函数偏导数和全微分的概念,知道全微分存在的必要条件和充分条件。
掌握偏导数与微分的四则运算法则,掌握复合函数的求导法则,会求一些函数的二阶偏导数。
2.多元函数的微分学的应用考试内容:多元函数极值的概念;多元函数极值的必要条件;二元函数极值的充分条件;多元函数极值和最值的求法及简单应用。
要求:了解多元函数极值和条件极值的概念,知道多元函数极值存在的必要条件。
2020年成人高等学校招生全国统一考试专升本 高等数学(一)
6.设函数y =x +2s i n x ,则d y =( )A .(1+c o s x )dx B .(1+2c o s x )dx C .(1-c o s x )dx D .(1-2c o s x )d x 7.设函数z =x 2-4y 2,则d z =( )A .x d x -4y d yB .x d x -y d yC .2x d x -4y d yD .2x d x -8y d y8.方程x 2+y 2-z 2=0表示的二次曲面是( )A .圆锥面B .球面C .旋转抛物面D .柱面9.l i m x ң1x 2+x +1x 2-x +2=( )A .2B .1C .32D .1210.微分方程y '+y =0的通解为y =( )A .C x e xB .C x e -x C .C exD .C e-x 第Ⅱ卷(非选择题,共110分)得分评卷人二、填空题(11~20小题,每小题4分,共40分)11.ʏ1-ɕe xd x =.12.设函数y =e 2x,则d y =.13.l i m x ң0s i n x2x2=.14.ʏ(3x +2s i n x )dx =.15.曲线y =a r c t a n (3x +1)在点0,π4处切线的斜率为.16.若函数f (x )x 2-2,x ɤ0,a +s i n x ,x >0在x =0处连续,则a =.17.过点(-1,2,3)且与直线x -12=y +23=z -24垂直的平面方程为.18.函数f (x )=x 3-6x 的单调递减区间为.19.区域D ={(x ,y )|1ɤx ɤ2,1ɤy ɤx 2}的面积为.20.方程y 3+l n y -x 2=0在点(1,1)的某邻域确定隐函数y =y (x ),则d y d xx =1=.得分评卷人三、解答题(21~28题,共70分.解答应写出推理㊁演算步骤) 21.(本题满分8分)计算ʏx s i n x d x .22.(本题满分8分)已知函数f (x )=e xc o s x ,求f ᵡπ2.23.(本题满分8分)计算l i m x ң01-c o s x -x 22s i n 2x.24.(本题满分8分)计算ʏ1031+x dx.参考答案一㊁选择题1.ʌ答案ʏʌ解析ɔʏ1-ɕex d x =ex1-ɕ=e -0=e.12.ʌ答案ɔ2e 2xdx ʌ解析ɔy '=(e 2x )'=2e 2x ,故d y =y'd x =2e 2xd x .13.ʌ答案ɔ1ʌ解析ɔx ң0时,x 2ң0,故有l i m x ң0s i n x 2x2=1.14.ʌ答案ɔ32x 2-2c o s x +C ʌ解析ɔʏ(3x +2s i n x )dx =32x 2-2c o s x +C .15.ʌ答案ɔ32ʌ解析ɔy '=[a r c t a n (3x +1)]'=31+(3x +1)2,故曲线在点0,π4处的切线斜率为y'x =031+(3x +1)2x =0=32.16.ʌ答案ɔ-2ʌ解析ɔ由于f (x )在x =0处连续,故有l i m x ң0-f (x )=l i m x ң0+f (x )=f (0),而f (0)=-2,l i m x ң0-f (x )=l i m x ң0-(x 2-2)=-2,l i m x ң0+f (x )=l i m x ң0+(a +s i n x )=a ,因此a =-2.17.ʌ答案ɔ2x +3y +4z =16ʌ解析ɔ已知直线与所求平面垂直,故所求平面的法向量为n =(2,3,4),因此所求平面的方程为2(x +1)+3(y -2)+4(z -3)=0,即2x +3y +4z =16.18.ʌ答案ɔ(-2,2)ʌ解析ɔ易知f '(x )=3x 2-6,令f '(x )<0,则有-2<x <2,故f (x )的单调递减区间为(-2,2).19.ʌ答案ɔ43ʌ解析ɔ区城D 的面积为ʏ21(x 2-1)d x =13x 3-x21=43.20.ʌ答案ɔ12ʌ解析ɔ方程两边对x 求导,得3y 2㊃d y d x +1y ㊃d y d x -2x =0,即d y d x =2x y 3y 3+1,故有d y d x x =1=2x y 3y 3+1x =1=2ˑ1ˑ13ˑ13+1=12.三、解答题21.ʏxs i n x d x =-ʏx d (c o s x )=-(x c o s x -ʏc o s xd x )=-xc o s x +ʏc o s xd x =-xc o s x +s i n x +C .22.f'(x )=e x c o s x +e x ㊃(c o s x )'=e xco s x -e xs i n x =e x(c o s x -s i n x ),fᵡ(x )=e x (c o s x -s i n x )+e x (c o s x -s i n x )'=e x(c o s x -s i n x )+e x(-s i n x -c o s x )=-2e xs i n x ,故有f ᵡπ2=-2e π2s i n π2=-2e π2.23.l i m x ң01-c o s x -x 22s i n 2x =l i m x ң01-c o s x 2s i n 2x -l i m x ң0x 22s i n 2x=l i m x ң012x 22x 2-12l i m x ң0x 2x 2=14-12=-14.24.ʏ1031+x d x =ʏ10(1+x )13d (x +1)=11+13(1+x )13+110=34(1+x )4310=34(243-1).25.原方程对应的特征方程为r 2-r -2=0,。
高等数学专升本考试大纲
《高等数学(二)》专升本考试大纲《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。
考试时间为2小时,满分150分。
考试内容和基本要求一、函数、极限与连续(一)考试内容函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。
(二)考试要求1.理解函数的概念,了解函数的基本性态(奇偶性、单调性、周期性、有界性)。
了解反函数的概念,理解复合函数的概念,理解初等函数的概念。
会建立简单经济问题的函数关系。
掌握常用的经济函数(需求函数、成本函数、收益函数、利润函数)。
2.了解数列极限、函数极限的概念(不要求做给出,求或的习题);了解极限性质(唯一性、有界性、保号性)。
3.掌握函数极限的运算法则;熟练掌握极限计算方法。
掌握两个重要极限,会用两个重要极限求极限;4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。
5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。
6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。
二、导数与微分(一)考试内容导数的概念及求导法则;隐函数所确定函数的导数;高阶导数;微分的概念与运算法则。
(二)考试要求1.理解导数的概念及几何意义和经济意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程。
2.掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数的求导法则;掌握隐函数及取对数求导法。
会熟练求函数的导数。
3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。
4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。
三、中值定理与导数应用(一)考试内容罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。
2024专转本高数考纲
2024专转本高数考纲高等数学是江苏省普通高校“专转本”选拔考试理、工、农、经、管等专业的必考科目,其考试目的是科学、公平、有效地测试考生在高职(专科)阶段对大学数学的基本概念、重要理论与思想方法的掌握水平,考查考生对大学数学课程的掌握程度。
以下是2024年江苏专转本高数考纲的具体内容:一、函数、极限、连续与间断函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。
数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。
极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。
掌握用洛必达法则求未定式极限的方法。
二、一元函数微分学导数的概念及其几何意义:切线斜率、瞬时速度、相对变化率与平均变化率、导数的定义、左导数与右导数。
导数的计算:导数的四则运算、复合函数的导数、反函数的导数。
导数的应用:单调性判定与增减性判定、函数的极值判定与求法、最大值与最小值判定与应用。
导数的综合应用。
三、一元函数积分学定积分的概念与性质:定积分的几何意义。
定积分的计算:换元法、分部积分法。
广义积分。
定积分的几何应用:平面图形的面积、体积。
定积分的物理应用:变力沿直线所作的功、水压力。
四、向量代数与空间解析几何向量的概念及其表示:向量的模、向量的加法与数乘运算。
向量的数量积与向量积:向量的数量积的几何意义和性质、向量的向量积的几何意义和性质。
平面方程和直线方程:点向式方程和平面点法式方程、平面的一般方程和直线的标准方程与参数方程。
平面和直线的位置关系:平行和相交的条件,点到平面的距离和点到直线的距离。
曲面及其方程:球面和柱面,旋转曲面,二次曲面,曲线和曲面在坐标面上的投影。
高等数学(二)(专升本)
成人高考专升本《高等数学二》考试大纲本大纲适用于经济学、管理学以及职业教育类、生物科学类、地理科学类、环境科学类、心理学类、药学类(除中药学类外)六个一级学科的考生。
总要求本大纲内容包括“高等数学”及“概率论初步”两部分,考生应按本大纲的要求了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学和多元函数微分学的基本概念与基本理论;了解或理解“概率论”中古典概型、离散型随机变量及其数字特征的基本概念与基本国际要闻学会、掌握或熟练掌握上述各部分的基本方法,应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能运用基本概念、基本理论和基本方法正确地判断和证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”“掌握”和“熟练”三个层次。
复习考试内容一、极限和连续(1)极限1.知识范围数列极限的概念和性质(1)数列数列极限的定义唯一性有界性四则运算法则夹逼定理,单调有界数列极限存在定理(2)函数极限的概念和性质函数在一点处极限的定义,左、右极限及其与极限的关系χ趋于无穷(χ→∞,χ→+∞,χ→-∞)时函数的极限函数极限的几何意义唯一性四则运算法则夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较。
(4)两个重要极限sin x lim x = 1 x →01 lim 1 + x = e x →∞x2.要求(1)了解极限的概念(对极限定义中“ε—N”“ε—δ”“ε—M”的描述不作要求)。
掌握函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系,会进行无穷小量阶的比较(高阶、低阶、同阶和等价) 。
高等数学(专升本)考试大纲
《高等数学》(专升本)考试大纲一、考试内容与要求(一)函数、极限和连续1.函数考试内容:函数的简单性质;反函数;函数的四则运算与复合运算基本初等函数;初等函数。
要求:会求函数的定义域、表达式及函数值。
并会作出简单的分段函数图像。
理解和掌握函数的简单性质,会判断所给函数的类别。
会求单调函数的反函数。
掌握基本初等函数的简单性质及其图象。
2.极限考试内容:数列极限的概念,性质,收敛准则;函数极限的概念,函数极限的定理;无穷小量和无穷大量;两个重要极限。
要求:理解极限的概念。
会求函数在一点处的左极限与右极限。
了解极限的有关性质,掌握极限的四则运算法则。
掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较。
会运用等价无穷小量代换求极限。
熟练掌握用两个重要极限求极限的方法。
3.连续考试内容:函数连续的概念;函数在一点处连续的性质;闭区间上连续函数的性质;初等函数的连续性。
要求:理解函数连续与间断的概念,理解函数在一点连续与极限存在的关系。
会求函数的间断点及确定其类型。
掌握在闭区间上连续函数的性质,会运用介值定理推证一些简单命题。
会利用连续性求极限。
(二)一元函数微分学1.导数与微分考试内容:导数概念;求导法则,方法;高阶导数的概念;微分。
要求:了解可导性与连续性的关系,会用定义求函数在一点处的导数。
会求各类函数的导数。
会求简单函数的高阶导数。
理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
2.中值定理及导数的应用考试内容:中值定理;洛必达法则;函数增减性的判定法;函数极值与极值点,最值;曲线的凹凸性、拐点;曲线的水平渐近线与垂直渐近线。
要求:会用罗尔中值定理证明方程根的存在性。
会用拉格朗日中值定理证明简单的不等式。
熟练掌握洛必达法则求未定式的极限方法。
掌握利用导数判定函数单调性的方法,会利用增减性证明简单的不等式。
掌握求函数的极值和最值的方法,并且会解简单的应用问题。
专升本《高等数学(一)》课程考试大纲
专升本《高等数学(一)》课程考试大纲一、考试对象参加专升本考试的各工科专业专科学生。
二、考试目的《高等数学(一)》课程考试旨在考核学生对本课程知识的掌握和运用能力,包括必要的高等数学基础知识和基本技能,一定的抽象概括问题的能力、逻辑推理能力、空间想象能力、自学能力,比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力等。
三、考试的内容要求第一章函数、极限与连续1. 函数(1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。
(2)了解函数的有界性、单调性、周期性和奇偶性。
(3)理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
(4)掌握基本初等函数的性质及其图形,理解初等函数的概念。
2.数列与函数的极限(1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质与极限存在的两个准则。
(2)掌握极限四则运算法则,会应用两个重要极限。
3.无穷小与无穷大(1)理解无穷小的概念,掌握无穷小的基本性质和比较方法。
(2)了解无穷大的概念及其与无穷小的关系。
4.函数的连续性(1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
(2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。
第二章导数与微分1.导数概念理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。
2.函数的求导法则掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数、隐函数及由参数方程所确定的函数的求导法,了解对数求导法。
3.高阶导数理解高阶导数的概念,会求简单函数的高阶导数。
4.函数的微分理解微分的概念,掌握导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
第三章微分中值定理与导数的应用1.微分中值定理理解罗尔定理和拉格朗日中值定理,了解柯西中值定理,掌握这三个定理的简单应用。
高职升本科招生统一考试高等数学考试大纲
高职升本科招生统一考试高等数学考试大纲考试内容概述高职升本科招生统一考试高等数学考试是一项旨在选拔高职毕业生升读本科的入学考试,其考试内容覆盖高等数学基本概念、初步的微积分及其应用、常微分方程、多元函数微积分学等知识点。
考试内容主要分为以下几个方面:•数学基础知识:数集、数系、函数及其性质、极限与连续等基本概念;•微积分:导数的概念与应用、函数的极值与最值等;•积分学:牛顿-莱布尼茨公式、变限积分及其应用等;•一元函数微积分:微分学与积分学的基本定理、函数的几何应用、函数的级数展开;•多元函数微积分:多元函数、偏导数与全微分、隐函数与参数方程的偏导数及其应用。
考试形式高职升本科招生统一考试高等数学采用计算器方式考试。
考试时间为3小时,共计100分。
其中,选择题为70分,主观题为30分。
考试采用闭卷形式。
选择题包括20个题目,每题4分,共计70分。
主观题包括3个题目,每题10分,共计30分。
主观题的答案需要详细证明过程,且必须按规定格式书写。
考试题目均以中文出题。
考试要求应试者在考试中需要具备以下知识和能力:1.具备扎实的高等数学基本功,熟练掌握高等数学基本概念、理论及定理;2.具备较好的简化实际问题的数学建模能力,并利用相应的数学工具进行计算、分析和解释;3.具备较强的计算机应用能力,熟练掌握计算机操作技能,并能根据题目要求进行相应计算和分析;4.具备较强的分析判断、综合运用、创新思维、审美意识和团队合作意识等综合素质。
考试评分高职升本科招生统一考试高等数学的考试成绩以总分计分。
选择题和主观题分开计分,各占考试总成绩的70%和30%。
选择题的评分标准为:正确选项得4分,不选得0分,选错得-1分。
正确选出每题的最高分为4分,选错出的最低分为0分。
主观题的评分标准为:按照答案详细证明过程进行评分,每题的满分为10分。
考试参考资料高职升本科招生统一考试高等数学考试不包括考试参考资料。
考生需自备笔、计算器等必要的考试用品。
成人高考复习资料_专升本高等数学考纲
成人高考复习资料_专升本高等数学考纲六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念。
掌握级数收敛的必要条件,了解级数的基本性质。
(2)掌握正项级数的比值判别法。
会用正项级数的比较判别法。
(3)掌握几何级数、调和级数与级数的收敛性。
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
(4)会运用麦克劳林(Maclaurin)公式。
成人高考复习资料(二)七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
(3)掌握一阶线性方程的解法。
(二)可降价方程1.知识范围(1) 型方程(2) 型方程2.要求(1)会用降阶法解型方程。
(2)会用降阶法解型方程。
(三)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构。
(2)掌握二阶常系数齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程的解法。
成人高考复习资料(三)考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:函数、极限和连续约15%一元函数微分学约25%一元函数积分学约20%多元函数微积分(含向量代数与空间解析几何)约20%无穷级数约10%常微分方程约10%试卷题型比例:选择题约15%填空题约25%解答题约60%试题难易比例:容易题约30%中等难度题约50%较难题约20%成人高考复习资料(四)1、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条件(4)二向量的向量积、二向量平行的充分必要条件2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
成考专升本“高数一、二”考试复习大纲
成考专升本“高数一、二”考试复习大纲2017年成考专升本“高数一、二”考试复习大纲高数最大的好处是让学生能综合运用所学知识分析并解决简单的实际问题。
下面给大家整理了2017年成考专升本“高数一、二”考试复习大纲,欢迎阅读!2017年成考专升本“高数一、二”考试复习大纲本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次.复习考试内容一、极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性,有界性,四则运算法则,夹逼定理,单调有界数列,极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x一∞,x→+∞,x→—∞)时函数的极限,唯一性,法则,夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较(4)两个重要极限2.要求(1)理解极限的概念(对极限定义中等形式的描述不作要求)会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件(2)了解极限的有关性质,掌握极限的四则运算法则(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系会进行无穷小量的比较(高阶、低阶、同阶和等价)会运用等价无穷小量代换求极限(4)熟练掌握用两个重要极限求极限的方法二、连续1知识范围(1)函数连续的概念函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点(2)函敖在一点处连续的性质连续函数的四则运算,复台函数的连续性,反函数的连续性(3)闭区间上连续函数的性质有界性定理,最大值与最小值定理,介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的判断方法(2)会求函数的间断点(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限,一元函数微分学三、导数与微分1知识范围(1)导数概念导数的定义,左导数与右导数,函数在一点处可导的充分必要条件,导数的几何意义与物理意义,可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性2.要求(l)理解导数的概念及其几何意义,了解可导性与连续性的`关系,掌握用定义求函数在一点处的导散的方法(2)会求曲线上一点址的切线方程与法线方程(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数(5)理解高阶导数的概念,会求简单函数的n阶导数(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分(二)微分中值定理及导致的应用1. 知识范围(l)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必迭(I,’Hospital)法则(3)函数单调性的判定法(4)函数的极值与极值点、最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2. 要求(l)理解罗尔定理、拉格朗日中值定理及它们的几何意义会用拉格朗日中值定理证明简单的不等式(2)熟练掌握用洛必达法则求型未定式的极限的方法(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式(4)理解函数扳值的概念掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题(5)会判断曲线的凹凸性,会求曲线的拐点(6)会求曲线的水平渐近线与铅直渐近线(三)一元函数积分学(一) 不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一第换元法(凑微分法)第二换元法(4)分部积分法(5) -些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式(3)熟练掌握不定积分第-换元法,掌握第二换元法(限于三角代换与简单的根式代换)(4)熟练掌握不定积分的分部积分法(5)会求简单有理函数的不定积分(二) 定积分1. 知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的反常积分(5)定积分的应用。
专升本高数考试大纲
高等数学复习大纲参考书:高等数学(本科少学时类型)上下册同济大学应用数学系编高等教育出版社要求:一、函数与极限考试内容:函数的概念基表示法、函数的有界性、单调性、周期性和函数的奇偶性、复合函数、反函数、分段函数和隐函数、数列的极限、函数的极限、无穷小与无穷大、极限的运算法则、极限的存在准则及两个重要极限、无穷小的比较、函数的连续与间断点、连续函数的运算与初等函数的连续性、闭区间上连续函数的性质(最大值与最小值定理、介值定理).考试要求:①理解复合函数及分段函数的概念;②了解极限的概念,掌握函数左极限与右极限的概念及极限存在与左、右极限之间的关系。
③掌握极限的四则运算法则;④了解极限存在的两个准则,掌握利用两个重要极限求极限的方法;⑤理解无穷小、无穷大的概念,了解无穷小的比较方法,会用等价无穷小求极限;⑥掌握函数连续性的概念,会判别函数间断点的类型;⑦了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(最大值和最小值定理、介值定理)。
二、一元函数微分学考试内容:导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、函数和、差、积、商的求导法则、复合函数求导法则、初等函数的求导问题、二阶导数、隐函数的导数、由参数议程所确定函数的导数、函数的微分及其简单应用。
中值定理与导数的应用、中值定理、罗必塔法则、函数和曲线性态的研究、函数单调性的判别、函数的极值及其求法、曲线的凸凹性的判别与拐点的求法、函数最大值和最小值的求法及简单应用。
考试要求:①理解导数的概念,掌握导数与微分的关系,掌握导数的几何意义,会求平面曲线的切线方程和法线方程;②掌握用洛必达法则求未定式极限的方法;③掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则,会求函数的微分,了解微分在近似计算中的应用;④了解高阶导数概念,会求显函数、由隐函数和由参数方程所确定函数的一阶、二阶导数;⑤了解罗尔定理、拉格朗日中值定理、柯西中值定理;⑥掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用;⑦会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平、铅直渐近线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国各类成人高等学校招生复习考试大纲专升本高等数学The latest revision on November 22, 2020附录三全国各类成人高等学校专升本招生复习考试大纲高等数学(一)本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外)专业的考生。
总要求考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想像能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
复习考试内容一、极限和连续(一)极限1.知识范围(1)数列极限的概念与性质数列极限的定义唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(2)函数极限的概念与性质函数在一点处极限的定义左、右极限及其与极限的关系 x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限唯一性四则运算法则夹逼定理(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较(4)两个重要极限,2.要求(1) 理解极限的概念(对极限定义中“”、“”、“”等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.(2)了解极限的有关性质,掌握极限的四则运算法则.(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与尤穷大量的关系.会进行无穷小量阶的比较(高阶、低阶、同阶和等价).会运用等价无穷小量代换求极限.(4)熟练掌握用两个重要极限求极限的方法.(二)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续和右连续函数在一点连续的充分必要条件函数的间断点(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在——点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的方法.(2)会求函数的间断点.(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题.(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限.二、一元函数微分学(一)导数与微分1.知识范围(1)导数慨念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法(2)会求曲线上一点处的切线方程与法线方程.(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.(5)理解高阶导数的概念,会求简单函数的n阶导数.(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.(二)微分中值定理及导数的应用1.知识范围(1)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必达(L'Hospital)法则(3)函数增减性的判定法(4)函数的极值与极值点最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义.会用拉格朗日中值定理证明简单的不等式.(2)熟练掌握用洛必达法则求,型未定式的极限的方法.(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式.(4)理解函数极值的概念.掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题.(5)会判断曲线的凹凸性,会求曲线的拐点.(6)会求曲线的水平渐近线与铅直渐近线.三、一元函数积分学(一)不定积分1.知识范围(1)不定积分原函数与不定积分的定义原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法第一换元法(凑微分法) 第二换元法(4)分部积分法(5)一些简单有理函数的积分2.要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理(2)熟练掌握不定积分的基本公式.(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换).(4)熟练掌握不定积分的分部积分法.(5)会求简单有理函数的不定积分.(二)定积分1.知识范围(1)定积分的概念定积分的定义及其几何意义可积条件(2)定积分的性质(3)定积分的计算变上限积分牛顿—莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法(4)无穷区间的广义积分(5)定积分的应用平面图形的面积旋转体的体积2.要求(1)理解定积分的概念及其几何意义,了解函数可积的条件.(2)掌握定积分的基本性质.(3)理解变上限的积分是变上限的函数,掌握对变上限积分求导数的方法.(4)熟练掌握牛顿一莱布尼茨公式.(5)掌握定积分的换元积分法与分部积分法.(6)理解无穷区间的广义积分的概念,掌握其计算方法.(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积四、空间解析几何(一)平面与直线1.知识范围(1)常见的平面方程点法式方程一般式方程(2)两平面的位置关系(平行、垂直)(3)空间直线方程标准式方程(又称对称式方程或点向式方程) 一般式方程(4)两直线的位置关系(平行、垂直)(5)直线与平面的位置关系(平行、垂直和直线在平面上)2.要求(1)会求平面的点法式方程、一般式方程.会判定两平面的垂直、平行(2)了解直线的一般式方程,会求直线的标准式方程.会判定两直线平行、垂直.(3)会判定直线与平面间的关系(垂直、平行、直线在平面上).(二)简单的二次曲面1.知识范围球面母线平行于坐标轴的柱面旋转抛物面圆锥面椭球面2.要求了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形.五、多元函数微积分学(一)多元函数微分学1.知识范围(1)多元函数多元函数的定义二元函数的几何意义二元函数极限与连续的概念(2)偏导数与全微分偏导数全微分二阶偏导数(3)复合函数的偏导数(4)隐函数的偏导数(5)二元函数的五条件极值与条件极值2.要求(1)了解多元函数的概念、二元函数的几何意义.会求二元函数的表达式及定义域.了解二元函数的极限与连续概念(对计算不作要求).(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件.(3)掌握二元函数的一、二阶偏导数计算方法.(4)掌握复合函数一阶偏导数的求法.(5)会求二元函数的全微分.(6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法.(7)会求二元函数的五条件极值.会用拉格朗日乘数法求二元函数的条件极值.(二)二重积分1.知识范围(1)二重积分的概念二重积分的定义二重积分的几何意义(2)二重积分的性质(3)二重积分的计算(4)二重积分的应用2.要求(1)理解二重积分的概念及其性质.(2)掌握二重积分在直角坐标系及极坐标系下的计算方法.(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板的质量).六、无穷级数(一)数项级数1.知识范围(1)数项级数数项级数的概念级数的收敛与发散级数的基本性质级数收敛的必要条件(2)正项级数收敛性的判别法比较判别法比值判别法(3)任意项级数交错级数绝对收敛条件收敛莱布尼茨判别法2.要求(1)理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质.(2)会用正项级数的比值判别法与比较判别法.(3)掌握几何级数、调和级数与P级数的收敛性.(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法.(二)幂级数1.知识范围(1)幂级数的概念收敛半径收敛区间(2)幂级数的基本性质(3)将简单的初等函数展开为幂级数2.要求(1)了解幂级数的概念.(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分).(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法.(4)会运用头的麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为或-的幂级数.七、常微分方程(一)一阶微分方程1.知识范围(1)微分方程的概念微分方程的定义阶解通解初始条件特解(2)可分离变量的方程(3)一阶线性方程2.要求(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解.(2)掌握可分离变量方程的解法.(3)掌握一阶线性方程的解法.(二)二阶线性微分方程1.知识范围(1)二阶线性微分方程解的结构(2)二阶常系数齐次线性微分方程(3)二阶常系数非齐次线性微分方程2.要求(1)了解二阶线性微分方程解的结构.(2)掌握二阶常系数齐次线性微分方程的解法.(3)掌握二阶常系数非齐次线性微分方程的解法[自由项限定为,其中为的次多项式,为实常数].考试形式及试卷结构试卷总分:150分考试时间:150分钟考试方式:闭卷,笔试试卷内容比例:极限和连续约13%一元函数微分学约25%一元函数积分学约25%多元函数微积分(含空间解析几何) 约20%无穷级数约7%常微分方程约10%试卷题型比例:选择题约27%填空题约27%解答题约46%试题难易比例:容易题约30%中等难度题约50%。