林寿数学史第二讲:古代希腊数学(课堂课资)
《数学史》古希腊数学(2)精选全文
欧 几 里 得 , 约 公 元 前 30 0
▪ 在长达两千多年的时间里,欧几里德的《几何原 本》一直是世界各国的标准教科书。《几何原本》 第一册的第47个命题就是勾股定理,书中给出了 严格的,真正的数学意义上的证明。
▪ 在第六册的第31个命题里,欧几里德还推广了勾 股定理,他证明了:
(见下页)
▪ 命题14 同圆内等弦的弦心距相等;弦心距相等则弦相等。 ▪ 命题22 内接于圆的四边形,其对角和是二直角。 ▪ 命题32 直线切于一圆,弦与切线的夹角等于弦所对圆周角。 ▪ 命题35 圆内有相交二弦,其中一弦上所截线段围成的长方形等于
另一弦上所截线段围成的长方形。
几何《原本》第四卷
▪ 第四卷,有16个命题,主要论述圆的内接和外切图形 ▪ 命题12 作已给圆的外切正五边形。 ▪ 命题15 作已给圆的内接正六边形。
几何《原本》第七、八、九卷
▪ 第七、八、九卷讲数论,即讲述关于整数和整数之比的性质,是 《原本》中纯粹讨论算术的唯一篇章。
▪ 命题1 有相异二数,从大数连续减去小数,直到余数小于小数。又 从小数连续减去余数,直到小于余数。一直做类似运算,如果余数总 是量不尽前面一个数,直到最后的余数是单位,则二数互素。
▪ 欧几里得至少有十部著作,其中有五部被完整地保存下来,(《数 据》《论剖分》《现象》《光学》和《镜面反射》)
▪ 但最具影响的是《原本》。这部著作完全取代了所有以前的数学原 理之类的书,刚一出现,就受到人们最大的重视。
亚历山大大帝
▪ 亚历山大大帝(公元前356年-前323年), 生于马其顿王国首都派拉城,曾师从古希腊 著名学者亚里士多德,十八岁随父出征,二 十岁继承王位,是欧洲历史上最伟大的军事天 才,马其顿帝国最富盛名的征服者。
《古代希腊数学》PPT课件
一般地由公式
N 1 2 3 n n(n 1) 2
给出的数称为“三角形数”,它们可以用某种三角
点式来表示;
由序列 N 1 3 5 7 (2n 1) 形成一系列“正方形数”。
五边形数和六边形数分别由序列 N 1 4 7 (3n 2) n(3n 1)
• 泰勒斯在数学上的贡献的最可靠的证据 是来自公元5世纪新柏拉图学派哲学家 普罗克鲁斯(Proclus,410-485)所著《欧 几里得<原本>第一卷评注》一书:
• ……(泰勒斯)首先来到埃及,然后将 几何研究引进希腊。他本人发现了许多 命题,并指导学生研究那些可以推出其 他命题的基本原理”。
普罗克鲁斯在《评注》中介绍说泰勒斯曾 证明了下列四条定理:
这类问题激发了古希腊时代许多数学家的研究兴趣,其中贡献 最多的是诡辩学派。由于希腊人限制了作图工具只能是圆规和(不 带刻度的)直尺,使这些问题变得难以解决并富有理论魅力。
最早研究化圆为方问题的是安纳萨哥拉斯 (Anaxagoras,约公元前500 –前428),但详情不得 而知。公元5世纪下半叶,开奥斯的希波克拉底 (Hippociates of Chios)解决了与化圆为方有关的化 月牙形为方。但单个圆的化圆为方问题没有解决。
古希腊人也叫海仑人(Hellene),其历史可 以追溯到公元前2000年。当时,作为希腊先民 的一些原始部落由北向南挺进,在希腊半岛定 居,后来又逐步向爱琴海诸岛和小亚细亚扩张。 到公元前600年左右,希腊人已散布于地中海 与黑海沿岸的大部分地区,正是在这一带掀起 了新的数学浪潮。
• 这些海滨移民具有两大优势:
在所有的正多面体中,正十 二面体的作图是最为诱人的问题, 因为它是由正五边形围成,而其 他正多面体都是以三角形或正方 形为界面,正五边形的作图则与 著名的“黄金分割”问题有关.
数学史选讲(第二讲)古希腊数学
二、毕达哥拉斯学派
毕达哥拉斯(约公元前 572 年~公元前 497 年) 出生于爱奥尼亚沿海靠近 小 亚细亚西海岸的萨摩斯 岛,据说曾师从泰勒斯。 年轻时曾到埃及和巴比伦 留学,可能到过印 度,返 希腊后居住在离米利都不 远的地方。
公元前 530 年开始组建自己的学派,后迁居南 部意大利的希腊油港克罗托内。在这里他 创办 了著名的毕达哥拉斯学校,并发展成一个有秘 密仪式和盟约、组织严密的团体。由于毕 达哥 拉斯政治上倾向贵族统治、反对民主制度,以 致后来意大利的民主力量摧毁了该学校建 筑并 迫使该团体解散,毕达哥拉斯本人也于 75 岁时 被杀死。毕达哥拉斯学派形式上解散了, 但实 际继续存在至少二百年之久。
一、希腊数学的先行者
• 爱奥尼亚学派:也称米利都学派。代表人物泰 勒斯(Thales 约公元前 625 年~公元前 547 年) 是古希 腊最早的哲学家与科学家,号称希腊哲 学鼻祖,又称希腊科学之父,还被称为古希腊 的 7 个聪明人之一。 • 泰勒斯出生于小亚细亚的沿海城市米利都,他 长期生活于此并组织了古希腊最早的学 派。他 年轻时游历过叙利亚、埃及、巴比伦等很多地 方。由于他多方面的才华,使他享有政 治家、 律师、工程师、实业家、哲学家、数学家、天 文学家、社会活动家等声誉。
三、欧几里得与《原本》
亚历山大里亚的欧几里得(约公元 前330年—前275年),古希腊数学 家,被称为“几何之父”。他活跃 于托勒密一世(公元前323年-前 283年)时期的亚历山大里亚,他 最著名的著作《几何原本》是欧洲 数学的基础,提出五大公设,发展 欧几里得几何,被广泛的认为是历 史上最成功的教科书。欧几里得也 写了一些关于透视、圆锥曲线、球 面几何学及数论的作品,是几何学的 奠基人。
形式逻辑的建立
第2讲 古代希腊数学(上)
(1)万物皆数
毕达哥拉斯学派认为世界万物都是数(仅指整 数),对数进行分类,分数被看成两个整数之比。 最重要的数是1、2、3、4,认为分别代表水、火、 气、土四种元素。而10则是一个完美的数,因为 10=1+2+3+4学派自认为足够“包罗万象”了。相应 地,自然界由点(一元)、线(二元)、面(三元) 和立体(四元)组成。他们认为自然界中的一切都 服从于一定的比例数,天体的运动受数学关系的支 配,形成天体的和谐。
亲和数(即a是b的因数之和,b也是a的因数之和)
220的因子: 1,2,110,4,55,5,44,10,22,11,20 因子之和为284 284的因子: 1,2,142,4,71 因子之和为220 过剩数(即因数之和大于该数) 不足数(即因数之和小于该数)
(2)毕达哥拉斯学派的形数
(ⅰ)三角形数: N =1+2+3+…+n = n (n +1) / 2 ;
A
D
C
B
芝诺悖论: 阿基里斯 阿基里斯(善跑英雄)追龟说,阿基 里斯追乌龟,永远追不上。因为当他追 到乌龟的出发点时,龟已向前爬行了一 段,他再追完这一段,龟又向前爬了一 小段。这样永远重复下去,总也追不上。
阿基里斯追不上乌龟
飞箭静止说,每一瞬间箭总在 一个确定的位臵上,因此它是不 动的。
芝诺悖论: 飞矢不动
下列矩形中,哪些比较匀称?
① ③ ⑦ ④
5×8
8×13
⑥
13×21
② ⑤ ⑧
21×34
下列矩形中,哪些比较匀称?
① ③ ⑦ ④
5×8
8×13
⑥
13×21
② ⑤ ⑧
21×34
第二讲 古希腊数学
(3)雅典时期的希腊数学
(1)、古希腊数学的先行者—— 泰勒斯
爱奥尼亚学派创始人
古希腊最早的数学家、哲学家 “希腊七贤”之首
(1)、古希腊数学的先行者—— 泰勒斯
爱奥尼亚学派创始人
古希腊最早的数学家、哲学家 “希腊七贤”之首
泰勒斯最先证明了如下的定理 : 从泰勒斯开始,命题证明成为 1. 两直线相交,对顶角相等。 希腊数学的基本精神。 2.等腰三角形两底角相等。 3.圆被直径二等分。 4.半圆上的圆周角是直角。 ----泰勒斯定理 5.两个三角形全等的边角边定理。
数学的理论化倾向
1、三大几何作图问题:
化圆为方、倍立方、三等分任意角。问题的难处,是作 图只许用直尺(没有刻度的尺)和圆规。 化圆为方: 即作一个与给定的圆面积相等的正方形
安纳萨哥拉斯(约BC.500--BC.428)
希波克拉底:解决了化月牙形为方 安提丰: 首先提出用圆内接正多边形逼近圆面积的方法来化圆 为方。他从圆内接正方形开始,将边数逐次加倍,并一直 进行下去,则随着圆面积的逐渐“穷竭”,将得到一个边 长极其微小的内接正多边形。1882林德曼π的超越性。
黄金分割
正十二面体由正五边形围成。正五边形的作图与著名的 “黄金分割”问题有关。
古典时期的希腊数学
毕 达 哥 拉 斯 学 派
费洛罗斯曾说: “人们所知道的任何事物都包含数。因此,如 果没有数就既不可能表达,也不可能理解任何事物 。”
4、“万物皆数”
仅指整数,分数被看成两个整数之比; 对数进行分类; 定义了完全数(即因数之和等于该数,如6, 28等)、过剩 数(即因数之和大于该数)、不足数(即因数之和小于该 数)、亲和数(即 a 是 b 的因数之和, b 也是 a 的因数之 和,最小的一对亲和数为220和284)等
《数学史概论》教案
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。
数学史--第二讲-古希腊数学--课件
• 通常把公元前30年到公元6世纪(641年,阿拉伯人占 领亚历山大)称为希腊数学的“亚历山大后期”。
趣事
• 欧几里得是希腊论证几何的集大成者。 • 在公元前300年左右,欧几里得受托勒密一世之邀到亚
历山大,成为亚历山大学派得奠基人。据说受托勒密 曾问欧几里德有无学习几何的捷径?欧几里德回答说 :“几何学无王者之道”。 • 有一次一个学生刚学了第一个几何命题便问“学了这些 我能获得什么呢?”欧几里德叫来一个仆人吩咐说:“ 给这位先生三个分币,因为他一心想从学过的东西中 捞点什么”。--欧几里德反对狭隘的实用观点
毕达哥拉斯学派的数学成就
• 数的研究 完全数:12,28;亲和数:220和284;形数: “三角 形数”、“正方形数”、 “五角形数”等等;勾股数:
• 几何成就 欧几里得《原本》第8卷附注指出五个正多面体的作图 的其中前三个归功于毕达哥拉斯学派,后两个归功于 蒂奥泰德(毕达哥拉斯学派晚期成员西奥多罗斯的学 生,深受毕达哥拉斯学派影响)。 一般认为,欧几里得《原本》第1卷和第2卷的大部分 资料来源于毕达哥拉斯学派,包括西方文献中一直以 毕达哥拉斯的名字命名的勾股定理。
其贡献涉及几何学和天文学。最重要的数学成就是在 前人基础上创立了相当完美的圆锥曲线论。《圆锥曲 线论》就是这方面的系统总结。
评价:
(1)他对圆锥曲线的研究所达到的高度,直到17世纪 笛卡尔和帕斯卡出场之前,始终无人能够超越。
(2)他的工作中包含了近代微分几何的课题和射影几 何学的萌芽思想。
(完整版)数学史(第2章古希腊数学)
第2章古代希腊数学主题:希腊文化与理论数学的起源人类理性思维的形成在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。
概述:希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。
三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。
同时也有对前人进行评述和整理工作。
主要成就:1 论证数学的鼻祖及主要贡献:泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。
毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。
普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。
其方法最著名的猜测是“面积剖分法”。
(2)正多面体作图(包括正四、六、八、十二、二十面体)。
以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。
(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。
该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。
(4)发现了不可公度量。
评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。
加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。
不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。
第二讲古代希腊数学(精)
5
一、论证数学的发端 1、泰勒斯与毕达哥拉斯
毕达哥拉斯
在今意大利东南沿海的克洛托内建立毕达哥拉斯学 派。这是一个宗教式的组织,但致力于哲学与数 学的研究,相传“哲学”和“数学”这两个词正 是毕达哥拉斯本人所创。
毕达哥拉斯学派的几何成就: 证明了勾股定理 正多面体作图
2007年9月
古代希腊数学
6
一、论证数学的发端 1、泰勒斯与毕达哥拉斯
思考:用几何方法,证
明第Ⅱ卷命题4,即
ab
b2
b
证明代数关系式
a b2 a2 2ab b2
a
a2
ab
a
b
2007年9月
古代希腊数学
27
二、黄金时代——亚历山大学派 2、阿基米德的数学成就
阿基米德
阿基米德(Archimedes), 生卒年代:前287-212 。 古希腊伟大的数学家、力 学家。早年在当时的文化 中心亚历山大跟随欧几里 得的学生学习。
2007年9月
古代希腊数学
17
一、论证数学的发端 2、雅典时期的希腊数学
2007年9月
古代希腊数学
18
一、论证数学的发端 2、雅典时期的希腊数学
三大几何问题 古希腊的三大著名几何问题: ⑴化圆为方,即作一个与给定的圆面积相等的正方
形; ⑵倍立方体,即求作一立方体,使其体积等于已知
立方体的两倍; ⑶三等分角,即分任意角为三等分。
后人对阿基米德给以极高的 评价,常把他和I.牛顿、 C.F.高斯并列为有史以来 三个贡献最大的数学家。
2007年9月
古代希腊数学
28
二、黄金时代——亚历山大学派 2、阿基米德的数学成就
“平衡法”简介
(完整版)数学史(第2章古希腊数学)
第2章古代希腊数学主题:希腊文化与理论数学的起源人类理性思维的形成在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。
概述:希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。
三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。
同时也有对前人进行评述和整理工作。
主要成就:1 论证数学的鼻祖及主要贡献:泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。
毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。
普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。
其方法最著名的猜测是“面积剖分法”。
(2)正多面体作图(包括正四、六、八、十二、二十面体)。
以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。
(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。
该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。
(4)发现了不可公度量。
评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。
加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。
不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。
数学史概论 ppt课件
(正8边形面积–正4边形面积)
>1/2(圆面积–正4边形面积)
数学史概论
31
欧几里得的《几何原本》是一部划时代的著作。其伟 大的历史意义在于它是用公理法建立起演绎体系的最早典 范。过去所积累下来的数学知识,是零碎的、片断的,可 以比作砖瓦木石;只有借助于逻辑方法,把这些知识组织 起来,加以分类、比较,揭露彼此间的内在联系,整理在 一个严密的系统之中,才能建成宏伟的大厦。《几何原本》 体现了这种精神,它对整个数学的发展产生深远的影响。
穷竭法(卷 XII)
数学史概论
37
比例的定义:设 A, B, C, D是任意四个量, 其中A 和B同类(即均为线段、角或面积等), C和D同类. 如果对于任何两个正整数 m 和n ,关系m A n B 是否成立, 相应地取决于关系m C n D是否成立, 则称A与B 之比等于C与D 之比,即四量 A, B, C, D 成比例.
希波克拉底:解决了化月牙形为方
安提芬:
首先提出用圆内接正多边形逼近圆面积的方法来化圆为
方。他从圆内接正方形开始,将边数逐次加倍,并一直进
行下去,则随着圆面积的逐渐“穷竭”,将得到一个边长
极其微小的内接正多边形。1882林德曼π的超越性。
数学史概论
18
倍立方: 即求一个立方体,使其体积等于已知立方体的两倍
第一次数学危机
2 是一个不可公度的数
数学史希概论帕苏斯 Hippasus(公元前470年左14右)
1
2
b
c
a
1
c2a2b2
勾股定理导致了无理量的发现. 假设直角三角形是等腰的,直
角边是1,那么弦是 2 ,它不可能用任何的“数”(有理数)
表示出来,即直角边与弦是不数学可史概通论 约的.
林寿数学史教案古代希腊数学
林寿数学史教案-古代希腊数学一、教学目标1. 知识与技能:(1)了解古代希腊数学的发展背景和重要人物;(2)掌握古代希腊数学的主要成就和贡献;(3)学会运用古代希腊数学家的思想和方法解决实际问题。
2. 过程与方法:(1)通过自主学习、合作探讨的方式,深入研究古代希腊数学的发展过程;(2)学会分析古代希腊数学家的学术思想和研究方法;(3)培养学生的逻辑思维能力和创新意识。
3. 情感态度与价值观:(1)感受古代希腊数学家的求知精神和探索意识;(2)认识数学是人类智慧的结晶,增强对数学的热爱和尊重;(3)培养学生的团队合作意识和历史责任感。
二、教学内容1. 古代希腊数学的发展背景(1)古希腊的历史和文化背景;(2)古希腊数学家的学术氛围和思想交流。
2. 重要人物及其成就(1)毕达哥拉斯及其学派;(2)欧几里得及其《几何原本》;(3)阿基米德及其数学贡献。
3. 古代希腊数学的主要成就(1)数论方面的成就;(2)几何学方面的成就;(3)数学方法论方面的成就。
三、教学重点与难点1. 教学重点:(1)古代希腊数学的发展背景;(2)重要人物及其成就;(3)古代希腊数学的主要成就。
2. 教学难点:(1)古代希腊数学家的思想观念;(2)古代希腊数学成就的现代意义。
四、教学过程1. 导入新课:(1)介绍古希腊的历史和文化背景;(2)激发学生对古希腊数学家的敬仰之情。
2. 自主学习:(1)让学生阅读教材,了解古希腊数学的发展过程;(2)引导学生关注重要人物及其成就。
3. 合作探讨:(1)分组讨论古代希腊数学的主要成就;(2)分享学习心得和感悟。
4. 课堂讲解:(1)详细讲解毕达哥拉斯及其学派、欧几里得及其《几何原本》、阿基米德及其数学贡献;(2)分析古代希腊数学家的学术思想和研究方法。
5. 练习与拓展:(1)布置课后作业,巩固所学知识;(2)引导学生运用古代希腊数学家的思想和方法解决实际问题。
五、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现;(2)反思自己在团队合作中的成长。
《数学史概论》教案
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。
林寿数学史教案-第二讲:古代希腊数学
第二讲古代希腊数学恩格斯(德,1820-1895年)指出:“没有希腊的文化和罗马帝国奠定的基础,就没有现代的欧洲。
”背景:古希腊的变迁。
1、古典时期的希腊数学公元前600-前300年。
1.1 爱奥尼亚学派(米利都学派)泰勒斯(公元前625-前547年),被称为“希腊哲学、科学之父”。
哲学:水生万物,万物复归于水。
数学:创数学命题逻辑证明之先河,希腊几何学的鼻祖,最早留名于世的数学家,测量过金字塔的高度,预报了公元前585年的一次日食。
1.2 毕达哥拉斯学派毕达哥拉斯(约公元前560-前480年),在萨摩斯岛建立了具有宗教、哲学、科学性质的学派,致力于哲学和数学的研究,繁荣兴旺达一个世纪以上。
哲学:万物皆为数。
数学:数学研究抽象概念的认识归功于毕达哥拉斯学派,毕达哥拉斯定理,完全数、亲和数,正五角星作图与“黄金分割”,发现了“不可公度量”。
1.3 伊利亚学派芝诺(约公元前490-前430年)悖论:运动不存在、阿基里斯、飞矢不动。
芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系以非数学的形态提出,并进行了辩证的考察。
1.4 诡辩学派(智人学派)活跃于公元前5世纪下半叶的雅典城,代表人物均以雄辩著称,故亦称智人学派。
安蒂丰(约公元前480-前411年)的“穷竭法”。
古典几何三大作图问题:三等分任意角、化圆为方、倍立方。
1.5 柏拉图学派柏拉图(约公元前427-前347年)对于欧洲的哲学乃至整个文化的发展,有着深远的影响。
柏拉图说:“不懂几何者免进”,认为打开宇宙之迷的钥匙是数与几何图形,发展了用演绎逻辑方法系统整理零散数学知识的思想。
柏拉图不是数学家,却赢得了“数学家的缔造者”的美称,创办雅典学院(前387-公元529),讲授哲学与数学。
1.6 亚里士多德学派(吕园学派)亚里士多德(公元前384-前322年)是古希腊最著名的哲学家、科学家。
集古希腊哲学之大成,把古希腊哲学推向最高峰,堪称“逻辑学之父”,为欧几里得演绎几何体系的形成奠定了方法论的基础,被后人奉为演绎推理的圣经。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希
亚历山大时期:公元前323年-前30年 马其顿帝国:前6世纪-前323年(前337年希腊 各城邦承认马其顿的霸主地位,前334-前323亚历山大东征)
腊
化
亚历山大后期:公元前30年-公元640年 前48-前30年凯撒、屋大维侵占埃及
时
期
公元640年阿拉伯人焚毁亚历山大城藏书
公元330君士坦丁大帝迁都拜占廷
• “几何无王者之道”
章节内容
26
希腊化时期的数学
《原本》
❖ 第一卷:直边形,全等、平行公理、毕达哥拉斯定理、初等作 图法等
❖ 第二卷:几何方法解代数问题,求面积、体积 ❖ 第三、四卷:圆、弦、切线、圆的内接、外切 ❖ 第五、六卷:比例论与相似形 ❖ 第七、八、九、十卷:数论 ❖ 第十一、十二、十三卷:立体几何,包括穷竭法,是微积分思
2 亚历山大时期 (公元前300-前30年)
章节内容
24
希腊化时期的数学
亚历山大时期:希腊数学黄金时代
亚历山大(匈牙利, 1980)
章节内容
25
希腊化时期的数学
欧几里 得
(公元前325-前 265年)
•《原本》(Στοιχετα) • 13卷 • 5条公理、5条公设 • 119条定义和 465条命题
3 亚历山大后期 (公元前30-公元600年)
章节内容
36
希腊化时期的数学
《天文学大成》
第一、二卷:地心体系的基本轮廓 第三卷:太阳运动 第四卷:月亮运动 第五卷:计算月地距离和日地距离 第六卷:日食和月食的计算 第七、八卷:恒星和岁差现象 第九-十三卷:分别讨论五大行星的运 动,本轮和均轮的组合在这里得到运用
(
)
安蒂丰(约公元前480-前411年)的穷竭法
林德曼(德,1852-1939年)
章节内容
17
古典时期的希腊数学
柏
打开宇宙之迷的钥匙是
拉 图
数与几何图形
学
派
柏拉图
(约公元前427-前347年)
章节内容
18
古典时期的希腊数学
柏 拉 图 学 派
雅典学院(公元前387-公元529年)
章节内容
19
古典时期的希腊数学
贝尔纳(英,1901-1971):他的工作如此 的完备,所以几乎二千年后,开普勒和牛顿可
以原封不动地搬用,来推导行星轨道的性质。
(约公元前262-前190年)
章节内容
32
章节内容
33
希腊化时期的数学
古罗马斗兽场 (建于公元70-82年)
章节内容
34
希腊化时期的数学
章节内容
35
希腊化时期的数学
4. 凡直角都彼此相等.
5. 若一直线落在两直线上所构成的同旁内角和小
于两直角, 那么把两直线无限延长, 它们都在同旁内
角和小于两直角的一侧相交.
章节内容
28
希腊化时期的数学
数学之神
阿基米德
(公元前287-前 212年)
“给我一个支点,我 就可以移动地球。”
章节内容
29
希腊化时期的数学
阿基米德(公元前287-前212年) (希腊, 1983)
第二讲
古代希腊数学
论证数学的发端 亚历山大学派 希腊数学的衰落
章节内容
1
章节内容
2
古希腊的变迁
爱奥尼亚时期:公元前11世纪-前6世纪
波希战争(前499-前449)
希 腊
公元前11世纪-前9世纪:希腊各部落进入爱琴地区
时
期
公元前9-前6世纪:希腊各城邦先后形成
雅典时期:公元前6-前3世纪
伯罗奔尼撒战争(前431-前404)
古希腊最著名的哲学家、科学家
亚里士多德(公元前384-前322年)(乌拉圭, 1996)
章节内容
20
古典时期的希腊数学
(
亚
里 士
“吾爱吾师,
多 德
吾尤爱真理”
学
派
形式逻辑方法
吕
园 学
用于数学推理
派
矛盾律、排中律
亚里士多德
(公元前384-前322年)
章节内容
21
)
章节内容
22
章节内容
23
希腊化时期的数学
想的来源
章节内容
27
希腊化时期的数学
• 5公理
1. 等于同量的量彼此相等. 2. 等量加等量, 和相等. 3. 等量减等量, 差相等. 4. 彼此重合的图形是全等的. 5. 整体大于部分.
• 5公设
1. 假定从任意一点到任意一点可作一直线.
2. 一条有限直线可不断延长.
3. 以任意中心和直径可以画圆.
毕达哥拉斯
μαθηματια
(约公元前560-前480年)
章节内容
6
古典时期的希腊数学
毕 达 哥 拉 斯 学 派
毕达哥拉斯定理 (希腊,1955)
完全数 亲和数 不可公度量
章节内容
7
古典时期的希腊数学
毕 达 哥 拉 斯 学 派
章节内容
8
古典时期的希腊数学
雅典时期:开创演绎数学
帕提农神庙(前447-前432年)
用穷竭法计算 平面图形面积
章节内容
30
希腊化时期的数学
阿基米德之死
章节内容
31
希腊化时期的数学
《圆锥曲线》
8卷,487个命题
克莱因(美,1908-1992):它是这样一座 巍然屹立的丰碑,以致后代学者至少从几何上 几乎不能再对这个问题有新的发言权。这确实 可以看成是古希腊几何的登峰造极之作。
阿波罗尼奥斯
章节内容
13
古典时期的希腊数学
伊 利 亚 学 派
芝诺悖论: 阿基里斯
章节内容
14
古典时期的希腊数学
伊 利 亚 学 派
芝诺悖论: 飞矢不动
章节内容
15
古典时期的希腊数学
(
诡 辩 学 派 智 人 学 派
三等 分任 意角
古典几何三大作图问题
化圆为方
倍立方
)
章节内容
16
古典时期的希腊数学
诡 辩 学 派 智 人 学 派
罗马帝国:公元前27年-公元395年
西罗马帝国:公元395年-公元476年 东罗马帝国:公元395年-公元1453年
章节内容 (610年改称拜占廷帝国)
3
1 古典时期的希腊数学 (公元前600-前300年)
章节内容
4Hale Waihona Puke 古典时期的希腊数学(
爱
哲学:万物源于水
奥
尼 亚
创数学命题逻辑证明之先河
学
派
泰勒斯定理
章节内容
9
古典时期的希腊数学
帕提农神庙(前447-前432年)
章节内容
10
古典时期的希腊数学
( , 450 )
掷 铁 饼 者 米 隆
约 前
年
章节内容
11
章节内容
12
古典时期的希腊数学
伊 利 亚 学 派
芝诺 (约公元前490-前430
年)
芝诺悖论:运动不存在
位移事物在达到目的地 之前必须先抵达一半处, 即不可能在有限的时间内 通过无限多个点。
米 利
▪ 圆的直径将圆分为两个相等的部分.
都
▪ 等腰三角形两底角相等.
学
派
▪ 两相交直线形成的对顶角相等.
泰勒斯
▪ 如果一个三角形有两角、一边分别
与另一个三角形的对应角、边相等, 那 么这两个三角形全等.
(约公元前625-前547年)
▪ 半圆上的圆周角是直角.
章节内容
5
)
古典时期的希腊数学
毕 达 哥 拉 斯 学 派