平面向量与三角形四心问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基本定理与三角形四心
已知O 是ABC ∆内的一点,AOB AOC BOC ∆∆∆,,的面积分别为A S ,B S ,C S ,求证:
0=++•••OC S OB S OA S C B A
如图2延长OA 与BC 边相交于点D 则
B
C
COD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===∆∆∆∆∆∆∆
图1
=
OD BC DC OB +BC
BD
OC =C B B
S S
S +OB +C
B C S S S +OC
C
B A
COA BOA COD BOD COA COD BOA
BOD S S S S S S S S S S
S OA OD +=++==
= 图2
∴
C
B A S S S OD +-
=OA
∴C
B A S S S +-
OA =
C B B
S S S +OB +C
B C S S S +OC
∴0=++•••OC S OB S OA S C B A
推论O 是ABC ∆内的一点,且
0=++•••OC OB OA z y x ,则
z y x S S S AOB COA BOC ::::=∆∆∆
O
A B
C
D
O
A B
C
有此定理可得三角形四心向量式
O 是ABC ∆的重心
⇔1:1:1::=∆∆∆AOB COA BOC S S S ⇔0=++OC OB OA
O 是ABC ∆的内心
⇔c b a S S S AOB COA BOC ::::=∆∆∆⇔0=++•••OC OB OA c b a
O 是ABC ∆的外心
⇔C B A S S S AOB COA BOC 2sin :2sin :2sin ::=∆∆∆ ⇔02sin 2sin 2sin =++•••OC
C OB B OA A
O 是ABC ∆的垂心
⇔C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆ ⇔0tan tan tan =++•••OC C OB B OA A
证明:如图O 为三角形的垂心,DB
CD
B AD CD A ==
tan ,tan ⇒AD DB B A :tan :tan = =∆∆COA BOC S S :AD DB :
∴B A S S COA BOC tan :tan :=∆∆
同理得C B S S AOB COA tan :tan :=∆∆,C A S S AOB BOC tan :tan
:=∆∆
∴C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆
奔驰定理是三角形四心向量式的完美统一
4.2三角形“四心”的相关向量问题
一.知识梳理:
四心的概念介绍:
(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;
(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。 与“重心”有关的向量问题
1 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC △的( ).
A .重点
B .外心
C .内心
D .垂心
如图⑴.
A'
G
C
A
B
2已知O 是平面上一定点,A
B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的( ).
A .重点
B .外心
C .内心
D .垂心
【解析】由题意()AP AB AC λ=+,当(0)λ∈+∞,
时,由于()AB AC λ+表示BC 边上的中线所在直线的向量,所以动点P 的轨迹一定通过ABC △的重心,如图⑵.
3 .O 是△ABC 所在平面内一点,动点P 满足
(λ
∈(0,+∞)),则动点P 的轨迹一定通过△ABC 的( ) A .内心
B .重心
C .外心
D .垂心
图⑴
图⑵
M
P
C
B
A
解:作出如图的图形AD ⊥BC ,由于sinB=sinC=AD ,
∴
=
由加法法则知,P 在三角形的中线上 故动点P 的轨迹一定通过△ABC 的重心 故选:B .
与“垂心”有关的向量问题
3 P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的( )
A .重点
B .外心
C .内心
D .垂心
【解析】由PA PB PB PC ⋅=⋅,得()0PB PA PC ⋅-=,即0PB CA ⋅=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥.∴P 是ABC △的垂心.如图⑶.
A
B
C
4已知O 是平面上一定点,A
B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭
,(0)λ∈+∞,,
则动点P 的轨迹一定通过ABC △的( ).
A .重点
B .外心
C .内心
D .垂心
【解析】由题意cos cos AB AC AP AB B AC C λ⎛⎫
⎪=+ ⎪⎝⎭
, 图⑶ 图⑷
H F
E
M A
O
P