北师大版七年级下册数学全册课件
合集下载
七年级数学下册课件(北师大版)平行线的性质
A.35° B.40° C.45° D.50°
3 如图,在平行线a,b 之间放置一块直角三角板,三角板的 顶点A,B 分别在直线a,b上,则∠1+∠2的值为( A )
A.90° B.85° C.80° D.60°
4 如图,AB∥CD,点E 在线段BC 上,若∠1=40°,
∠2=30°,则∠3的度数是( A ) A.70° B.60° C.55° D.50°
2.3平行线的性质
第1课时
复
习
回
顾
平
条件
行
线 同位角相等
的 内错角相等 判 定 同旁内角互补
结论 两直线平行
猜想:交换它们的条件与结论,是否成立?
两直线平行
同位角相等 内错角相等 同旁内角互补
知识点 1 “同位角”的性质
探究 如图,利用坐标纸上的直线,或者用直尺和三
角尺画两条平行线a∥b,然后, 画一条截线c 与这两条平行线
1 如图所示,AB∥CD,AC∥BD. 分别找出与∠1相等或互补的角.
解:如图,与∠1相等的角有∠3, ∠5,∠7,∠9,∠11,∠13,∠15; 与∠1互补的角有∠2,∠4,∠6,∠8,∠10,∠12, ∠14,∠16.
2 如图所示,要在一条公路的两侧铺设平行管道,已知 一侧铺设的角度为120°,为使管道对接,另一侧铺设 的角度大小应为( D ) A.120° B.100° C.80° D.60°
总结
解决学具操作题,关键是要掌握学具作为几何 图形具有的性质特征,以及学具作为特殊图形中特 殊内角的度数.
例2 如图,将一张长方形的纸片沿EF 折叠后,点D,C 分 别落在D′,C ′位置上,ED ′与BC 的交点为点G,若 ∠EFG=50°,求∠EGB 的度数.
3 如图,在平行线a,b 之间放置一块直角三角板,三角板的 顶点A,B 分别在直线a,b上,则∠1+∠2的值为( A )
A.90° B.85° C.80° D.60°
4 如图,AB∥CD,点E 在线段BC 上,若∠1=40°,
∠2=30°,则∠3的度数是( A ) A.70° B.60° C.55° D.50°
2.3平行线的性质
第1课时
复
习
回
顾
平
条件
行
线 同位角相等
的 内错角相等 判 定 同旁内角互补
结论 两直线平行
猜想:交换它们的条件与结论,是否成立?
两直线平行
同位角相等 内错角相等 同旁内角互补
知识点 1 “同位角”的性质
探究 如图,利用坐标纸上的直线,或者用直尺和三
角尺画两条平行线a∥b,然后, 画一条截线c 与这两条平行线
1 如图所示,AB∥CD,AC∥BD. 分别找出与∠1相等或互补的角.
解:如图,与∠1相等的角有∠3, ∠5,∠7,∠9,∠11,∠13,∠15; 与∠1互补的角有∠2,∠4,∠6,∠8,∠10,∠12, ∠14,∠16.
2 如图所示,要在一条公路的两侧铺设平行管道,已知 一侧铺设的角度为120°,为使管道对接,另一侧铺设 的角度大小应为( D ) A.120° B.100° C.80° D.60°
总结
解决学具操作题,关键是要掌握学具作为几何 图形具有的性质特征,以及学具作为特殊图形中特 殊内角的度数.
例2 如图,将一张长方形的纸片沿EF 折叠后,点D,C 分 别落在D′,C ′位置上,ED ′与BC 的交点为点G,若 ∠EFG=50°,求∠EGB 的度数.
北师大版七年级下册数学课件第1章1.3第2课时零指数幂与负整数指数幂
BS版七年级下
第一章 整式的乘除
1.3 同底数幂的除法 第2课时 零指数幂与负整数指数幂
习题链接
提示:点击 进入习题
1D 2A
3D 4D
5B 6D 7C 8 见习题
答案显示
习题链接
提示:点击 进入习题
9D 10 B 11 A 12 A
13 B 14 B 15 见习题 16 见习题
答案显示
习题链接
④任何不等于零的数的零次幂都等于1.
A 11.若 2 +2 +2 +2 =2,则 n=( 所以原式=2-2-2 02n4.
n
n
n
20.已知a2-3a+1=0,求a+a-1的值.
)
9.【2020·泰安】下列运算正确的是( )
A.-1 B.-2 A.x>3
B.x≠3且x≠2
4.【2019·襄阳】下列运算正确的是( )
下列各式的计算中,不正确的个数是( )
解:由题意得2x+4≠0,且9-3x≠0,即x≠-2且x≠3.
33-(-7)=310
解:设S=1+2-1+2-2+…+2-2024,①
②-①得S=2-2-2 024.
A.1个
B.2个
C.3个
D.4个
求1+2-1+2-2+…+2-2 024的值.
4.【2019·襄阳】下列运算正确的是( )
(1)1+3-1+3-2+…+3-2 024;
C.0
1 D.4
④(-10)-4÷(-10-1)-4=-1.
3.【中考·聊城】下列计算错误的是( )
9A..【1个2【020点·泰B安拨.】2下个】列2运n算+C正.确23的个n是+( 2Dn).+4个2n=4×2n=22×2n=22+n=2,所以 2+n=1,
第一章 整式的乘除
1.3 同底数幂的除法 第2课时 零指数幂与负整数指数幂
习题链接
提示:点击 进入习题
1D 2A
3D 4D
5B 6D 7C 8 见习题
答案显示
习题链接
提示:点击 进入习题
9D 10 B 11 A 12 A
13 B 14 B 15 见习题 16 见习题
答案显示
习题链接
④任何不等于零的数的零次幂都等于1.
A 11.若 2 +2 +2 +2 =2,则 n=( 所以原式=2-2-2 02n4.
n
n
n
20.已知a2-3a+1=0,求a+a-1的值.
)
9.【2020·泰安】下列运算正确的是( )
A.-1 B.-2 A.x>3
B.x≠3且x≠2
4.【2019·襄阳】下列运算正确的是( )
下列各式的计算中,不正确的个数是( )
解:由题意得2x+4≠0,且9-3x≠0,即x≠-2且x≠3.
33-(-7)=310
解:设S=1+2-1+2-2+…+2-2024,①
②-①得S=2-2-2 024.
A.1个
B.2个
C.3个
D.4个
求1+2-1+2-2+…+2-2 024的值.
4.【2019·襄阳】下列运算正确的是( )
(1)1+3-1+3-2+…+3-2 024;
C.0
1 D.4
④(-10)-4÷(-10-1)-4=-1.
3.【中考·聊城】下列计算错误的是( )
9A..【1个2【020点·泰B安拨.】2下个】列2运n算+C正.确23的个n是+( 2Dn).+4个2n=4×2n=22×2n=22+n=2,所以 2+n=1,
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)
1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
北师大版七年级数学下册第一章《完全平方公式》公开课课件
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/222021/7/222021/7/227/22/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/222021/7/22July 22, 2021
•
随随堂堂练练习习
p34
1、计算:
(1) ( 1 x − 2y)2 ;
2
(2) (2xy+1 x )2 ;
5
(3) (n +1)2 − n2.
接纠错练习
纠 错练习
指出下列各式中的错误,并加以改正: (1) (2a−1)2=2a2−2a+1; (2) (2a+1)2=4a2 +1; (3) (a−1)2=a2−2a−1. 解: (1) 第一数被平方时, 未添括号;
(3) ∵ (1−4a)=−(1+4a) =(4a−1), 即 (1−4a)=(4a−1)
∴ (4a−1)(1−4a)=(4a−1)·[(4a−1)] =(4a−1)(4a−1)=(4a−1)2。
(4) 右边应为: (4a−1)(4a+1)。
本节课本你节的课收你获学是到了什什么么??
注意完全平方公式和平方差公式不同: 形式不同.
= a 2 + 2a (−b) +(−b) 2 = a2 − 2ab + b2.
初 识 完全平方 公式
(a+b)22 = a2+2ab+b22 .(aa−−bb)22= a2−22aabb++b2b2 结构特(a征−:b)2 = a2−2ab+b2 .
北师大版七年级数学下册教学课件3.3用图象表示的变量间关系——速度的变化
用均匀的速度向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为折线),这个容器
活动1 自主探究1 的形状是图中( )
根据图象的变化趋势或周期性特征,不仅可回顾事情的过去,还可预测事情的未来. (1)这是一次____m跑;
理阅解读分 教阅段材图P读7象3-的教7意4,材义完,成掌P下握73列分-问段7题图4,:完象各成个部下分列的含问义.题: 如理果解O分A范段、图B例象A分的1别意.(表义汕示,掌尾甲握、分中乙段两考图名象)学各汽生个运车部动分以的的路含6程0义s.和km时间/ht的的关速系,度根据在图公象判路断快上者匀的速速度比行慢驶者的,1速度h每后秒进快(入高)速 ((C2))甲18、分路乙钟两,继人中续___以_先1到(0D达0)2终0k分点m钟;/h的速度匀速行驶,则汽车行驶的路程s(km)与行驶的时间
第三章 变量之间的关系
课题 用图象表示的变量间关系——速度的变化
一、学习目标 1.理解分段图象的意义,掌握分段图象各个部分的含义. 2.复习巩固运用图象表示变量间关系的方法,能够运用其解决实际问题.
二、学习重难点 重点 学习速度型分段图象的意义,能说出各部分图象的含义.
难点 根据图象信息解决相关问题.
学时一致,那么他从学校到家需要的时间是( D )
(A)14分钟
(B)17分钟
(C)18分钟
(D)20分钟
练习 5.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停 下来修车,车修好后,因怕耽误上学时间,于是加快马加鞭车速,在下 图中给出的示意图中(s为距离,t为时间)符合以上情况的是(D )
仿例5.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步, 能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是图中 的( C )
活动1 自主探究1 的形状是图中( )
根据图象的变化趋势或周期性特征,不仅可回顾事情的过去,还可预测事情的未来. (1)这是一次____m跑;
理阅解读分 教阅段材图P读7象3-的教7意4,材义完,成掌P下握73列分-问段7题图4,:完象各成个部下分列的含问义.题: 如理果解O分A范段、图B例象A分的1别意.(表义汕示,掌尾甲握、分中乙段两考图名象)学各汽生个运车部动分以的的路含6程0义s.和km时间/ht的的关速系,度根据在图公象判路断快上者匀的速速度比行慢驶者的,1速度h每后秒进快(入高)速 ((C2))甲18、分路乙钟两,继人中续___以_先1到(0D达0)2终0k分点m钟;/h的速度匀速行驶,则汽车行驶的路程s(km)与行驶的时间
第三章 变量之间的关系
课题 用图象表示的变量间关系——速度的变化
一、学习目标 1.理解分段图象的意义,掌握分段图象各个部分的含义. 2.复习巩固运用图象表示变量间关系的方法,能够运用其解决实际问题.
二、学习重难点 重点 学习速度型分段图象的意义,能说出各部分图象的含义.
难点 根据图象信息解决相关问题.
学时一致,那么他从学校到家需要的时间是( D )
(A)14分钟
(B)17分钟
(C)18分钟
(D)20分钟
练习 5.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停 下来修车,车修好后,因怕耽误上学时间,于是加快马加鞭车速,在下 图中给出的示意图中(s为距离,t为时间)符合以上情况的是(D )
仿例5.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步, 能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是图中 的( C )
七年级数学下册课件(北师大版)利用三角形全等测距离
答此题的关键就是构建全等三角形,并确定所要测量 的边的对应边.
例2 如图,在一条河的两岸各耸立着一座宝塔A,B,隔
河相对,在无任何过河工具的情况下,你能测量出 两座宝塔间的距离吗?说说你的方法和理由.
导引:因为没有过河的工具, 所以无法直接测量两塔 间的距离,所以,可通 过构建全等三角形,转 化到岸上来测量.
想一想
如图所示,A,B 两点分别位于一个池塘的两端,小明想用 绳子测量A,B 间的距离但绳子不够长,一个叔叔帮他出了这样 一个主意:先在地上取一个可以直接到达A 点和B 点的点C,连 接AC 并延长到D,使CD=CA; 连接BC 并延长到E,使CE=CB, 连接DE 并测量出它的长度,DE 的长 度就是AB 间的距离.
距离.你能说明其中的道理吗?
解:因为∠ACB=90°,
所以∠ACD=180°-∠ACB=90°.
BC=DC,
在△ABC 和△ADC 中, ACB= ACD,
AC=AC,
所以△ABC ≌△ADC (SAS).
所以AB=AD.
3 如图,已知零件的外径为a,要求它的厚度x,动手制作 一个简单的工具,利用三角形全等的知识,求出x.
个三角形全等的依据是( D ) A.SAS B.ASA C.AAS D.SSS
5 教室里有几盆花,如图①,要想测量这几盆花两旁的
A,B 两点间的距离不方便,因此,选点A,B 都能到 达的一点O,如图②,连接BO 并延长BO 到点C,使 CO=BO,连接AO 并延长AO 到点D,使DO=AO. 那么C,D 两点间的距离就是A,B 两点间的距离.
一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽 檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态, 这时视线落在了自己所在岸的某一点上;接着,他用步测的办法量 出自己与那个点的距离,这个距离就是他与碉堡间的距离.
例2 如图,在一条河的两岸各耸立着一座宝塔A,B,隔
河相对,在无任何过河工具的情况下,你能测量出 两座宝塔间的距离吗?说说你的方法和理由.
导引:因为没有过河的工具, 所以无法直接测量两塔 间的距离,所以,可通 过构建全等三角形,转 化到岸上来测量.
想一想
如图所示,A,B 两点分别位于一个池塘的两端,小明想用 绳子测量A,B 间的距离但绳子不够长,一个叔叔帮他出了这样 一个主意:先在地上取一个可以直接到达A 点和B 点的点C,连 接AC 并延长到D,使CD=CA; 连接BC 并延长到E,使CE=CB, 连接DE 并测量出它的长度,DE 的长 度就是AB 间的距离.
距离.你能说明其中的道理吗?
解:因为∠ACB=90°,
所以∠ACD=180°-∠ACB=90°.
BC=DC,
在△ABC 和△ADC 中, ACB= ACD,
AC=AC,
所以△ABC ≌△ADC (SAS).
所以AB=AD.
3 如图,已知零件的外径为a,要求它的厚度x,动手制作 一个简单的工具,利用三角形全等的知识,求出x.
个三角形全等的依据是( D ) A.SAS B.ASA C.AAS D.SSS
5 教室里有几盆花,如图①,要想测量这几盆花两旁的
A,B 两点间的距离不方便,因此,选点A,B 都能到 达的一点O,如图②,连接BO 并延长BO 到点C,使 CO=BO,连接AO 并延长AO 到点D,使DO=AO. 那么C,D 两点间的距离就是A,B 两点间的距离.
一个办法:他面向碉堡的方向站好,然后调整帽子,使视线通过帽 檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态, 这时视线落在了自己所在岸的某一点上;接着,他用步测的办法量 出自己与那个点的距离,这个距离就是他与碉堡间的距离.
北师大版七年级数学下册第三章变量之间的关系PPT课件全套
2、测量小车从不同的高 度下滑的时间,并将得 到的数据填入下表:
支撑物高 度/厘米 小车下滑 时间/秒
10 20 30 40 50 60 70 80 90 100
(1)支撑物高度为70厘米时,小车下滑时间是多少 ? (2)如果用h表示支撑物高度,t表示小车下滑时间 ,随着h逐渐变大,t的变化趋势是什么? (3)h每增加10厘米,t的变化情况相同吗?
氮肥施用 量/千克/ 公顷 土豆产量/ 吨/公顷
15.18
21.36
25.72
32.29
34.03
39.45
43.15
43.46
40.83
30.75
(3)根据表格中的数据,你认为氮肥的施用量 是多少时比较适宜?说说你的理由. (4)粗略说一说氮肥的施用量对土豆产量的影 响.
4.某电影院地面的一部分是扇形,座位按 下列方式设置: 排数 1 座位数 60 2 64 3 68 4 72
1.如果正方形的边长为 a ,则正方形的周长C=( 4a ) 2.圆的半径为r,则圆的面积S=(
1 ) ah 2
r
2
)
3.三角形的一边为a,这边上的高为h,则三角形 的面积S=(
4.梯形的上底,下底分别为a, b,高为h,则梯形的面积
1 2 5.圆锥的底面半径为r, 高为h,则圆锥的体积V=(3 r h )
高不变 底面半径变
底面半径不变 高变
变化中的圆锥
h r
h
r
2、 如图,圆锥的底面半径是2厘米,当圆锥的 高由小到大变化时,圆锥的体积也随之变化。 (1)在这个变化过程中,自变量、因 变量各是什么? (2)如果圆锥的高为h(厘米),那么 3 圆锥的体积V( 厘米 )与h之间的关系 式为 . (3)当高由1厘米变化到10厘米时,2㎝
北师大版七年级下册数学《整式的乘法》整式的乘除说课教学复习课件拔高
项数与原多项式项 数一致;
(3)单项式系数为负时,改变多项式每项的符号。
综合训练 2x ( 1 x2 1) 3x(1 x2 2 )
2
33
解
:
原式
2
x
1 2
x21
2x
3x
1 3
x2
3x
2 3
x3 2x x3 2x
4x
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
一、选择题。 1.下列计算正确的是 ( C ) A.(x+1)(x+2)=x2+2 B.(x+y)(x2+y2)=x3+y3 C.(x-2)(x+1)=x2-x-2 D.(x-2)(x-1)=x2-2x+2
2.计算(x-2)(x-3)的结果是 ( A )
北师大版七年级下册第一章『整式的乘除』
1.4.整式的乘法
第3课时
课件
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
以下不同形状的长方形卡片各有若干张,请你选取其中的两张, 用它们拼成更大的长方形,尽可能采用多种拼法。
n m
范例 例2.计算:
(1)(2x)3(5xy2 )
(2)(3x2 y)3 (x2 )3
幂的乘方 (1)先算乘方
积的乘方 (2)再算乘法 单项式乘以单项式
巩固 3.计算:
(1)(2x)3 (3x)2 (2)( 1 x2 y)3 (3xy2 )2
(3)单项式系数为负时,改变多项式每项的符号。
综合训练 2x ( 1 x2 1) 3x(1 x2 2 )
2
33
解
:
原式
2
x
1 2
x21
2x
3x
1 3
x2
3x
2 3
x3 2x x3 2x
4x
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
一、选择题。 1.下列计算正确的是 ( C ) A.(x+1)(x+2)=x2+2 B.(x+y)(x2+y2)=x3+y3 C.(x-2)(x+1)=x2-x-2 D.(x-2)(x-1)=x2-2x+2
2.计算(x-2)(x-3)的结果是 ( A )
北师大版七年级下册第一章『整式的乘除』
1.4.整式的乘法
第3课时
课件
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
以下不同形状的长方形卡片各有若干张,请你选取其中的两张, 用它们拼成更大的长方形,尽可能采用多种拼法。
n m
范例 例2.计算:
(1)(2x)3(5xy2 )
(2)(3x2 y)3 (x2 )3
幂的乘方 (1)先算乘方
积的乘方 (2)再算乘法 单项式乘以单项式
巩固 3.计算:
(1)(2x)3 (3x)2 (2)( 1 x2 y)3 (3xy2 )2
(新)北师大版七年级数学下册课件(1-3章,共624张PPT)
解:2a+b+3=2பைடு நூலகம்•2b•23=5×3×8=120. 【类比精练】 2.若xm=3,xn=5,则xm+n15 = 解:∵xm=3,xn=5, ∴xm+n=xm•xn=3×5=15. 故答案为:15
.
Listen attentively
课堂精讲
知识点3 同底数幂的乘法应用 【例3】一个长方形的长是4.2×104 cm,宽是 2×104 cm,求此长方形的面积及周长. 解:面积=长×宽 =4.2×104×2×104=8.4×108cm2. 周长=2(长+宽)=2(4.2×104+2×104) =1.24×105cm. 综上可得长方形的面积为8.4×108cm2. 周长为1.24×105cm.
知识小测 B ) 2.(2014•温州)计算:m6•m3的结果( A.m18 B.m9 C.m3 D.m2 3.(2016•濉溪县二模)计算﹣a2•a3的结果是 B ( ) A.a5 B.﹣a5 C.﹣a6 D.a6
Listen attentively
课前小测
4.(2016•江岸区模拟)如果等式x3•xm=x6成立, 那么m=( B) A.2 B.3 C.4 D.5 5.(2016春•沛县期末)若am=2,an=3,则 am+n的值为( ) B A.5 B.6 C.8 D.9 5 3 2 x 6.(2016•南通)计算:x •x = . a2 . 7.(2015•柳州)计算:a×a= 8.(2016春•张家港市期末)已知:xa=4,xb=2, 则xa+b=8 .
目录 contents
课堂精讲
Listen attentively
课堂精讲
知识点1 同底数幂的乘法 【例1】计算:﹣(﹣a)•(﹣a)2•(﹣a). 解:原式=﹣a4.
(新)北师大版七年级数学下册第6章《概率初步》课件(全章,190张PPT)
谢 谢 观 看 !
第六章 概率初步
第44课时 频率的稳定性
目录 contents
课前小测
课堂精讲
课后作业
目录 contents
课前小测
Listen attentively
课前小测
公式定理 1.大量重复试验中,事件发生的频率逐渐稳定到某个常数 附近,这个常数可以估计事件发生的 概率 . 知识小测 2.(2015•石家庄模拟)甲、乙两名 同学在一次用频率去估计概率的实验 中,统计了某一结果出现的频率绘出 的统计图如图所示,则符合这一结果的实验可能是(B ) A.掷一枚正六面体的骰子,出现1点的概率 B.从一个装有2个白球和1个 红球的袋子中任取一球,取到红球的概率 C.抛一枚硬币,出现正面的概率 D.任意写一个整数,它能被2整除的概率
Listen attentively
课堂精讲
知识点1 事件的分类 例1. (2016•抚顺)下列事件是必然事件的为(B ) A.购买一张彩票,中奖 B.通常加热到100℃时,水沸腾 C.任意画一个三角形,其内角和是360° D.射击运动员射击一次,命中靶心 解:A、购买一张彩票,中奖,是随机事件;B、 通常加热到100℃时,水沸腾,是必然事件;C、 任意画一个三角形,其内角和是360°,是不可能 事件;D、射击运动员射击一次,命中靶心,是随 机事件;故选:B.
目录 contents
课后作业
Listen attentively
课后作业
基础过关
4.(2016•本溪一模)已知下列事件: ①太阳从西边升起; ②抛一枚硬币正面朝上; ③口袋里只有两个红球,随机摸出一个球是红球; ④三点确定一个圆, 其中是必然事件的有( A) A.1个 B.2个 C.3个 D.4个
七年级数学北师大版下册初一数学--第一单元 整式的除法《整式的化简》课件
知2-讲
解:(1)由题意,5月份甲超市的销售额为a(1+x%)2,
乙超市的销售额为a(1-x% )2,
则甲、乙两超市的销售额的差为
a(1+x%)2- a(1-x% )2
a
1
2x 100
x2 10000
a
1
2x 100
x2 10000
ax . 25
解:(m+n)2+(m+n)(m-3n) =(m2+2mn+n2)+(m2-3mn+mn-3n2) =m2+2mn+n2+m2-3mn+mn-3n2 =2m2-2n2. 当m= 2, n=1时, 原式=2×( 2 )2-2×12=2×2-2×1=2.
总结
知1-讲
化简时能用乘法公式的要用乘法公式,要注意解 题格式的规范性.
答:甲超市的销售额比乙超市多 ax 万元. 25
知2-讲
(2)当a=150,x=2时, ax 150 2 12. 25 25
答:甲超市的销售额比乙超市多12万元.
总结
知2-讲
在解答实际问题时,如果题目有字母就注意整式 的化简,化简后再代入数值.
知2-讲
例4 如图,某市有一块长为(3a+b)米,宽为(2a+b)米 的长方形地块,规划部门计划将该长方形地块进 行绿化,中间留出一块边长为(a+b)米的正方形区 域修建凉亭,则阴影部分的面积是多少平方米? 并求出当a=3,b=2时,阴影部分的面积.
A.0
B.2
C.-2
D.不能确定
3 若代数式x2+ax+9-(x-3)2的值等于零,则a的
值为( C )
A.0
B.-3
北师大版七年级数学下册 积的乘方课件
解:原式=9x6n-4x4n =9·(x2n)3-4·(x2n)2 =9×23-4×22 =72-16 =56
21. 已知x+y=a,求(x+y)3·(2x+2y)3·(3x+3y)3的值.
解:原式=(x+y)3·8(x+y)3·27(x+y)3 =216(x+y)9
∵x+y=a ∴原式=216a9
=[(-8)×(-0.125)]2 020×(-0.125) =12 020×(-0.125) =-0.125
二、过关检测 第1关
10. 计算(-4x)2的结果是( D )
A. -8x2
B. 8x2
C. -16x2
D. 16x2
11. 下列计算正确的是( D ) A. x2·x3=x6 B. (3x)3=9x3 C. (4a2)2=8a4 D. (ab2)3=a3b6
第3课 积的乘方
一、新课学习 知识点1:积的乘方 1.计算:22×32=__3_6_____;(2×3)2=_3_6______. 发现22×32__=______(2×3)2. 积的乘方等于_____乘__方__的__积_________, 即:(ab)n=___a_nb_n___(n为正整数).
=-1
2021
(2)(-2)2
020×
1 2
解:原式=(-2)2
;
020×
1 2
2020
1 2
=
2
=(-1)2
12020×20201
1 2
=1×1
2
=1 2
2
9. 计算: (1)0.599×2100; 解:原式=0.599×299×2=(0.5×2)99×2=199×2= (12×)(-2=8)22 020×(-0.125)2 021. 解:原式=(-8)2 020×(-0.125)2 020×(-0.125)
21. 已知x+y=a,求(x+y)3·(2x+2y)3·(3x+3y)3的值.
解:原式=(x+y)3·8(x+y)3·27(x+y)3 =216(x+y)9
∵x+y=a ∴原式=216a9
=[(-8)×(-0.125)]2 020×(-0.125) =12 020×(-0.125) =-0.125
二、过关检测 第1关
10. 计算(-4x)2的结果是( D )
A. -8x2
B. 8x2
C. -16x2
D. 16x2
11. 下列计算正确的是( D ) A. x2·x3=x6 B. (3x)3=9x3 C. (4a2)2=8a4 D. (ab2)3=a3b6
第3课 积的乘方
一、新课学习 知识点1:积的乘方 1.计算:22×32=__3_6_____;(2×3)2=_3_6______. 发现22×32__=______(2×3)2. 积的乘方等于_____乘__方__的__积_________, 即:(ab)n=___a_nb_n___(n为正整数).
=-1
2021
(2)(-2)2
020×
1 2
解:原式=(-2)2
;
020×
1 2
2020
1 2
=
2
=(-1)2
12020×20201
1 2
=1×1
2
=1 2
2
9. 计算: (1)0.599×2100; 解:原式=0.599×299×2=(0.5×2)99×2=199×2= (12×)(-2=8)22 020×(-0.125)2 021. 解:原式=(-8)2 020×(-0.125)2 020×(-0.125)
北师大版七年级数学下册课件:总第18课时1 两条直线的位置关系(第2课时)
图4
6.如图 5 所示,OA⊥OB,OC⊥OD,OE 为∠BOD 的平分线,∠BOE=17°. 求∠AOC 的度数.
图5
解:∵OA⊥OB,OC⊥OD, ∴∠AOB=∠COD=90°, ∵OE 为∠BOD 的平分线,∠BOE=17°, ∴∠BOD=2∠BOE=34°, ∴∠AOC=360°-90°-90°-34°=146°.
图3
5.如图 4 所示,计划把池中的水引到 C 处,可过点 C 引 CD⊥AB 于点 D, 然后沿 CD 开渠,可使所开的渠道最短.这种设计的依据是__直__线___外__一___点__与___直__线_ 上 _各___点__连___接__的___所__有___线__段___中___,__垂___线__段_.最短
A.线段 PA 的长度
B.线段 PB 的长度
C.线段 PC 的长度
D.线段 PD 的长度
图1
3.如图 2 所示,AD⊥MN,垂足为 D,点 A 到 MN 的垂线段是__A__D___,斜 线段有__A__B__,__A__C__,__A__E_.
图2
4.如图 3 所示,在△ABC 中,AC⊥BC,AC=4,BC=3,AB=5,则点 B 到 AC 的距离是__3__,点 A 到 BC 的距离是__4__,A,B 两点间的距离是_5___.
∴∠3=90°-∠2=90°-35°=55°.
5.如图 18-9,过点 A 作 CB 的垂线,并指出哪条线段的长度表示点 A 到 CB 的距离.
图 18-9
解:过点 A 作 CB 的垂线,交 CB 的延长线于点 E,如答图.根据点到直线的 距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离, 可得 AE 的长度表示点 A 到 CB 的距离.
6.如图 5 所示,OA⊥OB,OC⊥OD,OE 为∠BOD 的平分线,∠BOE=17°. 求∠AOC 的度数.
图5
解:∵OA⊥OB,OC⊥OD, ∴∠AOB=∠COD=90°, ∵OE 为∠BOD 的平分线,∠BOE=17°, ∴∠BOD=2∠BOE=34°, ∴∠AOC=360°-90°-90°-34°=146°.
图3
5.如图 4 所示,计划把池中的水引到 C 处,可过点 C 引 CD⊥AB 于点 D, 然后沿 CD 开渠,可使所开的渠道最短.这种设计的依据是__直__线___外__一___点__与___直__线_ 上 _各___点__连___接__的___所__有___线__段___中___,__垂___线__段_.最短
A.线段 PA 的长度
B.线段 PB 的长度
C.线段 PC 的长度
D.线段 PD 的长度
图1
3.如图 2 所示,AD⊥MN,垂足为 D,点 A 到 MN 的垂线段是__A__D___,斜 线段有__A__B__,__A__C__,__A__E_.
图2
4.如图 3 所示,在△ABC 中,AC⊥BC,AC=4,BC=3,AB=5,则点 B 到 AC 的距离是__3__,点 A 到 BC 的距离是__4__,A,B 两点间的距离是_5___.
∴∠3=90°-∠2=90°-35°=55°.
5.如图 18-9,过点 A 作 CB 的垂线,并指出哪条线段的长度表示点 A 到 CB 的距离.
图 18-9
解:过点 A 作 CB 的垂线,交 CB 的延长线于点 E,如答图.根据点到直线的 距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离, 可得 AE 的长度表示点 A 到 CB 的距离.
北师大版七年级数学下册第一章整式的乘除同底数幂的乘法、幂的乘方PPT课件
(5)(-x)2 ·(-x)3 = (-x)5 ( √ )
(6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × ) 对于计算出错的题目,你能分
析出错的原因吗?试试看!
(8) x7+x7=x14 ( × )
练一练
判断对错:
(1)(am )n amn
(2)a2 • a5 a10
等于什么呢?
(2)(a ) a a a a (m是正整数) = · = = 例七2年已级知数2学x+下5(y-BS3)=0,m求24x·32y的m值. m
m+m
2m
= a7 ·a3 =a10
请你观察上述结果的底数与指数有何变化?你能 am·an=am+n (m,n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数) (×)
指数
底数
103
=10×10×10
幂
3个10相乘
( 2 )10×10×10×10×10可以写成什么形式? 10×10×10×10×10=105
导入新课
问题引入 我国国防科技大学成功研制的“天河二号”超
级计算机以每秒33.86千万亿(3.386×1016)次运算. 问:它工作103s可进行多少次运算?
一个正方体的棱长是102,则它的体积是
多x 少?
y
2x 5y
am·an·ap = am+n+p (m、n、p都是正整数)
提醒:计算同底数幂的乘法时,要注意算式里面的负号是属于幂的还是属于底数的.
(5)(y2)3·y; 七年级数学下(BS)
=22x·25y=22x+5y=23=8.
×(5×5×5 ×…×5)
(6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × ) 对于计算出错的题目,你能分
析出错的原因吗?试试看!
(8) x7+x7=x14 ( × )
练一练
判断对错:
(1)(am )n amn
(2)a2 • a5 a10
等于什么呢?
(2)(a ) a a a a (m是正整数) = · = = 例七2年已级知数2学x+下5(y-BS3)=0,m求24x·32y的m值. m
m+m
2m
= a7 ·a3 =a10
请你观察上述结果的底数与指数有何变化?你能 am·an=am+n (m,n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数) (×)
指数
底数
103
=10×10×10
幂
3个10相乘
( 2 )10×10×10×10×10可以写成什么形式? 10×10×10×10×10=105
导入新课
问题引入 我国国防科技大学成功研制的“天河二号”超
级计算机以每秒33.86千万亿(3.386×1016)次运算. 问:它工作103s可进行多少次运算?
一个正方体的棱长是102,则它的体积是
多x 少?
y
2x 5y
am·an·ap = am+n+p (m、n、p都是正整数)
提醒:计算同底数幂的乘法时,要注意算式里面的负号是属于幂的还是属于底数的.
(5)(y2)3·y; 七年级数学下(BS)
=22x·25y=22x+5y=23=8.
×(5×5×5 ×…×5)
北师大版七年级数学下册1.1同底数幂的乘法教学课件(共30张)
m个10
n个10
根据( 幂的意义 )
=10×10×···×10
(m+n)个10
(根据乘法结合律 )
=10m+n (根据 幂的意义 )
2.2m×2n等于什么?
3.
(1)m 7
(1)n 7
和(-3)m×(-3)n呢?
(m,n都是正整数)
2. 2m×2n
=(2×2×···×2)×(2×2×···×2)
(4) (-2)2×27 =29
(5)(x)2(-x)3(-x) =x6
(6)32×3×9 - 3×34 =0
拓展延伸
已知:am=2,an=3.求am+n =?
解: am+n = am ·an =2 × 3 =6
能力提高
(1)已知xa=2,x b=3,求xa+b ___6____ (2)已知:an-3×a2n+1=a10,则n=__4_____ (3)如果2n=2,2m=8,则3n×3m =__8_1_.
am·an·ap = am+n+p
方法1 am·an·ap 或 am·an·ap
=(am·an)·ap
=am ·(an·ap )
=am+n·ap =am+n+p
=am·ap +n =am+n+p
方法2 am·an·ap
=(a·a·… ·a)(a·a·… ·a)(a·a·… ·a)
m个a
n个a
p个a
解: (x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
2.填空: (1) 8 = 2x,则 x = 3 ;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证一证 如果m,n都是正整数,那么am·an等于什么? 为什么?
am·an =(a·a·…·a) ·(a·a·…·a) (乘方的意义)
( m 个a) ( n 个a)
=(a·a·…·a)
(乘法的结合律)
( m+n 个a) =a( m+n 来自 (乘方的意义)归纳总结
同底数幂的乘法法则:
am ·an = am+n (m,n都是正整数).
同底数幂相乘,底数不变,指数相加.
注意 条件:①乘法
结果:①底数不变
②底数相同
②指数相加
典例精析 例1 计算: (1) (-3)7×(-3)6;
(3)-x3·x5;
(2)( 1 )3 1 ;
111 111
(4)b2m·b2m+1 .
解:(1)原式=(-3)7+6=(-3)13;
(2)原式= ( 1 )31 ( 1 )4;
(1)怎样列式? 3.386×1016 ×103
(2)观察这个算式,两个乘数1016与103有何特点? 我们观察可以发现,1016 和103这两个
幂的底数相同,是同底的幂的形式.
所以我们把1016 ×103这种运算叫作同 底数幂的乘法.
讲授新课
一 同底数幂相乘
忆一忆
(1)103表示的意义是什么? 其中10,3,103分别叫什么?
正整数) a ·a6 ·a3 = a7 ·a3 =a10
想一想:当三个或三个以上同底数幂相乘时,是否也具 有这一性质呢?用字母表示am ·an ·ap 等于什么呢?
am·an·ap = am+n+p (m、n、p都是正整数)
典例精析
例2 光在真空中的速度约为3×108m/s,太阳 光照射到地球上大约需要5×102m/s.地球距离 太阳大约有多远? 解:3×108×5×102
(19个10) =1019 (乘方的意义) =1016+3
试一试 1.根据乘方的意义填空,观察计算结果,你能发现
什么规律? (1)25×22=2 ( 7 )
=(2×2×2×2×2) ×(2×2) =2×2×2×2×2× 2×2 =27
(2)a3·a2=a(5 ) =(a﹒a﹒a) (a﹒a) =a﹒a﹒a﹒a﹒a =a5
=15×1010 =1.5×1011(m). 答:地球距离太阳大约有1.5×1011m.
当堂练习
1.下面的计算对不对?如果不对,应当怎样改正.
(1)b3·b3=2b3 ×
b3·b3=b6
(2)b3+b3=b6 ×
b3+b3=2b3
(3)a·a5·a3=a8 ×
a·a5·a3=a9
(4)(-x)4·(-x)4=(-x)16 × (-x)4·(-x)4=(-x)8 =x8
n=4; (2)已知xa=2,xb=3,求xa+b的值.
公式逆用:am+n=am·an 解:xa+b=xa·xb=2×3=6.
课堂小结
am·an=am+n (m,n都是正整数)
同底数幂 的乘法
法则
am·an·ap=am+n+p(m,n,p都是正整数)
同底数幂相乘,底数不变,指数 相加
底数相同时
直接应用法则
(4) x2·x2=2x4 ( × )
(5)(-x)2 ·(-x)3 = (-x)5 ( √ ) (6)a2·a3- a3·a2 = 0 ( √ )
(7)x3·y5=(xy)8 ( × )
(8) x7+x7=x14 ( × )
对于计算出错的题目,你能分 析出错的原因吗?试试看!
比一比
类比同底数幂的乘法公式am ·an = am+n (当m、n都是
指数
底数
103
=10×10×10
幂
3个10相乘
( 2 )10×10×10×10×10可以写成什么形式? 10×10×10×10×10=105
议一议
1016×103=?
=(10×10×…×10) ×(10×10×10) (乘方的意义)
(16个10)
(3个10)
=10×10×…×10(乘法的结合律)
1
第一章
七年级数学下(BS) 教学课件
整式的乘除
1.1 同底数幂的乘法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握同底数幂的乘法法则.(重点) 2.能够运用同底数幂的乘法法则进行相关计算.(难点)
导入新课
问题引入 我国国防科技大学成功研制的“天河二号”超
级计算机以每秒33.86千万亿(3.386×1016)次运算. 问:它工作103s可进行多少次运算?
111 111
(3)原式= -x3+5= -x8;
(4)原式= b2m+2m+1=b4m+1.
提醒:计算同底数幂的乘法时,要注意算式里面 的负号是属于幂的还是属于底数的.
练一练
判断(正确的打“√”,错误的打“×”)
(1)x4·x6=x24 ( × )
(2) x·x3=x3 ( × )
(3) x4+x4=x8 ( × )
注意 底数不相同时
先变成同底数, 再应用法则
常见变形:(-a)2=a2, (-a)3=-a3
七年级数学下(BS) 教学课件
第一章 整式的乘除
1.2 幂的乘方与积的乘方
第1课时 幂的乘方
导入新课
讲授新课
当堂练习
课堂小结
学习目标 1.理解并掌握幂的乘方法则;(重点) 2.掌握幂的乘方法则的推导过程并能灵活运用.(难点)
2.根据乘方的意义填空,观察计算结果,你能发现 什么规律?
5m× 5n =5(
)
=(5×5×5×…×5) ×(5×5×5 ×…×5)
(m个5) =5×5×…×5
(m+n个5) =5m+n 猜一猜 am ·an =a( m+n )
(n个5)
同注底意数观幂察相:乘,计底算 数前数不有后变,何,底变指数化数相?和加指
(1) xn+1·x2n =x3n+1
(2)
1 10
m
1 10
n
1 10
m+n
(3) a·a2+a3=a3+a3=2a6
注意 公式中的底数和指数可以是一个数、字母 或一个式子.
4.创新应用. (1)已知an-3·a2n+1=a10,求n的值;
公式运用:am·an=am+n 解:n-3+2n+1=10,
2.填空: (1)x·x2·x( 4 )=x7; (2)xm·( x2m)=x3m; (3)8×4=2x,则x=( 5 ).
23×22=25
3.计算下列各题:
A组
注意符号哟! B组
(1)(-9)2×93 =92×93=95
(2)(a-b)2·(a-b)3 =(a-b)5
(3)-a4·(-a)2 =-a4·a2 =-a6