人教版八年级数学上册分式 优秀教学设计2
人教版数学八年级上册15.1.1《从分数到分式》教学设计2
人教版数学八年级上册15.1.1《从分数到分式》教学设计2一. 教材分析《从分数到分式》是人民教育出版社八年级上册数学教材第15章第1节的内容。
本节课主要介绍了分数与分式的关系,分式的概念以及分式的基本性质。
通过本节课的学习,学生能够理解分数与分式的联系,掌握分式的概念和基本性质,为后续的分式运算打下基础。
二. 学情分析学生在七年级时已经学习了分数的概念和运算,对分数有一定的认识和理解。
但是,对于分数与分式的关系,以及分式的本质还需要进一步引导和启发。
此外,学生对于抽象的数学概念的理解能力还在发展中,需要通过具体实例和操作活动来帮助他们建立概念。
三. 教学目标1.知识与技能:学生能够理解分数与分式的关系,掌握分式的概念和基本性质。
2.过程与方法:学生通过观察、操作、思考等活动,培养逻辑思维能力和抽象思维能力。
3.情感态度与价值观:学生能够体验到数学与实际生活的联系,增强对数学的兴趣和自信心。
四. 教学重难点1.重点:分数与分式的关系,分式的概念和基本性质。
2.难点:分式的本质理解,分式与分数的转化。
五. 教学方法1.情境教学法:通过生活实例引入分数与分式的概念,让学生感受到数学与实际生活的联系。
2.启发式教学法:通过提问、讨论等方式,引导学生主动思考和探索,培养学生的逻辑思维能力。
3.操作活动法:通过实际操作和实践活动,让学生感知和体验分式的概念和性质。
六. 教学准备1.教学PPT:制作教学PPT,包括分数与分式的图片、实例、问题等。
2.教学素材:准备一些分数和分式的实际例子,如物品分配、价格比较等。
3.练习题:准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际生活中的例子,如物品分配、价格比较等,引导学生思考和讨论这些例子与分数的关系。
通过讨论,引入分数与分式的概念。
2.呈现(15分钟)通过PPT呈现分数与分式的定义和性质,引导学生观察和思考分数与分式的联系。
八年级数学上册《分式的运算》教案、教学设计
-完成课本第章节后的练习题,包括分式的定义、分式的基本运算规则。
-设计一些简单的分式运算题目,要求学生独立完成,并在家长监督下进行自我检查,以提高学生的自主学习能力。
2.应用能力提升:
-选择一些具有实际背景的分式问题,如购物打折、配比问题等,要求学生运用所学知识解决,并写出解题过程。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以学生熟悉的生活情境为背景,提出一个关于比例分配的问题,如“小华和小明一起做家务,小华打扫卫生,小明洗衣服,如果他们共同得到10个积分,按照打扫卫生和洗衣服的工作量比例分配,小华应该得到多少积分?”
2.教学过程:
-引导学生思考如何表示小华和小明的工作量比例。
4.培养学生的自主学习能力,引导他们通过观察、思考、总结等过程,掌握分式运算的方法和技巧。
三、教学重难点和教学设想
(一)教学重难点
1.分式的基本概念:分子、分母、分式值等概念的理解是学习分式运算的基础,需要学生深刻理解并熟练掌握。
2.分式的运算规则:分式乘除法、分式加减法、分式乘方等运算规则是本章节的重点,学生需要熟练掌握并能够灵活运用。
2.教学过程:
-教师引导学生回顾本节课所学的内容,总结分式的定义、运算规则及解题方法。
-帮助学生梳理分式运算的重难点,巩固记忆。
-鼓励学生提出疑问,针对问题进行解答,确保学生对所学知识有深刻的理解。
五、作业布置
为了巩固学生对分式运算的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.分式方程与不等式的解法:将分式运算应用于实际问题中,解决方程和不等式问题,是本章节的难点。
(二)教学设想
1.创设情境,引入新课:通过生活中的实例,如比例分配问题,引出分式的概念,让学生感受到分式运算的实际意义,激发学习兴趣。
人教版八年级上册数学《 分式方程》(优质教案)
人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
八年级数学上册《分式》教案二
八年级数学上册《分式》教案二八年级数学上册《分式》教案二一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,能熟练地求出分式有意义的条件.二、重点、难点1.重点:理解分式有意义的条件.2.难点:能熟练地求出分式有意义的条件.三、课堂引入1.让学生填写P127[思考],学生自己依次填出:,,,.2.学生看问题:一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为v km/h.轮船顺流航行90 km所用的时间为小时,逆流航行60 km所用时间小时,所以=.3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?四、例题讲解P128例1. 当下列分式中的字母为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母的取值范围.[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1)(2)(3)[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)五、随堂练习 1.判断下列各式哪些是整式,哪些是分式?9x+,2. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?(1)(2)(3)六、课后练习1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .2.当x取何值时,分式无意义?3. 当x为何值时,分式的值为0?。
新人教版 数学 八年级上册 第十五章 分式 15.1.1从分数到分式1教案2
15.1.1 从分数到分式课标依据1、借助现实情境了解分式,进一步理解用字母表示数的意义。
2、能分析简单问题中的数量关系,并用代数式(分式)表示。
一、教材分析“从分数到分式”是人教版九年制义务教育课本中八年级上第十五章的第一节内容,是中学知识体系的重要组成部分。
分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,是以分数为基础,类比引出分式的概念,把学生从对式的认识从整式扩展到有理式。
学好本章不仅能提高学生的运算能力、运算速度,还有助于培养学生的观察、类比归纳能力,并让学生体会从具体到抽象、从特殊到一般的认知规律;让学生在自主探索的学习过程中享受成功的喜悦,形成良好的学习氛围,提高学生学习数学的兴趣。
从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.二、学情分析我校是农村初中,学习基础有较大的差异,大部分学生数学基础比较薄弱,对数学学习感觉很困难,导致学习兴趣低下。
为了激发学生的学习数学的兴趣,平时我在课堂上鼓励学生积极发言、小组讨论、合作探究等多种形式调动学生学习的积极性。
三、教学目标知识与技能1.理解分式的概念,会辨别分式与整式.2.会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.过程与方法能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感态度与价值观通过生活中的实例让学生体验发现身边的数学,激发学生对数学的学习兴趣,进一步引导探究,培养学生严谨创新的思维能力.四、教学重点难点教学重点准确理解分式的概念;教学难点会求分式有意义时的字母满足的条件,并能求出分式值为零的这一特殊情况时字母满足的条件.五、教法学法本节课运用启发类比的教学方法,通过不断的实践和认识,循序渐进的让学生全面地掌握分式的意义,分式有意义、无意义、值为零的条件,使学生体会到新旧知识间的联系,树立学习数学的信心。
人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。
人教版八年级上册数学《 分式方程》(优质教学设计)
人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。
本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。
教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。
但是,学生对分式方程的理解和应用还比较薄弱。
因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。
三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。
2.引导学生掌握解分式方程的方法,并能够熟练运用。
3.通过解决实际问题,培养学生的应用能力。
四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。
2.难点:解分式方程的步骤和技巧。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于展示和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。
例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。
让学生尝试用方程来解决这个问题,从而引出分式方程的概念。
2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。
例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。
教师可适时给予提示和指导。
4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。
人教版八年级数学上册15.2.1分式的乘除2教学设计
-采用过程性评价,关注学生在学习过程中的参与度、合作态度和解决问题的能力。
-定期进行总结性评价,通过测试和作业,评估学生对分式乘除知识的掌握程度。
-鼓励学生自我评价和同伴评价,培养他们的自我反思能力和批判性思维。
4.教学环境设想:
-创设一个积极的学习氛围,鼓励学生提问和表达自己的观点。
3.提高拓展题:设计一些难度较大的题目,让学生在解决问题的过程中提高思维能力和灵活运用知识的能力。
-例如:已知$x = \frac{a}{b}$,$y = \frac{c}{d}$,求解$\frac{x^2y}{x+y}$的值。
4.小组合作研究题:鼓励学生以小组为单位,共同探讨和研究一些开放性问题,培养学生的团队合作精神和探究能力。
-拓展阶段:鼓励学生尝试解决更复杂的实际问题,将分式乘除与之前学过的知识相结合,提高综合解决问题的能力。
2.教学方法设想:
-采用启发式教学法,通过提问和引导,激发学生的思考,帮助他们理解分式乘除的本质。
-利用信息技术,如多媒体演示、在线教学平台等,提供直观的学习资源,帮助学生克服学习难点。
-实施差异化教学,针对不同学生的学习情况,提供不同难度的练习题,确保每个学生都能在原有基础上得到提高。
-例如:计算下列分式的乘积或商,并简化结果:$\frac{a}{b} \times \frac{c}{d}$,$\frac{a}{b} \div \frac{c}{d}$。
2.实际问题应用题:将分式乘除与生活实际相结合,设计一些应用题,让学生学会将数学知识应用于解决生活中的问题。
-例如:小华有一块长方形的巧克力,长为$a$厘米,宽为$b$厘米,他想将其分成大小相等的正方形小块,每块边长为$c$厘米,问最多可以分成多少块?
人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;
人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计
(3)采用分组合作学习,培养学生的团队协作能力和交流表达能力。
2.教学过程:
(1)导入:通过回顾分式的概念,引导学生思考分式在生活中的应用,为新课的学习做好铺垫。
(2)新知传授:以问题为导向,引导学生探究分式的性质和运算法则,总结解题方法。
4.能够利用分式解决一些生活中的优化问题,如折扣、百分比等,提高学生的应用能力。
(二)过程与方法
1.通过对分式的复习,培养学生自主探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
2.引导学生运用数形结合的思想,通过绘制图像、列式分析等方法,加深对分式性质和运算的理解。
3.通过设计不同难度的练习题,让学生在解答过程中逐步掌握分式运算的技巧和方法,提高解题效率。
4.引导学生总结分式学习中的常见错误,分析原因,培养学生自我纠正和反思的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,激发学生主动参与课堂活动的积极性。
2.通过分式的学习,让学生认识到数学与实际生活的紧密联系,增强学生的应用意识。
3.培养学生严谨、细致的学习态度,提高学生的逻辑思维能力和判断力。
4.鼓励学生面对困难时,保持积极的心态,培养良好的学习习惯和自主学习能力。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的积极性,使学生在复习分式的过程中,既能巩固基础知识,又能提高解决问题的能力,从而达到教学目标。
二、学情分析
八年级学生在学习分式这一章节时,已经具备了一定的代数基础,掌握了整式的运算和方程求解,这为学习分式打下了基础。然而,分式的概念和运算对学生来说仍存在一定的难度,尤其是在分式的有理化、分式方程的求解等方面,学生容易产生混淆和错误。此外,学生在解决实际问题时,往往难以将分式知识灵活运用,需要教师引导和指导。
最新初中人教版数学人教八年级上册【教学设计2】《分式的加减》
《分式的加减》 教学对象是八年级学生,从知识的角度看,在学习本章前,学生已经掌握了用字母表示数、列简单代数式,会把一些简单的实际问题中的数量关系用代数式表示出来,并会进行分式的乘除运算,基本掌握通分,能够确定几个分式的最简公分母;从数学活动经验、思维特征、学习习惯看,通过对分式的前期研究,运用类比分数的有关概念及性质、运算联想引申出分式的有关概念及性质、运算得习惯已基本形成。
通过第三学段三个学期的学习,思维水平也有了进一步地提升,理性思考能力明显提高,具备类比分数的加减运算法则探究出分式加减运算法则的能力。
但经验性思维依然占主导地位,部分学生的学习积极性、主动性不强,加之经历分数运算、因式分解的两次分流,分式加减运算既是前面代数运算的综合,又是分式概念及运算的难点内容之一,因此,对异分母分式加减和运用分式加减法则运算法则之后所涉及的诸如正确进行整式运算、分式化简等易出现差错,教学中应通过训练加以强化。
【知识与能力目标】1.熟练掌握同分母分式的加减运算2.掌握异分母分式的加减法则及通分的过程与方法.3. 会进行简单的分式的四则混合运算.【过程与方法目标】1、体验知识的化归,提高思维的灵活性,培养学生整体思考和分析问题的能力.2、经历分式混合运算法则的探究过程,进一步领会类比的数学思想.【情感态度价值观目标】让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品格,渗透化归对立统一的辩证观点.【教学重点】1.分式的加减法.2.熟练地进行分式的混合运算.【教学难点】1.异分母分式的加减法及简单的分式混合运算.2.熟练地进行分式的混合运算.◆ 教学目标◆ 教材分析◆ 教学重难点◆一、引入新课(课件展示)问题1:甲工程队完成一项工程需n 天,乙工程队要比甲工程队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景 问题2:2010年,2011年,2012年某地的森林面积(单位:公顷)分别是S1,S2,S3,2012年与2011年相比,森林面积增长率提高了多少?问题2的目的与问题1一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,请学生自己说出分式的加减法法则.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗?二、讲授新课分式的加减法法则:同分母分式相加减,分母不变,把分子相加减。
人教版八年级数学上册教学设计15.1 分式
人教版八年级数学上册教学设计15.1 分式一. 教材分析人教版八年级数学上册第15.1节“分式”是学生在掌握了实数、代数式等基础知识后,进一步学习数学的重要内容。
分式是数学中基本的代数表达式,它在生活中、物理、化学等学科中都有广泛的应用。
本节内容主要介绍分式的概念、性质和运算,为学生今后学习函数、方程等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,能够进行简单的代数运算。
但是,对于分式的概念和性质,学生可能还比较陌生,需要通过具体的例子和练习来逐步理解和掌握。
同时,学生可能对分式的运算规则感到困惑,需要通过大量的练习来熟练运用。
三. 教学目标1.理解分式的概念,掌握分式的性质。
2.学会分式的基本运算,能够熟练进行分式的化简和求值。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.分式的概念和性质。
2.分式的运算规则。
五. 教学方法采用讲授法、例题演示法、练习法、小组合作法等教学方法。
通过生动的例子和丰富的练习,让学生理解和掌握分式的概念和性质,熟练运用分式的运算规则。
六. 教学准备1.教学PPT。
2.例题和练习题。
3.学生分组合作的学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某班级有男生和女生共60人,其中男生是女生的2倍,求男生和女生各有多少人?”让学生思考和讨论,引出分式的定义。
2. 呈现(15分钟)讲解分式的概念,通过PPT 展示分式的基本性质,如分式的分子、分母、分式的值等。
同时,给出一些分式的例子,让学生理解和掌握分式的概念和性质。
3.操练(15分钟)让学生进行分式的化简和求值的练习,如“化简分式2x 3x+5”,“求分式x−1x+2的值,当x =3时”。
通过这些练习,让学生熟练运用分式的性质和运算规则。
4. 巩固(10分钟)让学生分组合作,解决一些实际问题,如“某商品的原价是120元,打八折后的价格是多少?”让学生运用分式进行计算和解决实际问题,提高学生的应用能力。
八年级数学上册《分式》教案、教学设计
为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。
数学人教版八年级上册分式 ---教学设计
《分式》雷州市第八中学------罗永超选自《人教版九年义务教育八年级第一学期第十五章第一节》P1-P4一、教材分析1.地位和作用本节课的主要内容是分式的概念以及理解并掌握分式有意义、无意义、分式值为0的条件。
它是在学生掌握了整式的四则运算,多项式的因式分解之后,以小学分数知识为基础,类比引出分式的概念,把学生对“式”的认识由整式扩充到有理式。
学好本节知识是为进一步学习分式、函数、方程等知识作好铺垫。
2.学情分析我任教的班级学生基础比较扎实,学习能力较强.通过分数的学习,学生可能会用分数的定义去理解分式。
但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式。
分母的值会随着字母的变化而发生变化,为了让学生能切实掌握所学知识,在教学过程中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理.还特别让学生对中考试题小试牛刀,达到预期教学效果。
3.教学重点与难点重点:分式的概念.难点:理解和掌握分式有意义以及值为0时的条件。
突破难点的关键:由于部分同学容易忽略分式的分母值不能为零,因此在教学中采取类比分数的意义,强调分式中分母的值不能为零的教学效果。
二、教学目标知识技能目标:①了解分式的概念②能求出分式有意义、值为0的条件。
过程性目标:①通过对分式与分数的类比,让学生亲身经历探究整式扩充到有理式的过程,初步学会运用类比转化的思想解决数学问题。
②通过类比学习,让学生体会到事物间的联系与变化的辩证观点情感态度目标:通过联系实际探究分式的概念,让学生体会到数学的应用价值,同时在合作学习中增强与他人的合作意识。
三、教学方法与学法1.教学方法:采用师生互动探究式教学,遵循八中特色的“导学模式”2.学法引导:自主探索、研讨发现,让学生自己总结3.设计理念:基础教育课程改革纲要,对课程的实施有明确的要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识和培养能力的关系,关注个体差异,满足不同层次的学生需求4. 教学手段:计算机多媒体设施四、教学过程设计(分为6个部分)(一)创设情景 “积”发兴趣(从实际问题引入,体现了数学源于生活。
人教版八年级数学上册分式方程教学设计
6.情感关怀,营造氛围:关注学生的学习情感,营造一个温馨、支持的学习环境,让学生在轻松的氛围中学习。
-教师应以亲切的态度对待学生,鼓励学生提出疑问,给予耐心的解答和帮助。
7.创新思维,拓展视野:在教学过程中,鼓励学生思考问题的多种可能性,培养学生的创新思维和解决问题的能力。
-第3题:将以下实际情境转化为分式方程,并求解。
这些题目旨在帮助学生巩固分式方程的基本概念和求解方法。
2.提高拓展题:选择以下两题进行解答:
-第4题:比较下列分式方程的难易程度,并说明原因。
-第5题:求解一个含有两个未知数的分式方程组,并讨论其解的情况。
这些题目旨在提高学生的分析能力和解题技巧。
3.应用实践题:结合生活实际,自选一个情境,建立分式方程,并解决以下问题:
3.应用实例:结合教材中的例题,讲解分式方程在实际生活中的应用,让学生体会数学的实用性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
-分式方程与整式方程的联系与区别是什么?
-分式方程在实际生活中的应用有哪些?
2.汇报交流:各小组汇报讨论成果,教师点评并总结,引导学生形成系统化的认识。
针对以上情况,教师应充分了解学生的认知水平和学习需求,采用启发式教学策略,引导学生从已知知识向新知识过渡。在教学中,注重培养学生的逻辑思维能力和问题解决能力,鼓励学生积极参与课堂讨论,提高他们的自主学习能力。同时,关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中,更好地理解和掌握分式方程的知识。
六、课堂小结
1.让学生回顾本节课所学内容,总结分式方程的知识点。
人教版八年级上册数学《 分式方程(二)》教学设计
人教版八年级上册数学《分式方程(二)》教学设计一. 教材分析人教版八年级上册数学《分式方程(二)》的内容主要包括分式方程的解法、分式方程的应用等。
本节课的教学内容是在学生已经掌握了分式方程的基本概念和一元一次方程的解法的基础上进行的。
通过本节课的学习,使学生理解和掌握分式方程的解法,提高解决实际问题的能力。
二. 学情分析学生在七年级时已经学习过一元一次方程和方程的解法,对基本的方程概念和求解方法有一定的了解。
但是,对于分式方程,学生可能还存在着一些困惑,如分式方程的解法步骤、解题思路等。
因此,在教学过程中,需要引导学生进行思考和探索,帮助他们理解和掌握分式方程的解法。
三. 教学目标1.使学生理解和掌握分式方程的解法。
2.培养学生的数学思维能力和解决实际问题的能力。
3.提高学生的学习兴趣和自信心。
四. 教学重难点1.分式方程的解法步骤和思路。
2.分式方程在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设计具有挑战性和实际意义的问题,引导学生进行思考和探索,从而提高他们的数学思维能力和解决实际问题的能力。
同时,通过小组合作学习,培养学生的团队合作意识和沟通能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备教案和教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出分式方程的概念,激发学生的学习兴趣。
2.呈现(15分钟)讲解分式方程的解法步骤和思路,通过示例进行演示,让学生理解和掌握。
3.操练(15分钟)让学生独立完成一些分式方程的练习题,巩固所学的知识。
4.巩固(5分钟)对学生的练习进行点评和讲解,解答他们的疑惑,巩固所学知识。
5.拓展(10分钟)通过一些实际问题,引导学生运用所学的分式方程知识进行解决,提高他们的解决实际问题的能力。
6.小结(5分钟)对本节课的学习内容进行总结,强调分式方程的解法步骤和思路。
人教版八年级数学上册第15章《分式》教学设计(共12课时)
人教版八年级数学上册第15章《分式》教学设计(共12课时)一. 教材分析人教版八年级数学上册第15章《分式》是学生在学习了实数、代数式、方程等知识后,进一步拓展数学知识的一个章节。
分式作为数学中的一个重要概念,不仅在初中数学中占有重要地位,而且在高中乃至大学的数学学习中也会经常用到。
本章主要内容有分式的概念、分式的运算、分式的性质等。
通过本章的学习,使学生能理解分式的概念,掌握分式的运算方法,了解分式的性质,为后续学习函数、不等式等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等知识有了初步的认识。
但是,学生对分式的理解还比较模糊,分式的运算和性质对于他们来说是一个新的挑战。
因此,在教学过程中,需要引导学生从实际问题中抽象出分式的概念,通过对比、归纳等方法,让学生自己发现并总结分式的性质,从而提高他们的学习兴趣和自主学习能力。
三. 教学目标1.知识与技能:使学生理解分式的概念,掌握分式的基本运算方法,了解分式的性质。
2.过程与方法:通过自主学习、合作交流等方法,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习分式的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:分式的概念、分式的运算、分式的性质。
2.难点:分式的运算规律、分式的性质的推导和应用。
五. 教学方法1.启发式教学:通过提问、引导、讨论等方式,激发学生的思维,培养他们的抽象思维能力。
2.自主学习:鼓励学生自主探究,发现问题、解决问题,提高他们的自主学习能力。
3.合作交流:引导学生进行小组讨论,分享学习心得,互相帮助,共同提高。
六. 教学准备1.教学PPT:制作清晰、简洁的教学PPT,便于学生理解和记忆。
2.教学素材:准备一些与分式相关的实际问题,用于引导学生从实际问题中抽象出分式的概念。
3.练习题:准备一些分式的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生从实际问题中抽象出分式的概念。
人教版八年级上册数学《分式的运算规则》教学设计(优质获奖)
人教版八年级上册数学《分式的运算规则》教学设计(优质获奖)1. 教学目标- 理解分式的定义和基本性质;- 掌握分式的四则运算规则;- 能够应用所学的知识解决实际问题。
2. 教学准备- 教材:人教版八年级上册数学教材《分式的运算规则》;- 教具:教学投影仪、白板、马克笔;- 学具:练册、作业本;- 其他:课件、题、实例。
3. 教学过程3.1 概念讲解- 引入分式的概念,解释分子、分母的含义;- 介绍分子、分母的基本运算规则;- 给出实际生活中的例子,让学生理解分式的应用场景。
3.2 分式的四则运算- 讲解分式的加法运算规则,通过具体例子演示;- 引导学生进行练,巩固加法运算规则;- 教授分式的减法、乘法和除法运算规则,以类似的方式进行讲解、演示和练。
3.3 实际问题应用- 出示一些实际问题,让学生运用所学的分式运算知识进行解决;- 引导学生思考并讨论解决问题的方法和步骤;- 鼓励学生展示他们的解决思路,并进行讨论和评价。
4. 教学评价4.1 课堂练- 在课堂上进行一些题练,检查学生对分式运算规则的掌握程度;- 针对学生的答题情况进行及时纠正和解答,加深对知识点的理解。
4.2 作业布置- 布置练册中与本节课内容相关的练题作业;- 鼓励学生独立完成作业,并注重练题的应用能力。
4.3 测验评估- 通过定期的小测验评估学生的研究效果;- 结合实际学情,及时调整教学策略,提供巩固和拓展的辅导。
5. 特殊辅导和提升- 针对研究进度较快的学生,提供更有挑战性的问题,拓展其分式运算能力;- 针对研究进度较慢的学生,进行个别辅导和补充材料的提供,帮助他们理解和掌握分式的运算规则。
6. 教学反思- 整理学生在本节课中的反馈和表现,及时反思教学效果;- 针对学生的问题和难点,准备相应的辅导资料和策略,以提升教学质量。
以上是人教版八年级上册数学《分式的运算规则》教学设计,主要着重讲解分式的定义和基本运算规则,并应用于实际问题中,旨在培养学生的分式运算能力和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B、
6a5b9 (a − b)5 ; C、12 a2b5 (a − b)3 ;
让学生通过自 己的观察,比较 发现分式与分 数约分的类似 之处,将新知识 的学习画归位 已有的知识
D、 6a3b5 (a − b)3 ;
步骤 教学内容
教 法 设学 法 设
计
计
2、下列各式中,正确的变形是
(
)
课
A、
− −
m−n m+n
课题 主备人 教 学 目 标 重 点、 难 点 学 生 分 析
授课日期
分式(二)
课型
新授
使用人
1、学习分式的有关概念与运算法则。
2、会根据分式的基本性质正确进行分式变形
重点:分式的有关概念与运算法则。 难点:分式的基本性质的应用与分式变形技巧
分式的运算与分数的运算类似,运算法则几乎一样的,差别的是数 与式,最后应归纳为整式的运算,让学生十分注意分式的基本性质,以 及通分,约分.
学生独立计算 后、 回答:(1)分式 的定义(2)分 数 的性质。(3)在 异分母的分数 加碱运算中,运 用了“通分的方 法”把异分母的 分数加法转化 为同分母的分 数加法。
(1) a = a 2 b b2
(2) m +1 = 1 m2 −1 m −1
(3) − a + b = a + b −c −c
=
m−n m+n
;
教师巡视、指导 学生完成下相 关的题目。 学生独立完成、
B、
−
9 m+n
=
9 m+n
;
堂
0.01m + 3n = m + 300n
C、 0.1m − 0.2n 10m − 20n ;
小组讨论并 改正、
− a+b = − a − b
练
D、 m
−m ;
习
课
分式 分式的概念:
师生共同归纳
堂
分式有意义的条件
小结
小
分式的基本性质分式的变号法则
结
分式的约分 分式的乘法
分式的除
法.乘方
步骤 教学内容
教 法 设学 法 设
计计教ຫໍສະໝຸດ 学过程步骤
教学内容
教 法 设学 法 设
计
计
一、 复 习 引 入
一、整式和分式统称为有理式 分式的定义:用 A、B 表示两个整式, 就可以写成 A÷B 的形式。如果 B 中含 有字母,式子就叫做分式。 1:下列各式中那些是整式?那些是分 式?
x 3+ 1 -3x 3 - 1
x
兀
m
x 8 x−y
教师出示相关 题目、引导学生 独立完成、
2:当取什么数时,下列分式有意义
(1) 2x −1 x=3
3x − 1 (4) x−5
(2) 1+ 2 x −1
x2 − 4 2−x
(3)
同时教师进行 巡视、从而发现
同学们存在的
问题、并且指导
个别学生存在
3:判断下列等式是否成立,如果成立, 的问题。
说明右边是怎样从左边得到的,如果不
成立,请举出反例加以说明。
第三小题题的 更局势什末?
步骤 教学内容
教 法 设学 法 设
计
计
二、 新
课
三、 练 习
1、填出下列各式中末知的分子或分母:
(1) ( ) = x − y
x2 − y2 x + y
(2)
a2
+ 2ab + b2 a+b
=
a+b
()
2、不改变分式的值,把下列各式的分子 与分母中各项系数化为整数
引导学生自己 完成习题的基 础上进行适当 归纳
(2) − x3 + 2x + 1 4− x2 + x
1
1 、 分 式 3a3b4 (a − b)3 和
让学生通过自 己的观察,比较 发现分式与分 数约分的类似 之处,将新知识 的学习画归位 已有的知识
1
6a 2b5 (a − b)2
()
的最简公分母是
出示练习题、指 导学生完成
A 、 18 a3b5 (a − b)3 ;
学生独立完成、 小组内交流、改 错 进而更好的理 解分式得基本 性质
(1) 0.3x + 1.2 0.05x − 1
引导学生讨论、
(2)
1 2
a
+
1 3
b
1 3
a
−
1 4
b
并说明原因、
活用分式的基 本性质、解答有 关题目、
3:不改变分式的值,使下列各式的分子、
分母的最高次项的系数化为整数
(1)— 2a +1 1− a2