傅里叶变换
4种傅里叶变换
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
DFT的变换 的变换
x(nT)=x(n)
Tp = 1 F
Tp = NT
x(e jkΩ0T ) x(k)
0 T 2T 1 2
Ωs = 2 π T 1 fs = T
NT
N
Ω0 =
2 π =2 F π Tp
t n
Ωs = N 0 Ω
( )
--Ω
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
4.离散傅里叶变换 离散傅里叶变换(DFT) 离散傅里叶变换
周期性离散时间信号从上可以推断: 周期性离散时间信号从上可以推断: 从上可以推断 周期性时间信号可以产生频谱是离散的 离散时间信号可以产生频谱是周期性的。 离散时间信号可以产生频谱是周期性的。 得出其频谱为周期性离散的 得出其频谱为周期性离散的。 周期性离散
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
四种傅里叶变换形式的归纳
copyright©赵越 ise_zhaoy1@
Ω
正: X(e jω ) =
1 反 : x(n) = 2π
n=−∞
x(n)e − jnω ∑
∞
∫π
−
π
X(e jπ )e jnω dω
copyright©赵越 ise_zhaoy1@
4种傅里叶变换
对称性
时域信号 离散的 非周期的 频域信号 周期的 连续的
时域:非周期、离散(取样间隔为T 时域:非周期、离散(取样间隔为T) 频域:连续、周期( 频域:连续、周期(周期为 Ω = 2π ) s
copyright©赵越 ise_zhaoy1@
序列傅里叶变换公式
序列傅里叶变换公式
傅里叶变换是一种重要的信号分析工具,可以将一个时域上的连续函数或离散序列转换到频域上。
对于连续函数,其傅里叶变换公式为:
F(w) = ∫[−∞,+∞] f(t)e^(-jwt) dt
其中,F(w)表示频域上的复数函数,f(t)表示时域上的连续函数,ω为角频率。
对于离散序列,其傅里叶变换公式为:
F(k) = Σ[n=0,N-1] f(n)e^(-j2πkn/N)
其中,F(k)表示频域上的复数序列,f(n)表示时域上的离散序列,N表示序列的长度,k为频域上的整数频率。
傅里叶变换的公式可以将时域上的信号转换为频域上的复数函数或序列,从而可以分析信号的频谱特性,包括频率成分、幅度、相位等信息。
这对于信号处理、通信系统设计、图像处理等领域都有着广泛的应用。
常见的傅里叶变换
常见的傅里叶变换
傅里叶变换(FourierTransformation)是在数学术语中指任何将时域信号转换成频域信号(包括反向转换)的一种算法。
它可以将任何时域函数转换为复杂的频率函数,并使用它来衡量信号的性质。
这种变换的另一种表达形式是“Fourier分析”,它可以用于分析和解释复杂的信号,以及从中提取有关信号频率和振幅的信息。
傅里叶变换的主要用途是将复杂的时域信号转换为频域信号,以便快速获取信号的性质。
它也被广泛用于信号处理,数字信号处理,图像处理,科学可视化,生物信号处理,信号检测,滤波器设计等领域。
它可以提取有关信号的重要特征,包括频率,振幅,相位等,这些特征在信号分析,处理和重构方面非常重要。
在数学中,傅里叶变换可以用来进行积分及其反向变换,以及用于传输函数系统的稳定性分析。
此外,它也可以用于语音处理,设计滤波器,图像处理等方面。
常见的傅里叶变换有:
1. 傅里叶变换(Fourier Transform):这是最基本的傅里叶变换,它用于将时域函数转换为频域函数。
2. 快速傅里叶变换(Fast Fourier Transform):它是基于傅里叶变换的优化算法,可以将复杂信号的傅里叶变换运算时间减少到计算机可承受的最低水平。
3. 非负傅里叶变换(Non-negative Fourier Transform):它是一种特殊的傅里叶变换,它只用非负数来表示傅里叶变换的系数,这
样可以更加精确地表示一个原始信号的复杂结构。
4. 小波变换(Wavelet Transform):它是一种相对傅里叶变换而言的更加复杂的算法,它可以更精确地描述复杂信号,更有效地提取信号特征。
常见傅里叶变换
常见傅里叶变换傅里叶变换是一种常见的数学方法,用来把一个信号从时域(time domain)变换到频域(frequency domain),即从时间变换成周期,为信号分析和处理提供理论。
从量子物理学到电路设计,从数字图像处理到数字信号处理,傅里叶变换都发挥着重要作用。
一般来说,傅里叶变换可分为离散傅里叶变换(Discrete Fourier Transform,DFT)和连续傅里叶变换(Continuous Fourier Transform,CFT)。
离散傅里叶变换是对某类数字信号进行频率谱分析的方法,用于表达在某一时刻及其之前的信号。
例如,它可以用来分析歌曲中的某些音调,或者某个难以分析的电路中的某些信号。
另一方面,连续傅里叶变换是一种从时域变换到频域的数学技术,它可以计算信号的振幅和相位,以及其他用于检测特定频率信号的信息。
它广泛应用于音频处理,天文观测,射电望远镜等领域。
傅里叶变换也可以用来表示函数和操作,比如傅里叶级数、小波变换等。
傅里叶变换可以帮助人们实现更高精度的信号处理,提高信号处理效率。
它有助于确定信号构成,也可以探索不同信号之间的关系。
举个例子,当电台收到许多不同频率的电视信号时,傅里叶变换可帮助把这些信号的相位分开,避免它们混合在一起。
此外,傅里叶变换也有助于把复杂的数据简化为简单的数学形式,比如利用傅里叶级数来解决非线性方程。
除离散傅里叶变换和连续傅里叶变换外,还有一类受欢迎的傅里叶变换,它在信号处理领域也有广泛的应用。
它包括快速傅里叶变换(Fast Fourier Transform,FFT)、中心矩形法(Central Momentum Method)、矩形变换(Rectangular Transform)、拉普拉斯变换(Laplace Transform)等。
快速傅里叶变换几乎在所有的数字信号处理系统中都有应用,它可以以更少的时间来完成傅里叶变换,从而使信号处理变得更有效率。
常用的傅里叶变换
常用的傅里叶变换
傅里叶变换是一种非常重要的数学工具,在信号处理、图像处理、物理学、工程学等领域有着广泛的应用。
常用的傅里叶变换包括:
离散傅里叶变换(Discrete Fourier Transform, DFT):用于对离散信号进行频域分析,将时域信号转换为频域信号。
快速傅里叶变换(Fast Fourier Transform, FFT):是计算离散傅里叶变换的一种高效算法,能够快速地计算离散信号的频谱。
傅里叶级数(Fourier Series):用于将周期信号分解为一系列正弦和余弦函数的和,常用于分析周期性信号的频谱成分。
傅里叶变换(Fourier Transform):用于对连续信号进行频域分析,将连续时域信号转换为连续频域信号,包括傅里叶正变换和傅里叶逆变换。
这些傅里叶变换在实际应用中起着重要作用,能够帮助我们理解信号的频域特性,进行滤波、压缩、频谱分析等操作。
五种傅里叶变换解析
五种傅里叶变换解析标题:从简到繁:五种傅里叶变换解析引言:傅里叶变换是数学中一种重要且广泛应用于信号处理、图像处理和物理等领域的工具。
它的基本思想是将一个信号或函数表示为若干个不同频率的正弦波的叠加,从而揭示信号或函数的频谱特性。
本文将展示五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开,帮助读者逐步理解傅里叶变换的原理与应用。
第一部分:离散傅里叶变换(DFT)在此部分中,我们将介绍离散傅里叶变换的基本概念和算法。
我们将讨论DFT的离散性质、频域和时域之间的关系,以及如何利用DFT进行频域分析和滤波等应用。
此外,我们还将探讨DFT算法的时间复杂度,以及如何使用DFT来解决实际问题。
第二部分:快速傅里叶变换(FFT)在这一部分中,我们将深入研究快速傅里叶变换算法,并详细介绍其原理和应用。
我们将解释FFT如何通过减少计算量和优化计算过程来提高傅里叶变换的效率。
我们还将讨论FFT算法的时间复杂度和几种不同的FFT变体。
第三部分:连续傅里叶变换(CTFT)本部分将介绍连续傅里叶变换的概念和定义。
我们将讨论CTFT的性质、逆变换和时频分析的应用。
进一步,我们将引入傅里叶变换对信号周期性的描述,以及如何利用CTFT对信号进行频谱分析和滤波。
第四部分:离散时间傅里叶变换(DTFT)在这一章节中,我们将介绍离散时间傅里叶变换的基本原理和应用。
我们将详细讨论DTFT的定义、性质以及与DFT之间的关系。
我们还将探讨DTFT的离散频率响应、滤波和频谱分析的相关内容。
第五部分:傅里叶级数展开最后,我们将深入研究傅里叶级数展开的原理和应用。
我们将解释傅里叶级数展开如何将周期函数分解为多个不同频率的正弦波的叠加。
我们还将讨论傅里叶级数展开的收敛性和逼近性,并探讨如何利用傅里叶级数展开来处理周期信号和周期性问题。
结论:综上所述,本文介绍了五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开。
应用高等数学-6.1 傅里叶变换
例8
试证单位阶跃函数
F () F[(t)] (t)e jt d t e jt 1
t0
显然, (t)与常数1构成了一傅氏变换对,按
逆变换公式有
(t)
F
1[F ()]
1 2π
e
jt
d
由上式可得 e jt d 2π (t)
(6-9)
这是一个关于δ函数的重要公式.
例5 证明:1和 2π ()构成傅氏变换对.
f
(t)
1, 1,
π t 0 0 t π
如何将函数展开为傅里叶级数的三角形式.
解: 由定理6.1可得 0 1,a0 0,an 0 (n 1, 2,L )
bn
1
π
f (t)sin ntdt
π
π2
π
sin ntdt
0
nπ 2 (cos
nt
π
) 0
nπ 2 (1 cos nπ)
nπ 2 [1 (1)n ]
2π ( 0 )
例7 求正弦函数 f (t) sin 0t 的傅氏变换.
解:
F() F[ f (t)]
e
jt
sin
0t
d
t
1 (e j0t e j0t )e jt d t
2 j
1 (e j(0 )t e j(0 )t ) d t
2 j
jπ[ ( 0 ) ( 0 )]
式中当t=0可得重要积分公式
sin
x
d
x
π
0x
2
例4
求单边指数衰减函数
f
(t)
0, et ,
t0 t0
( 0)
的频谱函数、振幅谱、相位谱.
傅里叶变换(FFT)详解
关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是:/pdfbook.htm要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。
当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。
信号与系统第3章傅里叶变换
*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中
傅里叶级数变换
数据压缩
通过傅里叶级数变换,可以实现 数据的压缩和解压缩,节省存储 空间和传输带宽。
在量子计算领域的应用
1 2
量子信号处理
利用傅里叶级数变换处理量子信号,有助于实现 量子通信和量子计算中的信息处理。
量子纠缠态分析
通过傅里叶级数变换,可以对量子纠缠态进行分 析和操作,有助于实现量子纠缠态的操控和应用。
解压缩处理
在解压缩过程中,傅里叶级数变换可以用于将压缩后的频率分量转换回原始像 素值,恢复出原始图像。解压缩过程与压缩过程相反,需要逆向操作以重建完 整图像。
傅里叶级数变换的未来发展
06
与挑战
高效算法的研究
01
快速傅里叶变换 (FFT)
针对傅里叶级数变换的快速算法, 能够显著降低计算复杂度,提高 计算效率。
02
并行计算
利用多核处理器或多计算节点并 行计算,加速傅里叶级数变换的 计算过程。
03
优化算法
研究更高效的算法,减少计算过 程中的冗余和复杂度,提高变换 的精度和速度。
在大数据和人工智能领域的应用
信号处理
在语音识别、图像处理、雷达信 号处理等领域,傅里叶级数变换 是关键技术之一。
机器学习
在深度学习中,傅里叶级数变换 可用于特征提取和降维,提高模 型的泛化能力。
傅里叶级数变换
目录
• 傅里叶级数变换概述 • 傅里叶级数变换的性质 • 傅里叶级数变换的运算 • 傅里叶级数变换在信号处理中的应
用
目录
• 傅里叶级数变换在图像处理中的应 用
• 傅里叶级数变换的未来发展与挑战
01
傅里叶级数变换概述
傅里叶级数变换的定义
傅里叶级数变换是一种数学工具,用于将一个函 数表示为无穷级数,其中每个项都是正弦和余弦 函数的线性组合。
傅里叶变换
线性性质
k f(x) → k F(ω); f(x)+g(x) → F(ω)+ G(ω)
分析性质
f '(x) → iωF(ω);
∫
x
∞
f ( x ) dx →
1 iω
F (ω )
傅里叶变换
位移性质
f(x-a) → exp(-iωa)F(ω) ; exp(iφx)f(x) → F(ω-φ)
相似性质
f(ax) → F(ω/a)/a; f(x/b)/b → F(bω) .
卷积性质
f(x)*g(x)≡∫f(ξ)g(x-ξ)dξ → 2πF(ω)G(ω); f(x)g(x) → F(ω)*G(ω)≡∫ F(φ)G(ω-φ)dφ
对称性质
正变换与逆变换具有某种对称性; 适当调整定义中的系数后,可以使对称性更加明显.
傅里叶变换
应用举例
rect( x) → sin 1 ω /(π ω) 2
S1 1
S3 0.75
0.5
0.5 0.25
-3
-2
-1 -0.5
1
2
3
-3
-2
-1 -0.25 -0.5 -0.75
1
2
3
-1
S6 0.75 0.5 0.25 -3 -2 -1 -0.25 -0.5 -0.75 1 2 3 -3 -2 -1
S24 0.75 0.5 0.25 1 -0.25 -0.5 -0.75 2 3
展开系数:
1 cn = 2L
∫
L
L
exp(i
nπ x ) f ( x)dx L
傅里叶生平
1768年生于法国 1807年提出"任何 周期信号都可用正 弦函数的级数表示" 1822年发表"热的 分析理论",首次 提出"任何非周期 信号都可用正弦函 数的积分表示" 返 回
傅里叶变换
傅里叶变换的变换对对于N点序列{x[n ]} 0 ≤ n < N ,它的离散傅里叶变换(DFT)为? x [k ] = N - 1 Σ n = 0 e - i 2 π –––––N n k x[n ] k = 0,1, …,N-1. 其中e 是自然对数的底数,i 是虚数单位。
通常以符号F表示这一变换,即? x = Fx 离散傅里叶变换的逆变换(IDFT)为:x[n ] = 1 ––N N - 1 Σ k = 0 e i 2 π –––––N nk ? x [k ] n = 0,1, …,N-1. 可以记为:x = F -1 ? x 实际上,DFT和IDFT变换式中和式前面乘上的归一化系数并不重要。
在上面的定义中,DFT和IDFT前的系数分别为 1 和1/N。
有时会将这两个系数都改成1/ √ ––N ,这样就有x = FFx,即DFT成为酉变换。
从连续到离散连续时间信号x(t) 以及它的连续傅里叶变换(CT)? x ( ω) 都是连续的。
由于数字系统只能处理有限长的、离散的信号,因此必须将x 和? x 都离散化,并且建立对应于连续傅里叶变换的映射。
数字系统只能处理有限长的信号,为此假设x(t)时限于[0, L],再通过时域采样将x(t) 离散化,就可以得到有限长的离散信号。
设采样周期为T,则时域采样点数N=L/T。
x discrete (t) = x (t) N - 1 Σ n = 0 δ(t-nT) = N - 1 Σ n = 0 x (nT) δ(t-nT) 它的傅里叶变换为? x discrete ( ω) = N - 1 Σ n = 0 x (nT)F δ(t-nT) = 1 ––T N - 1 Σ n = 0 x (nT)e - i 2 π n ω T 这就是x(t)时域采样的连续傅里叶变换,也就是离散时间傅里叶变换,它在频域依然是连续的。
类似的,频域信号也应当在带限、离散化之后才能由数字系统处理。
傅里叶变换常用公式大全
傅里叶变换常用公式大全
傅里叶变换是一种将时域信号转换为频域信号的数学工具。
以下是傅里叶变换的常用公式:
1. 傅里叶变换公式:
F(ω) = ∫[−∞,+∞] f(t) e^(-jωt) dt
f(t) = ∫[−∞,+∞] F(ω) e^(jωt) dω
2. 傅里叶变换的线性性质:
F(a*f(t) + b*g(t)) = a*F(ω) + b*G(ω)
3. 傅里叶变换的频移性质:
F(f(t - τ)) = e^(-jωτ) F(ω)
4. 傅里叶变换的时移性质:
f(t - τ) = F^(-1)(ω) e^(jωτ)
5. 傅里叶变换的尺度变换性质:
F(f(a*t)) = (1/|a|) F(ω/a)
6. 傅里叶变换的对称性质:
F(-t) = F^*(ω)
f(-ω) = F^*(-t)
7. 傅里叶变换的卷积定理:
F(f * g) = F(f) * F(g)
8. 傅里叶变换的相关定理:
∫[−∞,+∞] f(t)g*(t) dt = 1/2π ∫[−∞,+∞]
F(ω)G^*(ω) dω
9. 傅里叶变换的能量守恒性质:
∫[−∞,+∞] |f(t)|^2 dt = 1/2π ∫[−∞,+∞]
|F(ω)|^2 dω
10. 傅里叶变换的Parseval定理:
∫[−∞,+∞] f(t)g*(t) dt = 1/2π ∫[−∞,+∞]
F(ω)G^*(ω) dω
以上是傅里叶变换的一些常用公式,可以用于分析和处理信号的频谱特性。
在实际应用中,根据具体问题选择合适的公式进行计算和推导。
傅里叶变换与逆变换
傅里叶变换与逆变换
1. 什么是傅里叶变换
傅里叶变换是一种数学运算技术,其目的是对信号或函数进行分析和处理,把时域信号转换成频域信号,从而可利用频率低的分量来描述信号的概况,用频率高的分量表示信号的细节。
它可以用来分析平稳连续信号和不平稳离散信号的时域信号的特征,用频域信号来表达这些特征,通常用来分析时域信号的自相关性、周期性、变化频率等,可以用来分析和处理信号,来消除干扰和去除噪声。
2. 什么是傅立叶逆变换
傅立叶逆变换是反向的傅立叶变换,是从频域回到时域,它从频域信号重构时域信号。
它是一种从频谱信号回到时域的变换,也称为傅立叶反变换。
傅里叶逆变换也是用数学方法进行反投射,从而还原原始信号。
与常见的傅立叶变换相反,傅立叶逆变换将频域信号转换回时域信号,实现信号的处理和分析。
- 1 -。
傅里叶变换
其中Xk是傅里叶幅度。直接使用这个公式计算的计算复杂度为
,而快速傅里叶变换
(FFT)可以将复杂度改进为
。计算复杂度的降低以及数字电路计算能力的发展
使得DFT成为在信号处理领域十分实用且重要的方法。
在阿贝尔群上的统一描述
以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一
问题属于调和分析的范畴。在调和分析中,一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅
变换
注释
10
矩形脉冲和归一化的sinc函数
11
变换10的频域对应。矩形函数是理想的低通滤波器,sinc函 数是这类滤波器对反因果冲击的响应。
12
tri 是三角形函数
13
变换12的频域对应
14
高斯函数exp( − αt2)的傅里叶变换是他本身.只有当Re(α) > 0 时,这是可积的。
15
光学领域应用较多
若函数 及 都在 傅里叶变换存在,且
自的傅里叶逆变换的卷积。 帕塞瓦尔定理
上绝对可积,则卷积函数
的
。卷积性质的逆形式为 ,即两个函数乘积的傅里叶逆变换等于它们各
/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2
/wiki/%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2
2009-11-27
傅里叶变换 - 维基百科,自由的百科全书
Page 5 of 9
里叶变换的广义理论基础参见庞特里雅金对偶性(Pontryagin duality)中的介绍。
傅里叶变换方法
傅里叶变换方法1. 傅里叶变换的概念傅里叶变换是一种数学工具,用于将一个函数或信号表示为一系列振幅和相位的复指数函数的和。
它可以将时域中的信号转换为频域中的信号,从而揭示出信号包含的频率成分和它们之间的关系。
傅里叶变换方法是由法国数学家约瑟夫·傅里叶在19世纪初提出的,他认为任何周期性函数都可以用一组正弦和余弦函数来表示。
这个思想被广泛应用于物理、工程、计算机科学等领域,成为了现代科学研究中不可或缺的工具。
2. 傅里叶级数与傅里叶变换傅里叶级数是指将一个周期函数表示为正弦和余弦函数的无穷级数。
它在周期性信号处理中得到广泛应用。
对于一个周期为T、连续可积的函数f(t),其傅里叶级数定义如下:f(t)=a02+∑(a n cos(2πnTt)+b n sin(2πnTt))∞n=1其中,a0、a n和b n是系数,可以通过函数f(t)的积分计算得到。
而傅里叶变换则是将非周期函数表示为连续频谱的积分形式。
对于一个连续可积的函数f(t),其傅里叶变换定义如下:F(ω)=∫f∞−∞(t)e−jωt dt其中,ω是频率,F(ω)表示函数f(t)在频率域中的表示。
3. 傅里叶变换的性质傅里叶变换具有许多重要的性质,这些性质使得它成为一种强大而灵活的工具。
以下是一些常见的傅里叶变换性质:•线性性质:傅里叶变换具有线性性质,即对于任意常数a和b以及两个函数f(t)和g(t),有F(af(t)+bg(t))=aF(f(t))+bF(g(t))。
•平移性质:如果将函数在时域上平移,则其在频域上也会相应平移。
具体而言,如果f(t)经过时移得到ℎ(t)=f(t−t0),那么它们的傅里叶变换满足H(ω)=F(ω)e−jωt0。
•尺度性质:如果将函数在时域上进行尺度变换,则其在频域上也会相应进行尺度变换。
具体而言,如果f(t)经过尺度变换得到ℎ(t)=f(at),那么它们的傅里叶变换满足H(ω)=1|a|F(ωa)。
傅立叶变换
*
正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
频移性质
若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_
x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=F(\omega + \omega _0 )
\right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha
f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符;
傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。
变换 时间 频率
连续傅里叶变换 连续, 非周期性 连续, 非周期性
傅里叶级数 连续, 周期性 离散, 非周期性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
−∞ +∞
f (x − x0)e−iξxdx
=
−∞
f (τ )e−iξτ e−iξx0 dx.
类似地也可证明第二式成立. 证毕.
ˆ(ξ ) = F [f (x)] a = 0 为 常 3. 相 似 性 质 设 f 数, 则 1ˆ ξ F [f (ax)] = f ( ) a a 特别地, 若 取 a = −1, 则 可得翻转公式 ˆ(−ξ ) F [f (−x)] = f
+∞ +∞
1
∞
kπx
kπx
{
−∞ −∞
ˆ(ξ )e−iξx dx}f (ξ )eiξx dξ . f
+∞ −∞
ˆ(ξ ) = F [f (x)] = f
f (x)e−iξx dx .
ˆ(ξ ) 的 傅 里 叶 逆 变 换 记 作 f f (x) = F
−1
ˆ(ξ )] = [f
1 2π
+∞ −∞
ˆ(ξ )eiξx dξ . f
7
(a) lim δ (x − x0) =
→0+
+∞ 0
+∞
x = x0 x = x0
(b)
lim
→0+
δ (x − x0)dx = 1
−∞
定 理 (筛 选 性 质) 对 在 点 a < x0 < b 的 邻 域 内 连续的任 意函数 ϕ(x) 有
b
δ (x − x0)ϕ(x)dx = ϕ(x0)
sinat πt
的傅里叶变
4
ˆ(ξ ) = f F
−1
a −a
e
−iξt
dt = − 1 2π
1 iξ
e−iξt|a −a 2sinaξ ξ
=
2sinaξ ξ
ˆ(ξ )] = [f
+∞ −∞
eiξt dξ .
(由 于 f (x) = F
−1
ˆ(ξ )] = [f
1 2π
+∞ −∞
ˆ(ξ )eiξt dξ .) f
F [sgnt] = 2F [H (t)]−F [1] = = 2 iξ . 2 iξ +2πδ (ξ )−2πδ (ξ )
13
性 质 4 设 方 程 ϕ(t = 0) 有 m 个 重 根 t1, t2, ...., tm, 则 有
m
δ [ϕ(t)] =
k=1
δ (t − tk ) |ϕ (tk )|
t
dξ =
1 [f (t − 0) + f (t + 0)
2
ˆ(ξ ) 作 傅 里 叶 变 换 对 f
3
ˆ ˆ(x) = F [f ˆ(ξ )] = f = 2π [ 1 2π
+∞ −∞
+∞ −∞
ˆ(ξ )e−iξx dξ . f
ˆ(ξ )eiξ(−x) dξ ] = 2πf (−x) f
例 5 求矩形脉冲函数
a
当 (a, b) = (−∞, +∞) 时 ,有
∞
δ (x − x0)ϕ(x)dx = ϕ(x0)
−∞
引 理 1 若 f (x) 是广义函数 , 若对在 (a, b) 内 的任意连续函数有
b
f (x)ϕ(x)dx = 0
a
则 f (x) = 0.
8
性质 1 δ (x) 是偶函数. 证明对任 意连续函数 ϕ(x) 作变换 t = −x,有
+∞ −∞
1
+∞
2π −∞ iξ 1 +∞ sinξx 1 + dξ = 2 π 0 ξ
12
=
1 + 2 1 − 2
1 2 1 2
| x| > 1 | x| < 1
+∞
注意
0
sinξx ξ
+∞
dξ =
0
sint t
dt =
π 2
例 求符号函数的
sgnt = 1 −1 t>0 t<0
的傅里叶变换 解 由于 sgnt = 2H (t) − 1, 有 所以
14
2. 位 移 性 质 设 a, x0
ˆ(ξ ) = F [f (x)] f 均为常数; 则 ˆ(ξ ). F [f (x − x0)] = e−iξx0 f ˆ(x). F −1[f (ξ − a)] = eiaxf
证 明 由 F 变 换 定 义 , 令 x − x0 = τ 则
F [f (x − x0)]
f (t) = 1 0 | t| ≤ a |t| > a (a > 0)
ˆ, 且 利 用 傅 里 叶 积 分 证 明 的傅里叶变换 f π 2 sinaωcosωtdω =
π 4
| t| < a | t| = a | t| > a
+∞ −∞
1 ω
0
其中 (a > 0). 并 利 用 对 称 公 式 求 g (t) = 换. 解: 由傅里叶变换的定义
特 别 地 , 当 t1 = 0 为 一 个 根 时 , 有 δ (t) δ (at) = , a = 0, a为 常 数 |a| 当 t1 = −a, t2 = a, 为两个 根时, 有
δ (t −a ) =
2 2
δ (t − a) + δ (t + a) 2|a|
, a = 0, a 为 常 数
(β − iξ )(cos ξt + i sin ξt) β2 + ξ2
dξ
1 2π
+∞ −∞
β (cos ξt) β2 1 + ξ2
dξ =
1 π
0
+∞
β (cos ξt) β2 +ξt) β2 + ξ2
2π
+∞ 0
dξ = 0 f (t)
1 π
β cos ξt + ξ sin ξt β2 + ξ2
解: 由傅里叶变换的定义
ˆ(ξ ) = f
0
2
+∞
e−βte−iξtdt =
0
+∞
e−(β+iξ)tdt
=− F
−1
1 β + iξ
∞ e−(β+iξ)t|+ 0
=
β − iξ β2 + ξ2
iξt e dξ 2
ˆ(ξ )] = [f
1 2π
+∞ −∞
β − iξ β2 + ξ
=
1 2π
+∞ −∞
∞
α(x)δ (x − x0)ϕ(x)dx
−∞ ∞
=
−∞
δ (x − x0)α(x)ϕ(x)dx = α(x0)ϕ(x0)
∞
= α(x0)
−∞
δ (x − x0)ϕ(x)dx
9
∞
=
−∞
α(x0)δ (x − x0)ϕ(x)dx
证毕. 性质 3 H (x) = δ (x) 其中
H (x) = 1 0 x>0 x<0
+∞
2.
−∞
δ (x − x0)dx = 1
可以把 δ (x − x0) 看成 某种含参数 ε 的普通函 数 δ (x − x0) 的( 弱)极限. 例如 取 1 x0 < x < x 0 + ε ε 1. δ ((x − x0) = 0 x = x0
δ (x − x0) 有 如 下 的 两 个 性 质 :
15
证明当 a > 0 时, 令 t = ax, 有
+∞
F [f (ax)] =
−∞
f (ax)e−iaxdx
ξ
=
1 a
+∞ −∞
f (x)e−i a tdt
1ˆ ξ = f( ) a a 当 a < 0 时, 令 t = ax, 有 F [f (ax)] = 1 a
−∞ +∞
f (x)e
ξ −i a x
再由奇函数的积分性质可得
1 2π
+∞ −∞
1 ξ
sinaξ (isinξt)dξ = 0.
5
再由偶函数的积分性质可得
π 2 sinaωcosξtdξ =
π 4
| t| < a | t| = a |t| > a (a > 0)
+∞ 0
1 ξ
0
如果取 t = 0, a = 1, 有
+∞ 0
sinξ ξ
dξ =
π 2
另一方面
ˆ ˆ(x) = 2πf (−x) f
g (ξ ) =
sinaξ πξ
1 ˆ = f (ξ ) 2π
故
1 ˆ ˆ(ξ ) = f (−ξ ) = f (ξ ) g ˆ(ξ ) = f 2π
6
2. 单 位 脉 冲 函 数 (δ 函 数 ) 在工程和物理现象中,从集中分布的量,如 集 中 质 量 , 集 中 点 电 荷 , 点 热 源 , 单 位 脉 冲, 冲 击力的瞬时作用等的研究中会遇到在原点等于 ∞, 在 其 他 地 方 为 0 的 Dirac 函 数 . 这 种 函 数 不 是 高 等 数 学 中 的 普 通 函 数 , 而 是 广 义 函 数. 这 种函数在工程和物理中有重要意义. δ 函 数 的 定 义 δ 函 数 是 定 义 在 (−∞, ∞) 内 满足如下条件的函数: ∞ x = x0 1. δ (x − x0) = 0 x = x0
证毕. 性质 4
δ (x − x0) 的 傅 里 叶 变 换 与 逆 变 换