基于PLC控制的机械手控制电路设计
基于PLC的机械手控制设计

基于PLC的机械手控制设计基于PLC的机械手控制设计,是一种智能化的机械手控制方法,它利用PLC 控制器进行逻辑控制,使机械手能够自主地完成多种工作任务。
本文将介绍本方法的具体实现过程,包括机械结构设计、PLC程序设计以及控制算法设计。
一、机械结构设计机械结构是机械手的核心,合理的机械结构设计将为实现机械手的自主运动提供必要的保障。
机械手一般由控制系统、机械部分和执行机构三部分组成。
机械部分一般包含基座和移动结构,执行机构包括手臂和手指。
这里我们以一款三轴机械手为例进行介绍。
1. 机械手构造机械手采用了一种比较简单的三轴结构,主要有三个关节——一个旋转关节和两个平移关节。
机械手的底座固定在工作台上,三个关节通过模拟伺服电机的方式进行控制。
2. 机械手控制器机械手采用PLC控制器进行逻辑控制,PLC控制器由三个部分组成:输入接口、中央处理器和输出接口。
输入接口用于读取传感器信号,输出接口用于控制执行机构,中央处理器则用于控制机械手的运动。
二、PLC程序设计机械手的PLC程序设计主要分为四个部分:程序初始化、数据采集、运动控制和异常处理。
1.程序初始化机械手程序初始化主要包括程序开头的自诊断和状态检测,并根据检测结果自动执行不同的控制程序。
自诊断可以避免因器件故障等原因引起的机械手操作异常。
2.数据采集机械手需要收集外部环境数据和操作数据。
外部环境数据包括工作物品的坐标、大小、形状等信息,操作数据包括机械手应该执行的命令。
在采集数据时,机械手需要通过传感器或外部设备接口实现。
3.运动控制机械手的运动控制分为机械手移位运动和执行机构运动两个部分。
机械手移位运动需要根据采集到的工作物品信息以及执行机构的操作命令来控制机械手的运动轨迹。
执行机构运动控制则是将机械手的控制信号转换为电机运动信号。
4.异常处理机械手运动过程中可能会出现异常情况,例如碰撞、误差等,需要通过对异常情况的处理来保证机械手的安全和可靠性。
PLC控制机械手设计

PLC控制机械手设计机械手电气控制系统,除了有多工步特点之外,还要求有连续控制和手动控制等操作方式。
工作方式的选择可以很方便地在操作面板上表示出来。
当旋钮打向回原点时,系统自动地回到左上角位置待命。
当旋钮打向自动时,系统自动完成各工步操作,且循环动作。
当旋钮打向手动时,每一工步都要按下该工步按钮才能实现。
以下是设计该机械手控制程序的步骤和方法。
1、机械手传送工件系统示意图,如图1所示。
图1 机械手传送示意及操作面板图2、输入和输出点分配表及原理接线图表1 机械手传送系统输入和输出点分配表名称代号输入名称代号输入名称代号输出启动SB1 X0 夹紧SB5 X10 电磁阀下降YV1 Y0 下限行程SQ1 X1 放松SB6 X11 电磁阀夹紧YV2 Y1 上限行程SQ2 X2 单步上升SB7 X12 电磁阀上升YV3 Y2 右限行程SQ3 X3 单步下降SB8 X13 电磁阀右行YV4 Y3 左限行程SQ4 X4 单步左移SB9 X14 电磁阀左行YV5 Y4 停止SB2 X5 单步右移SB10 X15 原点指示EL Y5 手动操作SB3 X6 回原点SB11 X16连续操作SB4 X7 工件检测SQ5 X173、操作系统操作系统包括回原点程序,手动单步操作程序和自动连续操作程序,如图3所示。
其原理是:把旋钮置于回原点,X16接通,系统自动回原点,Y5驱动指示灯亮。
再把旋钮置于手动,则X6接通,其常闭触头打开,程序不跳转(CJ为一跳转指令,如果CJ驱动,则跳到指针P所指P0处),执行手动程序。
之后,由于X7常闭触点,当执行CJ指令时,跳转到P1所指的结束位置。
如果旋钮置于自动位置,(既X6常闭闭合、X7常闭打开)则程序执行时跳过手动程序,直接执行自动程序。
4、回原位程序回原位程序如图4所示。
用S10~S12作回零操作元件。
应注意,当用S10~S19作回零操作时,在最后状态中在自我复位前应使特殊继电器M8043置1。
基于PLC的机械手控制设计

基于PLC的机械手控制设计PLC是可编程逻辑控制器(Programmable Logic Controller)的缩写,是一种广泛应用于工厂自动化领域的控制设备。
基于PLC的机械手控制设计是利用PLC来控制机械手的运动和动作,实现对机械手的自动化控制。
机械手是一种可以代替人手进行物体抓取和搬运的装置,广泛应用于工厂生产线和物流仓储等领域。
传统的机械手控制方法一般采用电气控制和传感器控制相结合的方式,操作复杂且效率低下。
而基于PLC的机械手控制设计可以实现控制逻辑的编程化,更加灵活和智能。
1. 信号输入与输出:PLC通过数字输入输出模块与机械手的传感器和执行器进行连接,用于接收机械手的位置、速度、力矩等信息,并控制机械手的动作。
PLC还可以通过模拟输入输出模块与机械手的模拟信号进行交互,如控制机械手的速度和运动轨迹等。
2. 控制逻辑编程:PLC的控制逻辑编程是基于图形化编程语言LD(Ladder Diagram)进行的。
LD类似于电气控制中的接线图,通过连接逻辑元件(如触发器、计数器、定时器等)来实现控制逻辑的编写。
根据机械手的工作流程和要求,设计合理的控制逻辑,如抓取、放置、旋转等。
3. 运动控制:基于PLC的机械手控制设计主要通过PLC与机械手的伺服系统进行通讯来控制机械手的运动。
伺服系统一般包括伺服电机、编码器和驱动器等组件。
通过PLC对伺服系统的控制,可以实现机械手的精确定位和运动轨迹控制,确保机械手的准确抓取和放置。
4. 安全保护:基于PLC的机械手控制设计还需要考虑机械手的安全保护。
通过PLC与安全传感器和安全继电器进行连接,实时监测机械手的工作状态,当机械手发生异常或出现危险情况时,立即停止机械手的动作,保证操作人员的安全。
除了上述几个方面,基于PLC的机械手控制设计还需要考虑其他因素,如控制系统的稳定性、实时性和可靠性等。
还需要根据具体应用场景的要求,设计合适的控制策略和算法,优化机械手的控制性能和工作效率。
基于PLC机械手控制系统设计

2024-04-29
• 项目背景与意义 • 整体方案设计 • 硬件选型 • 程序设计 • PLC仿真 • 项目总结与展望
目录
Part
01
项目背景与意义
机械手控制系统优势
效率高、准确高
高生产自动化程度,有利于 提高材料的传送、工件的装 卸、刀具的更换以及机器的 装配等的自动化程度,提高 生产效率,降低生产成本
改善劳动条件
避免人身事故,代替人安全 地在高温、高压、低温、低 压、有灰尘、噪声、臭味、 有放射性或有其它毒性污染 以及工作空间狭窄等场合中 完成工作。
自动化程度高,成本低
采用PLC控制系统,实现远 程监控和自动调节,提高运 维效率,降低了人工成本。
Part
02
整体方案设计
系统硬件设计
plc选型 机械手的位置反馈是开关量控制,所需的I/0点数量并不多,所以使用一般 的小型plc的选择就可以了。由于所需要的 I/0 点数分别为 20 点和12 点, 因此本设计选用西门子S7-226来实现控制
2)通过下面一排拉杆模拟PLC输入信号,通过观察Q点输出亮灯情况检查程序。
组态制作
新建一个工程,触摸屏的类型选择TPC7062TD
2)制作主页面。
组态制作
在设备窗口中添加-通用串口父设备和西门子_S7200PPI
2)双击西门子_S7200PPI,增加设备通道,并且连接对应的数据库,是PLC与触摸屏互相通信。
Part
03
硬件选型
plc硬件接线图简图
选型与配置方案
PLC控制器
使用一般的小型plc的选择就可以 了。由于所需要的 I/0 点数分别 为 20 点和12 点,因此本设计选 用西门子S7-226来实现控制。
《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。
传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。
因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。
该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。
二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。
其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。
机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。
传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。
2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。
本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。
程序包括主程序和控制程序两部分。
主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。
3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。
同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。
三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。
首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。
同时,还需要对硬件设备进行调试和测试,确保其正常工作。
2. 程序设计程序设计是整个系统的核心部分。
根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。
《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。
工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。
本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。
二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。
其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。
三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。
2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。
3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。
4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。
四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。
2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。
3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。
监控软件应具备友好的界面、实时的数据显示和报警功能。
4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。
五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。
通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。
PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。
基于PLC的机械手控制设计

基于PLC的机械手控制设计随着自动化技术的不断发展和应用,机械手已经逐渐取代了人力完成一些机械加工、装配、搬运等工作,它的出现大大提高了生产效率和减少了人力资源的浪费。
而机械手的控制方式也随着自动化技术的发展不断更新,例如利用PLC来完成机械手的控制,这种控制方式不仅控制精度高、速度快,而且易于操作和维护。
1. 确定机械手的类型和结构机械手可以分为各种类型,例如串联式机械手、并联式机械手、多关节机械手等。
在机械手类型的选择时,需要根据实际的生产需求和机械手的应用场景来确定,还需要根据所选机械手的结构来设计控制程序。
2. 制定机械手控制系统的结构方案在机械手控制系统的设计中,需要确定各个模块之间的关系和控制流程。
在涉及多个模块的情况下,需要利用输入输出模块进行数据传输,在控制程序中根据输入输出模块来控制机械手的运动和操作。
设计一个坚实的控制系统结构方案有助于提高控制精度和稳定性。
3. 确定机械手控制系统的输入和输出信号在基于PLC进行机械手控制时,需要明确机械手控制系统的输入和输出信号。
例如,进料位置的传感器、夹具夹持状态的传感器、机械手的末端执行器输出的信号等都需要被收集并进行处理,以便确定控制程序的执行顺序。
4. 编写机械手控制程序在机械手控制系统的设计中,编写控制程序是至关重要的步骤,它直接影响机械手的运动和操作。
编写控制程序时,需要使用PLC编程软件进行编程,根据机械手控制系统的输入和输出信号,设计控制程序的执行流程和循环次数等参数,最终实现机械手的自动化操作。
5. 完成机械手控制系统的调试和运行在设计完机械手控制系统后,需要进行调试和运行,查看系统的工作状态和是否存在异常。
如果发现问题,需要及时进行调整和修正。
在确认机械手控制系统没有问题后,就可以进行实际生产操作,提高生产效率和质量。
总之,基于PLC的机械手控制设计需要进行细致的规划和设计,以确保机械手控制系统的质量和稳定性,从而提高生产效率和降低成本。
基于PLC的机械手控制设计

基于PLC的机械手控制设计本文主要介绍了基于PLC的机械手控制设计。
随着现代制造技术的不断发展,机械手在工业生产中的应用越来越广泛,机械手控制系统的控制方式也在不断更新迭代。
本文提出了一种基于PLC控制机械手的新型控制方案。
1.机械手的基本原理机械手是一种基于电气、电子、机械、气动等多种技术相结合的智能机器人,其通过伺服电机、减速器、编码器等组件,实现了对各类物品的精准抓取、搬运、插入、安装等功能。
机械手控制系统一般由PLC、传感器、驱动模块等组成。
2.PLC的基本原理PLC(可编程控制器)是一种基于逻辑控制的自动化控制系统,主要由CPU、存储器、输入/输出模块、通信模块等组成。
通过编写PLC程序,可以实现对各类自动化设备的控制和管理。
(1)PLC编程设计程序编写是PLC系统中最重要的部分,这里以三轴机械手为例,可以将机械手运动分解成若干个基本的运动要素:横向、竖向、旋转。
通过PLC程序让机械手根据场景要求完成一系列的运动需求。
(2)PLC输入输出配置PLC输入/输出配置是设计控制系统时非常重要的部分。
基于PLC的机械手控制系统,输入/输出模块可以通过编程实现对机械手的控制。
需要根据机械手控制系统对应的型号、规格、要求等,对PLC输入/输出模块进行配置。
(3)硬件选型与安装本文实现的基于PLC的机械手控制,需要选择适合的硬件设备完成组装,并进行布线和安装。
(4)系统调试和优化在完成硬件组装和软件编程后,需要对整个机械手控制系统进行调试和优化。
主要是通过测试各项运动功能是否符合预期要求、能否按时完成任务等。
(1)控制精度高:PLC的控制精度高,支持对伺服电机进行精准控制,可以保证机械手运动精度。
(2)程序编写灵活:PLC编程可以根据生产实际需求,灵活定制机械手的各个运动要素及相应动作。
(3)易于维护:PLC控制系统将整个机械手控制系统设备集成在一起,为运维和维护带来便利。
(4)可实现远程监控:PLC控制系统可以通过网络连接实现远程监控,实时获取机械手的运行状态和运动参数。
基于PLC的机械手控制设计

基于PLC的机械手控制设计1. 引言1.1 背景介绍随着工业自动化的不断发展和机械手在生产中的广泛应用,基于PLC的机械手控制系统已经成为一个研究热点。
传统的机械手控制系统通常使用传统的控制方法,如PID控制等,但这些方法在复杂的生产环境下往往难以满足需求。
引入PLC作为控制核心,可以提高机械手控制系统的精度、灵活性和可靠性。
本研究将探讨基于PLC的机械手控制设计,通过对PLC在机械手控制中的应用进行深入分析,设计并实现一个高性能的机械手控制系统。
通过PLC编程实现各个关节的控制和协调动作,实现对机械手的精准控制。
将进行系统性能测试和优化改进措施,以验证系统的稳定性和可靠性。
本文旨在研究基于PLC的机械手控制系统,在实际生产中的应用具有重要的意义。
通过本研究,可以为提高机械手控制系统的性能、提升生产效率和质量提供技术支持和借鉴。
【此处省略...】1.2 研究目的研究目的是为了探讨基于PLC的机械手控制设计在工业生产中的实际应用情况,分析其在自动化生产中的优势和不足之处,并提出相应的改进措施。
通过研究机械手控制系统在PLC控制下的工作原理和设计方法,进一步提高机械手的操作效率和精度,实现更加精准和高效的生产。
本研究旨在为工业生产领域提供一种可靠的控制系统设计方案,为企业实现智能化生产提供技术支持。
通过本文的研究,希望能够为相关领域的研究者和工程师提供有益的参考和借鉴,促进PLC 技术在机械手控制领域的应用和推广,推动工业生产的自动化发展,从而提高生产效率和产品质量。
1.3 研究意义机械手在工业生产中扮演着重要的角色,可以进行自动化操作,提高生产效率和质量。
基于PLC的机械手控制设计是实现机械手自动化控制的重要途径。
研究意义有以下几点:1. 提高生产效率:利用PLC控制机械手可以实现高速、精准的操作,提高生产效率,降低生产成本。
2. 提高产品质量:PLC控制可以使机械手动作稳定、精准,避免人为因素对产品质量的影响,提高产品质量和一致性。
《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化程度的不断提高,机械手运动控制系统在生产制造过程中发挥着越来越重要的作用。
其中,基于PLC(可编程逻辑控制器)的工业机械手运动控制系统已经成为当前的主流选择。
该系统凭借其强大的逻辑处理能力和可靠的运行稳定性,被广泛应用于各类工业制造场景中。
本文将探讨基于PLC的工业机械手运动控制系统的设计思路、关键技术和应用实践。
二、系统设计目标在设计基于PLC的工业机械手运动控制系统时,主要目标是实现高精度、高效率、高稳定性的运动控制。
具体而言,该系统应具备以下特点:1. 精确控制:确保机械手在执行各种动作时,能够精确地达到预定位置和姿态。
2. 高效运行:通过优化控制算法和程序,提高机械手的运行效率,降低能耗。
3. 稳定可靠:系统应具备较高的抗干扰能力和故障自恢复能力,确保长时间稳定运行。
三、系统设计原理基于PLC的工业机械手运动控制系统主要由PLC控制器、传感器、执行器等部分组成。
其中,PLC控制器是整个系统的核心,负责接收上位机的指令,并根据指令控制机械手的运动。
传感器用于检测机械手的当前状态和位置,以便PLC控制器进行实时调整。
执行器则负责驱动机械手完成各种动作。
四、关键技术1. PLC控制器选型与设计:选择合适的PLC控制器是整个系统设计的关键。
应考虑控制器的处理速度、内存容量、I/O接口数量等因素。
同时,根据机械手的运动需求,设计合理的控制程序,确保系统能够准确、快速地响应各种指令。
2. 传感器技术应用:传感器在机械手运动控制系统中起着至关重要的作用。
常用的传感器包括位置传感器、力传感器、速度传感器等。
这些传感器能够实时检测机械手的当前状态和位置,为PLC控制器提供准确的反馈信息。
3. 执行器选型与驱动:执行器是驱动机械手完成各种动作的关键部件。
应根据机械手的运动需求,选择合适的执行器,并设计合理的驱动电路和驱动策略,确保执行器能够准确、快速地响应PLC控制器的指令。
完整版)基于plc的机械手控制系统设计

完整版)基于plc的机械手控制系统设计机械手由机械结构、控制系统和执行器三部分组成。
机械结构是机械手的基本骨架,包括机械手臂、手爪等组成部分。
控制系统是机械手的大脑,负责控制机械手的运动和操作。
执行器是控制系统的输出部分,负责执行控制系统的指令,驱动机械手完成各种动作。
机械手的组成部分相互协调,共同完成机械手的工作任务。
2 PLC控制系统简介2.1 PLC概述PLC是可编程控制器的简称,是一种专门用于工业自动化控制的通用控制器。
它以微处理器为核心,具有高可靠性、强抗干扰能力、良好的扩展性和灵活性等特点。
PLC广泛应用于工业生产中的自动化控制领域,如机械制造、化工、电力、交通、冶金等行业。
2.2 PLC控制系统组成PLC控制系统主要由PLC主机、输入输出模块、编程软件和人机界面组成。
PLC主机是PLC控制系统的核心,负责控制整个系统的运行和实现各种控制功能。
输入输出模块负责将外部信号转换为PLC可以处理的数字信号,并将PLC输出信号转换为外部可控制的信号。
编程软件用于编写PLC程序,实现控制系统的各种功能。
人机界面是PLC控制系统与用户之间的接口,用于实现人机交互,方便用户对控制系统进行操作和监控。
3 基于PLC的机械手控制系统设计3.1系统设计思路本文设计的基于PLC的机械手控制系统主要由PLC控制系统、步进电机驱动系统和机械手组成。
PLC控制系统负责控制机械手的运动和操作,步进电机驱动系统负责驱动机械手的运动,机械手负责完成各种动作任务。
系统设计采用模块化设计思路,将系统分为PLC控制模块、步进电机驱动模块和机械手运动模块,分别进行设计和实现,最后进行整合测试。
3.2系统设计方案PLC控制模块采用西门子PLC作为控制核心,通过编写PLC程序实现机械手的控制和操作。
步进电机驱动模块采用步进电机驱动器和步进电机组成,通过PLC控制信号驱动步进电机实现机械手的运动。
机械手运动模块由机械结构、执行器和传感器组成,通过步进电机驱动器驱动执行器完成机械手的各种动作,通过传感器检测机械手的运动状态并反馈给PLC控制系统。
基于PLC的机械手控制设计

基于PLC的机械手控制设计1. 引言1.1 背景介绍背景介绍:机械手是一种能够模仿人手动作完成各种工作任务的机械装置,具有高效、精准、稳定的特点,被广泛应用于工业生产线、仓储物流等领域。
随着工业自动化水平的不断提高,机械手在生产中的应用越来越广泛,对机械手控制技术的要求也越来越高。
本文旨在研究基于PLC的机械手控制设计,探讨PLC在机械手控制中的应用,设计机械手控制系统,并进行实验验证。
通过本研究,旨在提高机械手控制精度和稳定性,推动工业自动化技术的发展,为工业生产提供更多可能性。
1.2 研究意义机器人技术在现代工业生产中起着越来越重要的作用,而机械手作为机器人的重要组成部分,其控制技术的研究对于提高生产效率、降低成本具有重要意义。
研究如何利用PLC进行机械手控制设计,可以实现机械手的自动化控制,提高生产线的运行效率,减少人为操作的误差,提高产品的质量稳定性。
在工业生产中,机械手的广泛应用使得对其控制技术的研究变得至关重要。
通过PLC的应用,可以实现机械手的精准运动控制,灵活适应不同的工作环境和任务要求。
PLC具有高度稳定性和可靠性,能够保证机械手的稳定运行,提高生产效率。
通过本研究,可以深入了解PLC在机械手控制中的具体应用方法,为工程师和研究人员提供参考和借鉴。
本研究的结果也有助于推动机械手领域的发展,促进工业自动化水平的提升。
研究如何基于PLC进行机械手控制设计具有重要的理论和实践意义。
1.3 研究目的研究目的是为了探究基于PLC的机械手控制设计在工业自动化领域的应用效果,为工业生产提高效率、降低成本和减少人为操作风险提供技术支持。
通过本研究,可以深入了解PLC在机械手控制系统中的具体应用方式和优势,为工程技术人员提供可靠的控制方案。
通过对PLC程序设计和机械手运动控制的研究,可以为相关领域的技术人员提供实用的指导和参考。
本研究的目的还在于验证基于PLC的机械手控制系统的可行性和稳定性,为工业生产过程中的自动化控制提供科学依据。
基于PLC机械手控制系统设计

四川工程职业技术学院学生毕业综合实践报告基于PLC机械手控制系统设计学生姓名:学号:专业班级:指导老师:完成时间:摘要随着科学与技术的发展,机械手广泛应用于采矿、冶金、石油、化学、船舶等传统领域,同时也已开始扩大到航空,航天。
生化、医药、核能等高科技领域中,本文目的主要是利用可编程控制器作为载体,设计一套程序取驱动机械手进行预订动作实现对目标的抓取、搬运及投放,根据需求变化改变搬运轨迹,整个系统利用plc技术位置控制技等关键词:机械手、可编程逻辑控制器abstractWith the development of science and technology,manipulator is widely used in mining, metallurgy, petroleum, chemical, shipbuilding and other traditional areas,but also has begun to expand to aviation, aerospace. Biochemistry, medicine, nuclear energy and other high—tech fields, in this paper, the main objective is to use the programmable controller as the carrier,design a set of procedures and the drive manipulator to achieve the target capture, handling and delivery booking action, according to the demand change handling trajectory, the whole system by using the technology of PLC position control technology.Keywords:manipulator;programmable;logic controller目录绪论1.1机械手应用背景与意义机械手主要由手部、运动机构和控制系统三大部分组成。
用PLC设计的简易的机械手控制电路

用PLC设计的简易的机械手控制电路
今日为大家介绍一个用plc设计的简易的机械手掌握电路。
掌握要求示意图:
当按下启动按钮X1后,机械手先向下移动再向上移动,然后向右移动再向右下移动,再向右上移动,再回到原点。
(我们可以想像成一个机械手抓持着一个工件,把工件从一个位置移动到另一个位置)。
I/O安排表:
首先我们先把输入与输出的安排给编好。
流程图:
像设计这种带有步进顺控指令的电路,我们可以先画一个流程图以便利我们一步步的分析与设计电路。
首先机械手从原点开头先向下——向上——向右——右下——右上——向左——复位。
然后步与步之间的转换条件我们可以设置成各个限位开关,然后我们通过移位指令把M101到M107的各个指令一步步激活。
梯形图:
当我们在启动前机械手位于原点位置,X5(左限位开关),X3(右限位开关)是被压合的,就会传输一个1到M100里面去,然后M100的常开触点闭合,按下启动按钮X1,M100的数据通过移位指令移到
M101里面去,机械手向下运动,当遇到下限位开关X2后,M101的数据通过移位指令移到M102里面去,机械手向上运动,当遇到上限位开关X3后,M102的数据通过移位指令移动到M103里面去,机械手向右运动,,,,,,以此类推,始终到M107复位指令。
假如我们想让机械手直接复位也可以按下X0复位按钮,这样机械手就可直接复位。
基于PLC的机械手控制设计(毕业设计)

基于PLC的机械手控制设计(毕业设计)
毕业设计题目:基于PLC的机械手控制设计
设计目标:
设计一个基于PLC的机械手控制系统,能够实现机械手对物体的抓取和放置操作。
设计内容:
1. 硬件设计:选择合适的PLC控制器,根据机械手的结构和控制需求,设计电路和连接方式,包括传感器、执行器、驱动器等硬件组成部分。
2. 软件设计:编写PLC程序,实现机械手的控制逻辑。
包括对机械手运动轨迹的规划、抓取力度的控制、异常情况的处理等功能。
3. 通信设计:如果需要与其他设备或系统进行通信,设计与外部设备的接口和通信协议。
4. 安全设计:考虑机械手在工作过程中可能出现的危险情况,设计安全机制,如急停按钮、防碰撞装置等。
5. 用户界面设计:设计一个简明易懂的用户界面,方便用户对机械手进行操作和监控。
6. 系统测试和调试:对设计的控制系统进行测试和调试,保证系统的稳定性和可靠性。
7. 性能评估和改进:对设计的控制系统进行性能评估,分析系统的优点和不足,并提出改进方案。
8. 文档编写:编写毕业设计报告,包括设计方案、实施过程、测试结果和分析等内容。
预期成果:
1. 完整的机械手控制系统,能够准确抓取和放置物体。
2. 可靠的硬件设计和稳定的软件程序。
3. 安全可靠的系统设计,能够防止意外事故的发生。
4. 用户友好的界面设计,简化操作流程。
5. 毕业设计报告和相关文档。
基于PLC的机械手控制设计

基于PLC的机械手控制设计PLC(可编程逻辑控制器)是一种用于自动化控制系统的专用数字计算机。
在工业自动化领域,PLC广泛应用于各种机械设备的控制和监控,包括机械手。
机械手是一种能够替代人工完成各种任务的自动化设备,它的控制系统通常由PLC来实现。
本文将介绍基于PLC的机械手控制设计,包括PLC的选择、机械手的控制原理、控制程序的编写等方面的内容。
# 1. PLC的选择在设计基于PLC的机械手控制系统时,首先需要选择合适的PLC型号。
PLC的选择应考虑以下因素:1)输入输出点数:根据机械手的控制需求,确定所需的输入输出点数。
一般来说,机械手的控制系统需要大量的输入输出点,因此需要选择点数较多的PLC。
2)通信接口:考虑机械手控制系统是否需要与其他设备进行通信,选择带有合适通信接口的PLC。
3)编程软件:选择熟悉的、易于使用的PLC编程软件。
4)可靠性和稳定性:选择品牌信誉好、质量可靠的PLC产品。
# 2. 机械手的控制原理机械手通常由多个关节构成,每个关节都由一个电机驱动。
机械手的控制原理是通过控制每个关节的电机来实现对机械手的位置和姿态的控制。
具体来说,控制机械手的位置和姿态需要对每个关节的角度进行控制,并通过这些角度来计算机械手的位置和姿态。
机械手的控制系统需要实时监测机械手的位置和姿态,并根据需求对机械手进行相应的控制。
# 3. PLC的编程基于PLC的机械手控制系统的编程十分重要,它是实现机械手控制的关键。
在进行PLC编程时,一般遵循以下步骤:1)需求分析:明确机械手的控制需求,包括控制逻辑、输入输出点数、通信需求等。
2)PLC选择:根据需求选择合适的PLC,准备相应的编程软件。
3)编程软件操作:使用编程软件创建新的工程,并进行程序的编写。
4)程序设计:根据机械手的控制需求,设计合理的控制逻辑,并将其转化为PLC可执行的程序。
5)调试测试:完成程序编写后,进行调试测试,确保程序能够正常运行。
基于PLC的机械手控制设计

基于PLC的机械手控制设计PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的电子设备,它具有高可靠性、高性能和高可编程性的特点,广泛应用于各类工业生产设备中。
在机械手控制系统中,PLC可以实现对机械手的各项功能进行自动控制和协调。
PLC通过与机械手控制电路相连,可以接收来自传感器的信号。
通过安装在机械手上的传感器,可以感知外部环境的变化,如物体的位置、尺寸、形状等。
当传感器检测到信号时,PLC可以接收这些信号,并根据预先编程的逻辑规则进行处理。
PLC可以根据接收到的传感器信号,判断机械手当前的状态,并根据需要进行相应的动作控制。
当传感器检测到有物体需要抓取时,PLC可以控制机械手的臂和手部进行协调运动,将物体准确地抓取起来。
PLC还可以根据预设的路径规划和运动规划算法,控制机械手的运动轨迹和速度,以确保机械手的运动稳定和安全。
PLC还可以实现对机械手的力、速度、位置等参数的调节和控制。
通过在PLC中设定相应的参数和逻辑规则,可以根据不同的工作需求,对机械手的运动特性进行调整。
对于需要进行精确操作的任务,可以通过PLC对机械手的位置精度和速度进行调节,以实现更精确的控制和操作。
PLC还可以与其他设备进行联动控制。
在工业生产过程中,通常需要将机械手与其他设备进行协作,以完成复杂的任务。
通过PLC,可以实现机械手与其他设备之间的信息交换和联动控制。
在装配生产线上,机械手可以与传送带、加工设备等其他设备进行协作,实现物料的传递和加工。
PLC可以实时监控和调度各个设备的状态,根据当前的工作情况和优先级,合理安排机械手和其他设备的工作顺序和时间。
基于PLC的机械手控制设计可以实现对机械手的各项功能进行自动控制和协调,提高生产效率,降低操作难度,具有广泛的应用前景。
随着自动化技术的不断发展和PLC性能的提升,基于PLC的机械手控制设计将呈现出更多的创新和应用。
基于PLC的机械臂控制电路设计

基于PLC的机械臂控制电路设计摘要随着可编程控制器应用技术的不断发展,PLC的应用范围日益扩大,使得当今工程技术人员在设计电气控制系统时,考虑选用PLC控制取代接触器控制。
本文重点分析了基于PLC的机械手控制系统的组成,并详细叙述了在以PLC为核心的基础上,对交流异步电动机进行综合控制的软、硬件的实现方法。
该系统利用异步电动机正反转旋转以及脉冲调速的特点,对其采用调频控制。
因此可将整个运动视为折线运动,每一个动作可视为运动程序相同、特征参数各异的点位相对运动。
其以起点作为参考点,通过脉冲计数得到目的点的位置,手动操作机械手从参考点运动到目的点后,保存目的点位的特征参数,并统一进行列表管理。
从而实现手动模式下运用关键点位输入及自动模式查表方式的“仿形”动作。
关键字:可编程控制器,机械手,定位控制PLC-based manipulator control circuit designAbstractWith the Programmable Logic Controller the continuous development of applied technology, PLC on the application of growing, making today's engineering and technical personnel in the design of electrical control system, consider replacing optional PLC control access control. The paper analyzed the PLC-based control system Manipulator the composition, and described in detail in the PLC as the core on the basis of the Stepping Motor control of the integrated software and hardware of the method. The system used by the Stepping Motor unit pulse of step with the characteristics of the same distance from their point of using open-loop control. So the whole movement could be seen as broken line movement, every action can be considered the same as sports, characteristics of different parameters of the point of relative movement. To its starting point as a reference point, through the pulse by counting purposes at the location, manually operated mechanical hand movement from the point of reference points to the purpose, the purpose of preserving points of the parameters, and a unified list management. To achieve manual mode use of the key points of import and automatic mode look-up table means "copying" moves.Key word: Programmable Logic Controller, Manipulator, Positioning Control目录1 前言 (1)1.1 研究的目的和意义 (1)1.1.1 传统机械手 (1)1.1.2 现代机械手 (1)1.2 研究的国内外现状和发展趋势 (2)1.2.1 国内外现状 (2)1.2.2发展趋势 (3)2 方案设计 (4)2.1 机械手的工艺流程和实现功能 (4)2.1.1 机械手工艺流程 (4)2.1.2 机械手实现功能 (4)2.2 系统总体设计框图 (5)2.3各模块概述 (5)2.3.1控制器 (5)2.3.2驱动模块 (5)2.3.3执行模块 (6)3 硬件设计 (7)3.1 机械手夹持结构 (7)3.1.1 夹紧机构——手爪 (7)3.1.2 结构 (7)3.2 机械手躯干 (8)3.2.1 组成 (8)3.2.2 传动定位机构 (8)3.3 传动系统 (9)3.3.1 传动方式 (9)3.3.2 交流异步电机调速原理 (9)3.4 辅助系统 (12)3.4.1 原点定位及超程保护 (12)3.4.2 操作台 (12)3.5 PLC选择及I/O口分配 (13)3.5.1 PLC控制系统设计的基本原则 (13)3.5.2 PLC控制系统设计步骤 (13)3.5.3 CPU的速度 (14)3.5.4 PLC模块的选择 (14)3.5.5 PLC品牌选择 (15)3.5.6 PLC系列选择 (16)3.5.7 I/O点数 (18)3.5.8 I/O口分配论证 (18)4 软件设计 (20)4.1 工作流程图 (20)4.2 程序设计 (20)4.2.1 程序设计方法 (20)4.2.2 编程的总体结构 (20)4.3 各部分程序的设计 (21)4.3.1 公共程序 (21)4.3.2 手动程序 (23)4.3.3 回原点程序 (23)4.3.4 自动程序 (24)5.1 公共程序调试 (28)5.2 手动程序调试 (28)5.3 回原位程序调试 (28)5.4 自动程序调试 (29)6 研究总结 (30)6.1 成果综述 (30)6.2 特色 (30)6.3续改进方向 (30)参考文献 (31)致谢 (32)附录 (33)文献综述 (34)1 前言1.1 研究的目的和意义1.1.1 传统机械手伴随着工业自动化发展的脚步,机械手凭借其定位精度高、工作性能稳定、结构灵活多样、可精确复现等特点,被广泛应用于轻、重工业、医疗卫生、军事、科研等高新技术领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要在机械制造业中,机械手已被广泛应用,大大地改善了工人的劳动条件,显著地提高劳动生产率,加快了实现工业生产机械化和自动化的步伐。
本文通过对机械手的组成和分类,及国内外的发展状况的了解,对本课题任务进行了总体方案设计。
确定了机械手用三自由度和圆柱坐标型式。
设计了机械手的夹持式手部结构;以及设计了机械手的总体结构,以实现机械手伸缩,升降,回转三个自由度及手爪的开合。
驱动方式由气缸来实现手臂伸缩和升降,异步电机来实现机械手的旋转。
运用了FX 系列可编程序控制器(PLC)对上下料机械手进行控制, 论述了电气控制系统的硬件设计, 控制软件结构以及手动控制程序和自动控制程序的设计。
关键词:机械手,气缸,可编程序控制器目录摘要 (I)1 绪言 (1)1.1 机械手的概述 (1)1.2 我国机械手的发展 (1)1.3 气动机械手的应用现状及发展前景 (3)1.4 PLC概念的由来和产生 (5)1.5 本课题设计要求 (8)2 机械手的总体设计方案 (9)2.1 机械手的系统工作原理及组成 (9)2.2 机械手基本形式的选择 (10)2.3 驱动机构的选择 (11)2.4 机械手的技术参数列表 (11)3 机械手的机械系统设计 (13)3.1 机械手的运动概述 (13)3.2 机器人的运动过程分析 (14)4 机械手手部结构设计及计算 (15)4.1 手部结构 (15)4.2 手部结构设计及计算 (16)4.3 夹紧气缸的设计 (18)5 机械手手臂机构的设计 (24)5.1 手臂的设计要求 (24)5.2 伸缩气压缸的设计 (24)5.3 导向装置 (29)6 机械手腰部和基座结构设计及计算 (30)6.1 结构设计 (30)6.2 控制手臂上下移动的腰部气缸的设计 (30)6.3 导向装置 (34)6.4 平衡装置 (34)6.5 基座结构设计 (35)7 气动系统设计 (38)7.1 气压传动系统工作原理图 (38)8 机械手的PLC控制系统设计 (40)8.1 可编程序控制器的选择及工作过程 (40)8.2 可编程序控制器的使用步骤 (41)8.3 机械手可编程序控制器控制方案 (41)9 总结 (55)参考文献 (56)1 绪言1.1 机械手的概述机械手(又称机器人,机械人,英文名称:Robot),在人类科技发展史上其来有自。
早在三国时代,诸葛亮发明的木牛流马即是古代中国人的智能结晶。
随着近代的工业革命,机器产业的不断发展成为近代工业的主要支柱。
由于科学幻想所系的“永动机”、太空探险以及梦想解决人的机能所无法达致境界的求新意念,推动科学家想研究创造出种种能够代替人的机械。
上世纪六、七十年代的自动化机器、无人操纵的飞行器等等,即是此产业发展链条上的一个大胆的尝试与突破。
虽然,后来电脑、电子产业的发达引开了人们关注的热点,但关于机械手的研究与开发一直在持续进行着。
而近二十年中,因为电脑技术、电子产品及生物遗传工程等技术的大踏步发展,“机械手”的研发热潮已从专业人士的实验室中走了出来,成为一种综合科研能力的开发活动,参与者也打破了各行各业的划地为牢、各自为政的困局,开始了纵横连合,争奇斗妍,蔚成热潮的研究与制作尝试。
机械手的研究从一开始就是拟人化的,所以才有机械臂的开发与制作,也是为了以机械来代替人去做人力所无法完成的劳作或探险。
但近十几年来,机械手的开发不仅越来越优化,而且涵盖了许多领域,应用的范畴十分广阔。
大而言之,用之于太空开发,月球车,深海探测器,海洋石油开采,航天飞机机械臂等,小至微型手术机械,生命监测仪等。
军事上的用途更是日新月异,从拆弹器、清除地雷器到无人驾驶飞机、战车,有人甚至预测未来战争可能如星球大战一样,是机械手的战争。
至于工业、农业、遗传生物产业、医学、文化产业、电讯业、能源开发,都将因机械手的大量登场而出现产业革命。
英国电讯公司未来学部门研究员曾因准确预测手机短讯、垃圾电邮及网上搜寻引擎的出现而闻名,在最近公布的科技展望五十年的预测中,其中就有数条是关于机械手的。
1.2 我国机械手的发展第一台机械手出现后20年,我国于1972年开始研制机械手,由上海起,接着天津,吉林,哈尔滨,广州,昆明等十几个研究单位和院校分别开发了固定程序、结合式、液压伺服型同用机械手,并开始了机构学(包括步行机构)、计算机控制和应用技术的研究,这些机械手大约有1/3用于生产。
在该技术的推动下,随着改革开放方针的实施,我国机械手技术的发展得到政府的重视和支持,在80年代中期,国家组织了对工业机械手的需求的行业的调研,结果表明,对第二代工业机械手的需求主要集中于汽车行业(占总需要的60%~70%)。
在众多的专家的建议和规划下,于“七五”期间,由机电部主持,中央各部委,中科院及地方十几所科研院所和大学参加,国家投入相当的资金,进行了工业机械手基础技术,基础元器件,几类工业机械手整机及应用工程的开发研究,完成了示教再现式工业机械手成套技术(包括机械手、控制系统、驱动传动单元、测试系统的设计、制造、应用和小批量生产的工艺技术等)的开发,研制出喷涂、弧焊、点焊和搬运等作业机械手整机,几类专用和通用控制系统及几类关键元部件如交、直流伺服马达驱动单元机械手专用薄壁轴承、谐波传动系统、焊接电源和变压器等,并在生产中经过实用考核,其主要性能指标达到80年代初国际同类产品的水平,且形成小批量生产能力。
在应用方面,在第二汽车厂建立的我国第一条采用国产机械手的生产线-东风系列驾驶室多品种混流机械手喷涂生产线,该线由7台国产PJ系列喷涂机械手和PM系列喷涂机械手和周边设备构成,已运行十年,完成喷涂20万辆东风系列驾驶室的生产任务,成为国产机械手应用的一个窗口;此外,还建立了几个弧焊和点焊机械手工作站。
与此同时,还研制了几种SCARA 型装配机械手样机,并进行了试应用。
在基础技术研究方面,解剖了国外10余种先进的机型,并进行了机构学,控制编程,驱动传动方式,检测等基础理论与技术的系统研究。
开发出具有国际先进水平的测量系统,编制了我国工业机械手标准体系和12项国标,行标。
为了跟踪国外高技术,80年代在国家高技术计划中,安排了智能机械手的研究开发,包括水下无缆机械手,高功能装配机械手(DD驱动)和各类特种机械手,进行了智能机械手体系结构,机构控制,人工智能机器视觉,高性能传感器及新材料的应用研究已取得一批成果。
这些技术的实用化将加速我国第二代机械手的发展[2]。
经过80年代尤其是后50年的努力,吸引了160多个单位从事机械手及其相关技术的研究力量,形成了京津、东北、华东、华南等机械手技术地区和十几家优势单位,培养了一支2000多人的工业机械手设计、研制、应用队伍,造就了一批机械手专家,使我国的工业机械手技术发展基本上可以立足于国内。
90年代初期,我国主要开发下列机械手:(1)喷涂机械手(2)焊接机械手(3)搬运机械手(4)装配机械手在90年代中期,国家已选择以焊接机械手的工程应用为重点进行开发研究,从而迅速掌握焊接机械手应用工程成套开发技术、关键设备制造、工程配套、现场运行等技术,即以机械手焊接工艺为龙头,开展焊装线总体设计、线体总控及多机通讯,新型焊接机械手用焊接电源、送丝机构、焊缝跟踪系统、机电精度、控制技术等开发及完善化,以及几条焊装生产线的全套应用及其可行性作为主攻目标。
虽然我国的机械手研发工作基本上属于科学研究的项目,但据说,中国科学院目前已造出说话时嘴唇能够活动、眼睛能转动、具视觉功能的机械手,其水准可媲美日本同行,但这台机械手体形甚大,却未能以双脚走路。
在日本,机械手能否以二脚行走已成为一个热门及熟练的技术竞赛项目,譬如有“二足机械人竞赛大会”(分等级)。
其实,机械手的制作绝对并非只是液压机械与电子产品的混成物,要将机械手造得越来越有人性化,就要兼及生命医学、传感、光学及创造性的文化产业等方面,比如机械手的关节就需要研究中医的经络学、生物学上的神经刺激反应以及文化产品的某种造型特征(其中很重要的是民族特征的外表)等等。
英国的科学家甚至预言,到2020年,随着机械手愈来愈精密和使用有机零件制造,它们将会受到“机械手权”的保护。
1.3 气动机械手的应用现状及发展前景1.3.1 气动技术及气动机械手的发展过程近20年来, 气动技术的应用领域迅速拓宽, 尤其是在各种自动化生产线上得到广泛应用。
电气可编程控制技术与气动技术相结合, 使整个系统自动化程度更高, 控制方式更灵活, 性能更加可靠;气动机械手、柔性自动生产线的迅速发展, 对气动技术提出了更多更高的要求; 微电子技术的引入, 促进了电气比例伺服技术的发展, 现代控制理论的发展, 使气动技术从开关控制进入闭环比例伺服控制, 控制精度不断提高;由于气动脉宽调制技术具有结构简单、抗污染能力强和成本低廉等特点, 国内外都在大力开发研究。
从各国的行业统计资料来看, 近30多年来, 气动行业发展很快。
20世纪70年代, 液压与气动元件的产值比约为9∶1, 而30多年后的今天, 在工业技术发达的欧美、日本等国家, 该比例已达到6∶4, 甚至接近5∶5。
我国的气动行业起步较晚, 但发展较快。
从20世纪80年代中期开始, 气动元件产值的年递增率达20%以上, 高于中国机械工业产值平均年递增率。
随着微电子技术、PLC技术、计算机技术、传感技术和现代控制技术的发展与应用, 气动技术已成为实现现代传动与控制的关键技术之一。
气动技术是以空气压缩机为动力源, 以压缩空气为工作介质, 进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段之一。
大约开始于1776年, Johnwilkimson发明能产生1个大气压左右压力的空气压缩机。
1880年, 人们第一次利用气缸做成气动刹车装置, 将它成功地用到火车的制动上。
20世纪30年代初, 气动技术成功地应用于自动门的开闭及各种机械的辅助动作上。
至50年代初, 大多数气压元件从液压元件改造或演变过来, 体积很大。
60年代,开始构成工业控制系统, 自成体系, 不再与风动技术相提并论。
在70年代, 由于气动技术与电子技术的结合应用, 在自动化控制领域得到广泛的推广。
80年代进入气动集成化、微型化的时代。
90年代至今, 气动技术突破了传统的死区, 经历着飞跃性的发展, 人们克服了阀的物理尺寸局限, 真空技术日趋完美, 高精度模块化气动机械手问世, 智能气动这一概念产生, 气动伺服定位技术使气缸高速下实现任意点自动定位, 智能阀岛十分理想地解决了整个自动生产线的分散与集中控制问题。
气动机械手作为机械手的一种, 它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境等优点而被广泛应用。
气动机械手强调模块化的形式, 现代传输技术的气动机械手在控制方面采用了先进的阀岛技术(可重复编程等) , 气动伺服系统(可实现任意位置上的精确定位) , 在执行机构上全部采用模块化的拼装结构。