函数方程不等式综合应用专题
不等式、函数、方程综合联系一例
不等式、函数、方程综合联系一例
了解数学,尤其是拉格朗日学,不等式、函数以及方程之间的关系是有必要的。
三者之间有很多联系,这一联系可源于两个概念“不等式”和“函数”。
本文将主要讨论这两个概念在解方程,尤其是求函数的零点的联系。
首先,我们来讨论不等式及其与函数的联系。
当一个函数与一个不等式结合在一起时,可以创建一个新的不等式。
这样,新创建的不等式可以用来确定函数所经历的区间。
例如,当函数y=f(x)满足不等式y≤2x+3时,可以确定函数经过的区间是[-∞, 3]。
从此可以推断出,函数在此区间内取值要满足不等式规定的条件。
其次,我们来讨论函数及其与方程的联系。
方程实际上是一个不等式,而一个不等式的解也可以表示为一个函数的零点。
因此,求解函数的零点也就是求解方程的解。
例如,函数y=f(x)的零点是满足方程f(x)=0的解,求函数的零点就是求解方程的过程。
最后,我们将总结不等式、函数和方程之间的联系。
不等式可以用来决定函数经历的区间;同时,函数的零点也可以表示为求解方程的解;换句话说,函数就是方程的解决方案。
通过上述联系,不等式、函数以及方程之间的关系更加明晰。
综上所述,不等式、函数和方程之间存在着密切的联系。
一个不等式可以用来决定函数经历的区间;同时,函数的零点可以用来表示求解方程的解。
这种联系可以帮助我们更好的理解不等式、函数以及方程之间的关系,从而更好的掌握拉格朗日学。
方程不等式及函数的应用题
方程不等式及函数的应用题1.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?2.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?3.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?4.小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?5.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.6.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?7.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?8.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.9.向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.10.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.11.大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)①进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP 客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.12.甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?13.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?14.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?15.某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?16.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.17.小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系.(1)求小丽步行的速度及学校与公交站台乙之间的距离;(2)当8≤x≤15时,求y与x之间的函数关系式.18.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.19.已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?20.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?。
函数方程不等式综合应用
2012年中考复习二轮材料函数、方程、不等式综合应用专题一、专题诠释函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。
函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。
函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。
也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。
而新课程标准中把这个联系提到了十分明朗、鲜明的程度。
因此,第二轮中考复习,对这部分内容应予以重视。
这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。
这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。
考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。
解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。
二、解题策略和解法精讲函数与方程、函数与不等式密不可分,紧密联系。
利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等。
等式与不等式是两种不同的数量关系,但在一定条件下又是可以转化的,如一元二次方程有实数根,可得不等式Δ≥0等。
一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-b/a,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解.一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。
初二数学-一次函数、方程(组)及不等式的综合应用
不等式在实际问题中的应用
方案优选问题 在多种方案中选择最优方案,可以通过建立和解决不等式来比较各种方案的优劣。 最大值最小值问题 在生产、生活中,经常需要求某个量的最大值或最小值,可以通过建立不等式来解决。 经济问题 在经济学中,价格、成本、利润等变量之间存在不等关系,可以通过建立和解决不等式来分析经济问题。
建立实际问题与数学模型的联系
实际问题的数学建模与解决
通过分析实际问题,将问题转化为数学模型,如线性方程、不等式或函数表达式。
利用数学知识和方法求解数学模型,得出实际问题的解决方案。
实际问题的数学解决方案
将数学解决方案应用到实际问题中,验证其可行性和有效性。
实际问题的应用与验证
综合应用题的解题思路与技巧
方程组在实际问题中的应用
在经济学中,方程组被用来描述和解决各种问题,如供需关系、成本和收益等。
经济问题
在解决物理问题时,经常需要建立和解决方程组,例如在力学、电磁学和热力学等领域。
物理问题
在航天工程中,需要建立复杂的方程组来描述和解决飞行器的轨道、速度和加速度等问题。
航天工程
PART THREE
初二数学-一次函数、方程(组)及不等式的综合应用
答辩学生:XXX 指导老师:XXX
Contents
目 录
目录
绪论
研究 方法
PART ONE
一次函数的应用
3.1关键技术 3.2技术难点 3.3案例分析
一次函数的定义与性质
一次函数是形如$y=kx+b$的函数,其中$k$和$b$是常数,且$k neq 0$。 一次函数的图像是一条直线,其斜率为$k$,截距为$b$。 一次函数的性质包括单调性、奇偶性等,这些性质在解决实际问题中具有重要意义。
二次函数与一元二次方程及不等式综合专题训练
二次函数与一元二次方程及不等式综合专题训练1、(1)抛物线2x x 2y --=与x 轴有 个交点; (2)抛物线2x 41x 1y --=与x 轴有 个交点; (3)抛物线222+-=x x y 与x 轴有 个交点。
2、下列函数图象与x 轴有两个交点的是( )A .y =7(x +8)2+2 B .y =7(x -8)2+2 C .y = -7(x -8)2-2 D .y = -7(x +8)2+2 3、(1)抛物线532+-=x x y -与直线2y =有 个交点; (2)抛物线642+-=x x y 与直线2y =有 个交点; (3)抛物线232+-=x x y -与直线2y =有 个交点; (4)抛物线243y x x =++与直线x=-9有 个交点; 4、抛物线231y x x =-+与直线y k =有1个交点,则_____k =. 5、已知二次函数y =-12 x 2 - x + 32。
在给定的直角坐标系中,画出这个函数的图象,并根据图 象直接作答: (1)方程 - 12 x 2 - x + 32 =0的解为x= ;(2)当y < 0时,x 的取值范围是 ; (3)当x 满足条件: 时,y 随x 的增大而减小; (4)当x= 时,y 的最小值为 ; (5)以图象与坐标轴交点为顶点的三角形面积是 ;(6)若将此图象沿x 轴向右平移3个单位所对应的函数关系式是 . (7)当x 取何值时,y >0,y =0,y <0; (8)当y 取何值时,-4<x <0;6、如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、点B (3,0)和点C (0,-3),一次函数的图象与抛物线交于B 、C 两点. (1)求出二次函数的解析式; (2)根据图象回答下列问题:①当x 取何值时,两函数的函数值都随x 增大而增大; ②当x 取何值时,一次函数值等于二次函数值; ③当x 取何值时,一次函数值大于二次函数值; ④当x 取何值时,两函数的函数值的积小于0.1-1 -3 3xyO A BCxyO7、已知抛物线y=x 2-8x+c,(1)、若抛物线的顶点在x 轴上,则c= ;(2)、若抛物线与x 轴有两个交点,则c 的范围是 ; (3)、若抛物线与坐标轴有两个公共点,则c 的范围是 。
专题19 应用题(函数、不等式、方程)-2022年中考数学真题分项汇编(第2期)试题及答案
专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A 种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?6.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.7.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A 种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?8.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.10.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?11.(2022·广西河池)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?12.(2022·辽宁锦州)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?13.(2022·内蒙古呼和浩特)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?14.(2022·广西)打油茶是广西少数民族特有的一种民俗,某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图像如图所示.(1)求y 与x 的函数解析式,并写出..自变量x 的取值范围; (2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.15.(2022·辽宁)某文具店购进一批单价为12元的学习用品,按照相关部门规定其销售单价不低于进价,且不高于进价的1.5倍,通过分析销售情况,发现每天的销售量y (件)与销售单价x (元)满足一次函数关系,且当15x =时,50y =;当17x =时,30y =.(1)求y 与x 之间的函数关系式;(2)这种学习用品的销售单价定为多少时,每天可获得最大利润,最大利润是多少元?16.(2022·黑龙江大庆)果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?17.(2022·湖北武汉)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始2减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.18.(2022·山东青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?19.(2022·贵州铜仁)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?20.(2022·浙江金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2y (吨)关于售价x (元/千克)的函数表达式为21y x =-,函数图象见图1. ③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.21.(2022·辽宁营口)某文具店最近有A ,B 两款纪念册比较畅销,该店购进A 款纪念册5本和B 款纪念册4本共需156元,购进A 款纪念册3本和B 款纪念册5本共需130元.在销售中发现:A 款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B 款纪念册售价为22元/本时,每天的销售量为80本,B 款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:该店准备降低每本A 款纪念册的利润,同时提高每本B 款纪念册的利润,且这两款纪念册每天销售总数不变,设A 款纪念册每本降价m 元.①直接写出B 款纪念册每天的销售量(用含m 的代数式表示);②当A 款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?22.(2022·内蒙古包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为12010,203201016,x x y x x ≤≤⎧=⎨-+<≤⎩()()草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当412x ≤≤时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.(2022·湖北武汉)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y (千克)与销售单价x (元/千克)有如下表所示的关系:(1)根据表中的数据在下图中描点(),x y ,并用平滑曲线连接这些点,请用所学知识求出y 关于x 的函数关系式;(2)设该超市每天销售这种商品的利润为w (元)(不计其它成本), ①求出w 关于x 的函数关系式,并求出获得最大利润时,销售单价为多少; ②超市本着“尽量让顾客享受实惠”的销售原则,求240=w (元)时的销售单价.24.(2022·广东深圳)某学校打算购买甲乙两种不同类型的笔记本. 已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?25.(2022·广西贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?26.(2022·江苏无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?27.(2022·湖南湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅰ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度1mAE 的水池且需保证总种植面积为232m,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?28.(2022·山东威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.专题19 应用题(函数、不等式、方程)一.解答题1.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.【答案】(1)龙眼干的售价应不低于36元/kg(2)11,(100)50361700,(100)50aawaa⎧<⎪⎪=⎨⎪-≥⎪⎩【分析】(1)设龙眼干的售价应不低于x元/kg,新鲜龙眼共3a千克,得到总收益为12×3a=36a 元;加工成龙眼干后总收益为ax元,再根据龙眼干的销售收益不低于新鲜龙眼的销售收益得到不等式ax≥36a,解出即可;(2)设龙眼干的售价为y元/千克,当100a<千克时求出新鲜龙眼的销售收益为12a元,龙眼干的销售收益为47150ay元,根据“龙眼干的销售收益不低于新鲜龙眼的销售收益,且龙眼干的定价取最低整数价格”得到4712150ay a,解出39y=;然后再当100a≥千克时同样求出新鲜龙眼收益与龙眼干收益,再相减即可求解.(1)解:设龙眼干的售价应不低于x元/kg,设新鲜龙眼共3a千克,总销售收益为12×3a=36a (元),加工成龙眼干后共a千克,总销售收益为x×a=ax(元),∵龙眼干的销售收益不低于新鲜龙眼的销售收益,∴ax≥36a,解出:x≥36,故龙眼干的售价应不低于36元/kg.(2)解:a千克的新鲜龙眼一共可以加工成147(16%)3150a a千克龙眼干,设龙眼干的售价为y元/千克,则龙眼干的总销售收益为47150ay元,当100a ≤千克时,新鲜龙眼的总收益为12a 元,∵龙眼干的销售收益不低于新鲜龙眼的销售收益, ∴4712150ay a ,解出12150180038.34747y 元, 又龙眼干的定价取最低整数价格,∴39y =, ∴龙眼干的销售总收益为476113915050a a , 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差61111125050a w a a 元; 当100a >千克时,新鲜龙眼的总收益为121005(100)(5700)a a 元, 龙眼干的总销售收益为61150a 元, 此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差 611361(5700)(700)5050a w a a 元, 故w 与a 的函数关系式为()11,10050361700,(100)50a a w a a ⎧≤⎪⎪=⎨⎪->⎪⎩. 【点睛】本题考查了一元一次不等式的应用、一次函数的实际应用等,本题的关键是读懂题意,明确题中的数量关系,正确列出函数关系式或不等式求解.2.(2022·黑龙江)学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】(1)购进一根A 种跳绳需10元,购进一根B 种跳绳需15元(2)有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根(3)方案三需要费用最少,最少费用是550元【分析】(1)设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,可列方程组1051751510300x y x y +=⎧⎨+=⎩, 解方程组即可求得结果;(2)根据题意可列出不等式组()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩,解得:2325.4m ≤≤,由此即可确定方案;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+,结合函数图像的性质,可知w 随m 的增大而减小,即当25m =时525675550=-⨯+=.(1)解:设购进一根A 种跳绳需x 元,购进一根B 种跳绳需y 元,根据题意,得1051751510300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩, 答:购进一根A 种跳绳需10元,购进一根B 种跳绳需15元;(2)根据题意,得()()101545560101545548m m m m ⎧+-≤⎪⎨+-≥⎪⎩, 解得2325.4m ≤≤,∵m 为整数,∴m 可取23,24,25.∴有三种方案:方案一:购买A 种跳绳23根,B 种跳绳22根;方案二:购买A 种跳绳24根,B 种跳绳21根;方案三:购买A 种跳绳25根,B 种跳绳20根;(3)设购买跳绳所需费用为w 元,根据题意,得()1015455675w m m m =+-=-+∵50-<,∴w 随m 的增大而减小,∴当25m =时,w 有最小值,即w 525675550=-⨯+=(元)答:方案三需要费用最少,最少费用是550元.【点睛】本题主要考查的是不等式应用题、二元一次方程组应用题、一次函数相关应用题,根据题意列出对应的方程是解题的关键.3.(2022·黑龙江牡丹江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【答案】(1)m=10;(2)11种;(3)购进甲种运动鞋95双,购进乙种运动鞋105双,可获得最大利润【分析】(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可.(2)设购进甲种运动鞋x双,表示出乙种运动鞋(200﹣x)双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答.(3)设总利润为W,根据总利润等于两种鞋的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.【详解】解:(1)依题意得,30002400m m20=-,去分母得,3000(m﹣20)=2400m,解得m=100.经检验,m=100是原分式方程的解.∴m=100.(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,()()()()240100x16080(200x)21700{240100x16080(200x)22300 -+--≥-+--≤①②,解不等式①得,x≥95,解不等式②得,x≤105,∴不等式组的解集是95≤x≤105.∵x是正整数,105﹣95+1=11,∴共有11种方案.(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,∴当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样.③当60<a<70时,60﹣a<0,W随x的增大而减小,∴当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.4.(2022·福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【分析】(1)设购买绿萝x盆,购买吊兰y盆,根据题意建立方程组4696390x yx y+=⎧⎨+=⎩,解方程组即可得到答案;(2)设购买绿萝x 盆,购买吊兰y 盆,总费用为z ,得到关于z 的一次函数3414z y =-+,再建立关于y 的不等式组,解出y 的取值范围,从而求得z 的最小值.(1)设购买绿萝x 盆,购买吊兰y 盆∵计划购买绿萝和吊兰两种绿植共46盆∴46x y +=∵采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元 ∴96390x y +=得方程组4696390x y x y +=⎧⎨+=⎩解方程组得388x y =⎧⎨=⎩∵38>2×8,符合题意∴购买绿萝38盆,吊兰8盆;(2)设购买绿萝x 盆,购买吊兰吊y 盆,总费用为z∴46x y +=,96z x y =+∴4143z y =-∵总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍∴41433902y x y -<⎧⎨≥⎩将46x y =-代入不等式组得4143390462y y y-<⎧⎨-≥⎩ ∴4683y <≤∴y 的最大值为15 ∵3414z y =-+为一次函数,随y 值增大而减小∴15y =时,z 最小∴4631x y =-=∴96369z x y =+=元故购买两种绿植最少花费为369元.【点睛】本题考查二元一次方程组、一次函数、不等式组的性质,解题的关键是数量掌握二元一次方程组、一次函数、不等式组的相关知识.5.(2022·湖北恩施)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)甲种客车每辆200元,乙种客车每辆300元(2)租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元【分析】(1)可设甲种客车每辆x 元,乙种客车每辆y 元,根据等量关系:一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元,列出方程组求解即可;(2)设租车费用为w 元,租用甲种客车a 辆,根据题意列出不等式组,求出a 的取值范围,进而列出w 关于a 的函数关系式,根据一次函数的性质求解即可.。
专题08 一次函数与方程、不等式的综合问题-2023年初中数学8年级下册同步压轴题(学生版)
专题08 一次函数与方程、不等式的综合问题 类型一、一次函数与方程综合例.如图,一次函数y kx b =+的图像与x 轴的交点坐标为()2,0-,则下列说法正确的有( ).A .y 随x 的增大而减小B .0k >,0b <C .当2x >-时,0y <D .关于x 的方程0kx b +=的解为2x =-【变式训练1】直线y =ax +b (a ≠0)过点A (0,2),B (1,0),则关于x 的方程ax +b =0的解为( ) A .x =0B .x =2C .x =1D .x =3【变式训练2】如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是( )A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 2【变式训练3】如图,一次函数y kx b =+的图象经过点()0,4,则下列结论正确的是( )A .图像经过一、二、三象限B .关于x 方程0kx b +=的解是4x =C .0b <D .y 随x 的增大而减小【变式训练4】一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式20kx b +>的解集是( )A .2x >-B .2x <-C .2x <D .2x >类型二、一次函数与不等式综合例.如图,已知函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是( )A .x >﹣2B .x <﹣2C .﹣2<x <0D .x >0【变式训练1】如图,一次函数y =kx +b (k >0)的图像过点()1,0-,则不等式()20k x b -+>的解集是( )A .x >-3B .x >-2C .x >1D .x >2【变式训练2】如图,一次函数y =kx +b 的图象经过点(4,0),(0,4),那么关于x 的不等式0<kx +b <4的解集是______.【变式训练3】如图,一次函数y =kx +b 与y =x +2的图象交于点P (m ,5),则关于x 的不等式kx +b >x +2的解集是______.【变式训练4】如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式kx ﹣1<x +b 的解集为______.课后训练1.已知不等式0ax b +<的解是2x >-,下列有可能是函数y ax b =+的图像的是( )A .B .C .D .2.如图所示为两个一次函数的图象,则关于x ,y 的方程1122y k x b y k x b =+⎧⎨=+⎩的解为________.3.函数y ax =和y kx b =+的图象相交于点()2,1A -,则方程ax kx b =+的解为______.4.已知一次函数y kx b =-(k 、b 为常数,且0k ≠,0b ≠)与13y x =的图象相交于点1(,)2M a ,则关于x 的方程1()3k x b -=的解为x =____________. 5.如图,直线1:1l y x =+与直线2:l y mx n =+相交于点()1,2P ,则关于x 的不等式1x mx n +≥+的解集为______.6.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.7.数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()2,3P .根据图象可知,关于x 的不等式21x kx b ->+的解集是______8.如图,直线l 1:y 1=ax +b 经过(﹣3,0),(0,1)两点,直线l 2:y 2=kx ﹣2;①若l 1∥l 2,则k 的值为 _____;②当x <1时,总有y 1>y 2,则k 的取值范围是 ________.9.如图,一次函数y kx b =+的图象与x 轴交于点A (3,0),与y 轴交于点B (0,4),与正比例函数y ax =的图象交于点C ,且点C 的横坐标为2,则不等式ax kx b <+的解集为______.10.直线y=kx+b与直线y=5﹣4x平行,且与直线y=﹣3(x﹣6)相交,交点在y轴上,求直线y=kx+b对应的函数解析式.。
备考2022年中考数学二轮复习-函数_二次函数_二次函数与不等式(组)的综合应用-综合题专训及答案
备考2022年中考数学二轮复习-函数_二次函数_二次函数与不等式(组)的综合应用-综合题专训及答案二次函数与不等式(组)的综合应用综合题专训1、(2017丰台.中考模拟) 在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+2m﹣1(m≠0)与平行于x轴的一条直线交于A,B两点.(1)求抛物线的对称轴;(2)如果点A的坐标是(﹣1,﹣2),求点B的坐标;(3)抛物线的对称轴交直线AB于点C,如果直线AB与y轴交点的纵坐标为﹣1,且抛物线顶点D到点C的距离大于2,求m的取值范围.2、(2018西湖.中考模拟) 二次函数y=(m+1)x2﹣2(m+1)x﹣m+3.(1)求该二次函数的对称轴;(2)过动点C(0,n)作直线l⊥y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;(3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m.3、(2017江北.中考模拟) 如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0)、C(0,﹣1)、E(1,0).(1)求图①中抛物线的函数表达式;(2)将图①中抛物线向上平移一个单位,再绕原点O顺时针旋转180°后得到图②中抛物线,则图②中抛物线的函数表达式为;(3)图②中抛物线与直线y=﹣x﹣相交于A、B两点(点A在点B的左侧),如图③,求点A、B的坐标,并直接写出当一次函数的值大于二次函数的值时,x 的取值范围.4、(2017杭州.中考模拟) 已知抛物线y=x2﹣2bx+c(1)若抛物线的顶点坐标为(2,﹣3),求b,c的值;(2)若b+c=0,是否存在实数x,使得相应的y的值为1,请说明理由;(3)若c=b+2且抛物线在﹣2≤x≤2上的最小值是﹣3,求b的值.5、(2016杭州.中考真卷) 已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.6、(2019河南.中考模拟) 根据下列要求,解答相关问题:(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;抛物线的对称轴x=﹣1,开口向下,顶点(﹣1,2)与x轴的交点是(0,0),(﹣2,0),用三点法画出二次函数y=﹣2x2﹣4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程﹣2x2﹣4x=0的解为;③借助图象,写出解集:由图象可得不等式﹣2x2﹣4x≥0的解集为.(2)利用(1)中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式ax2+bx+c>0(a>0)的解集.7、(2017荆州.中考真卷) 已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.8、(2017长沙.中考真卷) 若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.9、(2017揭阳.中考模拟) 如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.(1)求该抛物线的解析式;(2)若点C(m,﹣)在抛物线上,求m的值.(3)根据图象直接写出一次函数值大于二次函数值时x的取值范围.10、(2019昆明.中考模拟) 已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B (3,0).(1)求抛物线的解析式;(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 时,直接写出x的取值范围是.11、(2019盘龙.中考模拟) 如图,已知抛物线与轴交于点,,且线段,该抛物线与轴交于点,对称轴为直线.(1)求抛物线的函数表达式;(2)根据图象,直接写出不等式的解集:;(3)设D为抛物线上一点,为对称轴上一点,若以点,,,为顶点的四边形是菱形,则点的坐标为.12、(2020萧山.中考模拟) 已知点A(1,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)上一点。
中考数学专题11方程、不等式和函数的应用综合(原卷板)
2014年中考数学试题分项版解析汇编(30套30专题)专题11:方程、不等式和函数的应用综合一、选择题目1.(遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是【】二、填空题目三、解答题1.(玉林、防城港)(12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.2.(毕节)(12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.3.(黔东南)(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.4.(遵义)(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是▲ km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?5.(河北)(本小题满分13分)某景区的环形路是边长为800米的正方形ABCD,如图,现有1号,2号两游览车分别从出口A和经典C同时出发,1号车顺时针,2号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200米/分.探究:设行驶时间为t分(1)当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内它与2号车相遇过的次数.发现:如图,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与D,A重合)时,刚好与2号车相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?6.(河南)(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
一次函数与方程、不等式综合.题库
一、一次函数与一元一次方程综合例1已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0例2已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.例3已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.二、一次函数与一元一次不等式综合例4已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y < 例5当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限. 例6已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x < C .6x <- D .6x >-例7已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?例8直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.例9若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.例10如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.例11已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值; (2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.例题精讲一次函数与方程、不等式综合三、一次函数与二元一次方程(组)综合例12已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.例13已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为________.例14已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是________.例15一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .3例16已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.例17阅读:我们知道,在数轴上,1x =表示一个点,而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图①.观察图①可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩;在直角坐标系中,1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图②; 21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1x=1(2)(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;2y1(4)⑵在上面的直角坐标系中,用阴影表示22y xy⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为:.例18若直线(2)6y m x=--与x轴交于点()60,,则m的值为()A.3B.2C.1D.0例19如图,直线y kx b=+与x轴交于点()40-,,则0y>时,x的取值范围是()A.4x>-B.0x> C.4x<-D.0x<例20当自变量x满足什么条件时,函数23y x=-+的图象在:(1)x轴下方;(2)y轴左侧;(3)第一象限.例21一次函数y kx b=+的图象如图所示,当0y<时,x的取值范围是()A.0x>B.0x<C.2x>D.2x<例22已知一次函数y kx b=+的图象如图所示,当1x<时,y的取值范围是()A.20y-<<B.40y-<<C.2y<-D.4y<-例23如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y +=⎧⎨+=⎩的解关于原点对称的点的坐标是________.例24一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <例25如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.例26把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( )A.无解B.有唯一解C.有无数个解D.以上都有可能例27 b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?例28如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A(3,2),则不等式(k 2-k 1)x +b 2-b 1>0的解集为__________.Ay 1y 2yxO。
第09讲 一次函数及方程不等式+专题:一次函数的应用
一、一次函数与方程、不等式的关系知识点一:二元一次方程组的图像解法(1)一般地,一次函数y=kx+b 的图像上的任意一点的 都是二元一次方程kx —y+b=0的 ;,以二元一次方程kx —y+b=0的 为 的点都在一次函数y=kx+b 的图像上。
(2)一般地,如果2个一次函数的图像有 ,那么 就是相应的二元一次方程组的解。
(3)求直线y=k 1x+b 1(k 1≠0) 与直线y=k 2x+b 2(k 2≠0)的交点坐标只要求出 即可。
【例1】方函数y=-2x+1与y=3x -9的图象交点坐标为 ,这对数是方程组 ___________的解。
【例2】已知直线1l :33y x =-和直线2l :362y x =-+相交于点A 。
(1)求点A 坐标;(2)若1l 与x 轴交于点B ,2l 与x 轴交于点C ,求△ABC 面积;(3)若点D 与点A 、B 、C 能构成平行四边形,试写出点D 坐标。
(只需写出坐标,不必写解答过程)精讲精练第九讲、一次函数及方程不等式+专题:一次函数的应用知识点二:一次函数与不等式(组)【例3】已知一次函数25y x=-+.(1)画出它的图象;(2)求出当32x=时,y的值;(3)求出当3y=-时,x的值;(4)观察图象,求出当x为何值时,0y>,0y=,0y<【例4】直线11:l y k x b=+与直线22:l y k x=在同一平面直角坐标系中的图象如图所示,则关于x的不等式21k x k x b>+的解集为______.一次函数与方程习题1.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,二元一次方程组⎩⎨⎧=+=,,kxybaxy的解是________.2.一次函数421-=xy和y=-3x+3的图象的交点坐标是________.l2l13-1Oyx对应练习3.将方程x +3y =7全部的解写成坐标(x ,y )的形式,那么用全部的坐标描出的点都在直线( )上. A .3731-=x yB .3731+=x y C .3731+-=x yD .3731--=x y4.如图所示,图中两条直线l 1、l 2的交点坐标可以看做是方程组( )的解.A .⎩⎨⎧=-=+42,2y x y xB .⎩⎨⎧=-=-42,2y x y xC .⎩⎨⎧=-=-42,2x y y xD .⎩⎨⎧-=-=+42,2y x y x5.已知:直线.221--=x y(1)求直线221--=x y 与x 轴的交点B 的坐标;(2)若过y 轴上一点A (0,3)作与x 轴平行的直线l ,求它与直线221--=x y 的交点M 的坐标; (3)若过x 轴上一点C (3,0)作与x 轴垂直的直线m ,求它与直线221--=x y 的交点N 的坐标.6.两个一次函数的图象如图所示, (1)分别求出两个一次函数的解析式; (2)求出两个一次函数图象的交点坐标; (3)求这两条直线与y 轴围成三角形的面积.一次函数与不等式1.如图1,直线y=kx+b与x轴交于点(-4,0),则y>0时,x的取值范围是______.图1 图22.如图2,直线y=kx+b与y轴交于(0,3),则当x<0时,y的取值范围是______.3.一次函数y=kx+b的图象如图3,则当x______时,y<4.4.一次函数y1=k1x+b1与y2=k2x+b2的图象如图4所示,则当x______时,y1<y2;当x______时,y1=y2;当x______时,y1>y2.图3 图45.已知:如图5,一次函数y=kx+b的图象与x轴交于点M,则点M的横坐标x M=_____.(1)若k>0,则当x<x M时,y______0;当x>x M时,y______0;(2)若k<0,则当x<x M时,y_____0;当x>x M时,y______0.图56.函数y=kx+b的图象如图6所示,则关于x的不等式kx+b<0的解集是()A.x>0 B.x<0C.x>2 D.x<2图67.已知:一次函数y=-2x+3.(1)在平面直角坐标系中,画出此函数的图象;(2)当x为何值时,y>0?(3)当x为何值时,y≤1?(4)当-2≤x≤3时,求y的变化范围,并指出当x为何值时,y有最大值?(5)当1<y<5时,求x的变化范围.专题二:一次函数综合应用1.如图,直线y=x﹣4分别与x轴、y轴交于点A和点B,点C、D分别是线段OA、AB的中点,点P为OB上一动点,当PC+PD取最小值时点P的坐标是()A.(0,﹣1)B.(0,﹣2)C.(0,﹣3)D.(0,﹣4)2.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为________cm2.3.小明和小红两人周末去爬山,小红先出发,中间休息了一段时间,然后按休息前的进度继续前进,最后比小明迟到达山顶.设他们俩从山脚出发后所用的时间t(分钟)与所走的路程S(米)之间的函数关系如图所示:(1)根据图象小明登山的速度为米/分,小红的登山速度为米/分.(2)求出BC段图象的函数关系式,并写出自变量的取值范围.(3)小明到达山顶后,小红还有多少米到山顶?精讲精练4.“日啖荔枝三百颗,不辞长作岭南人”,广东的夏季盛产荔枝,桂味、糯米糍是荔枝的品种之一.佳佳同学先用52元购买2千克桂味和1千克糯米糍;几天后,他用76元购买1千克桂味和3千克糯米糍.(前后两次两种荔枝的售价不变) (1)求桂味、糯米糍的售价分别是每千克多少元?(2)若佳佳同学用y 元买了这两种荔枝共中10千克,设买了x 千克桂味. ①写出y 与x 的函数关系式.②若要求糯米糍的重量不少于桂味重量的3倍,请帮佳佳同学设计一个购买方案,使所需的费用最少,并求出最少费用.一、选择题1.判断下列变化过程中,两变量存在函数关系的是( ). A.x ,y 是变量,y =±3xB.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间 2.下列函数是一次函数的是( ).A .B .C .D .y =3x3. 若点(3,1)在一次函数的图象上,则k 的值是( ). A.5 B .4 C .3 D .12302x y -+=241y x =-2y x =y kx 2(k 0)=-≠课后作业4.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是( ).5.若一次函数y =(2-m )x -2的函数值y 随x 的增大而减小,则m 的取值范围是( ). A.m <0 B.m >0 C.m <2 D.m >26.已知函数y = −2x +3,当自变量x 增加1时,则其对应的函数值( ). A .增加1 B .减少 1 C .增加2 D .减少27.如果直线y =3x +6与y =2x -4交点坐标为(a ,b ),则,x a y b =⎧⎨=⎩是下列哪个方程组的解( ). A.36,24y x x y -=⎧⎨-=⎩ B.36,24y x x y -=⎧⎨-=-⎩ C.36,24x y x y +=⎧⎨-=⎩ D.36,24x y x y -=⎧⎨-=-⎩8.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图2所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y (km)与已用时间x (h)之间的关系,则小敏、小聪的速度分别是( ).图2A.3km/h 和4km/hB.3km/h 和3km/hC.4km/h 和4km/hD.4km/h和3km/h9. 如图3,直线l 经过第二,三,四象限,l 的解析式是,则m 的取值范围则数轴上表示为( )图310. 函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置可能是( ).A B C D二、填空题11.若是正比例函数,则b=_________.12. 市场上一种豆子每千克售2元,即单价是2元/千克,豆子总的售价(元)与所售豆子的数量kg 之间的关系为_______,当售出豆子5kg 时,豆子总售价为______元;当售出豆子10kg 时,豆子总售价为______元.13. 如图4所示是计算机程序计算,若输入x =-1,则最后输出结果是______.图414. 在平面直角坐标系中,已知一次函数的图像经过,两点,若,则 (填“>”,“<”或“=”).15. 将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .()ym 2x n =-+23yx b =+-y x y 2x 1=+111P (x ,y )222P (x ,y )12x x <1y 2y16. 过点(-1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.三、解答题17. △ABC的底边BC=10cm,当BC边上的高线AD从小到大变化时,△ABC的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)△ABC的面积S(cm2)与高线h(cm)之间的关系式是什么?18. 已知y与x成正比例,当x=1时,y=2,求y与x的函数关系式.19. 直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.20. 如图5,已知函数y=kx+3与y=mx的图象相交于点P(2,1).求:(1)这两个函数的解析式;(2)图中阴影部分的面积.3y x12=-+21. 为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费.设某用户月用水量x 吨,自来水公司的应收水费为y元.(1)试写出y(元)与x(吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?22. 已知函数y=(8-2m)x+m-2.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象经过一、二、三象限,求m的取值范围.。
函数、方程、不等式的联系和应用
(2)由题意得:
30x+500≤50x
170-2x≥90
解得:25≤x≤40
答:月产量x的范围是25万元≤x≤40万元。
(3)解:设这种设备的利润为w万元,根 据题意得: w=xy1_y2 =x(170-2x)-(30x+500) = -2x2+140x+500 当x= b 2a
=35时,y最大=2950
答:当月产量为35万元时,这种设备的利润 最大,最大利润是2950万元。
知识点(1)通过图象法解方程及解不等式及在实际问题
中的应用体会函数、方程、不等式间的内在联系:方程和 不等式是函数的特例;体会到数形结合的优越性。 (2)解决实际问题的方法:实际问题转化为数学问 题找准数量关系建立数学模型。
所渗透的数学思想方法有:
我们发现:数形结合分析问题更周全。
转化
根据数量关系
实际问题
数学问题
建立数学模型
求值
国家推行“节能减排,低碳经济”政策后,某企业的某 种环保设备每月的产量保持在一定的范围,每套产品的 生产成本不高于50万元,每套产品的售价不低于90万 元,已知这种设备的月产量x(套)与每套的售价y1之间满 足关系式y1=170-2x,月产量x(套)与生产总成本y2万元 存在如图所示的函数关系。 y2/万元 (1)写出y2与x之间的函数关系式。 (2)求月产量x的范围。
数形结合分析问题更周全
• 1.(•沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后, 以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下 表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时) 之间的关系: • (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比 例函数和二次函数中的一种来表示y与之间的变化规律,说明选择这 种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值 范围) • (2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处, 求此时油箱内余油多少升? • (3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实 际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和 每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达 B地.(货车在D处加油过程中的时间和路程忽略不计)
24 方程、不等式和函数的综合
专题24:方程、不等式和函数的综合一、选择题1. (2012福建龙岩4分)下列函数中,当x <0时,函数值y 随x 的增大而增大的有【 】 ①y=x ②y=-2x +1 ③1y=x -④2y=3x A .1个B .2个C .3个D . 4个 【答案】B 。
【考点】一次函数、反比例函数和二次函数的性质。
【分析】根据一次函数、反比例函数和二次函数的性质作出判断:①∵y=x 的k >0,∴当x <0时,函数值y 随x 的增大而增大;②∵y=-2x +1的k <0,∴当x <0时,函数值y 随x 的增大而减小;③∵1y=x-的k <0,∴当x <0时,函数值y 随x 的增大而增大; ④∵2y=3x 的a >0,对称轴为x=0,∴当x <0时,函数值y 随x 的增大而减小。
∴正确的有2个。
故选B 。
2. (2012四川广元3分) 已知关于x 的方程22(x 1)(x b)2++-=有唯一实数解,且反比例函数1b y x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为【 】 A. 3y x =- B. 1y x = C. 2y x = D. 2y x=- 【答案】D 。
【考点】一元二次方程根的判别式,反比例函数的性质。
【分析】关于x 的方程22(x 1)(x b)2++-=化成一般形式是:2x 2+(2-2b )x +(b 2-1)=0,∵它有唯一实数解,∴△=(2-2b )2-8(b 2-1)=-4(b +3)(b -1)=0,解得:b=-3或1。
∵反比例函数1b y x+= 的图象在每个象限内y 随x 的增大而增大, ∴1+b<0。
∴b<-1。
∴b=-3。
∴反比例函数的解析式是13y x -=,即2y x =-。
故选D 。
3. (2012山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D【答案】C 。
专题20 应用题综合(函数、不等式、方程)-2019-2021中考真题数学分项汇编(原卷版)
专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=UR;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽a>给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的车捐出a元()0汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:(实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几; (2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入; ②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元? (3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象. (1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围); (2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?图216.(2021·四川雅安市·中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.17.(2021·浙江衢州市·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.18.(2021·辽宁中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?19.(2021·黑龙江绥化市·中考真题)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=_______,n=______;(2)求CD和EF 所在直线的解析式;(3)直接写出t为何值时,两人相距30米.20.(2021·江苏泰州市·中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).(1)求直线AB的函数关系式;(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=1100y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?21.(2020·辽宁朝阳市·中考真题)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:(1)直接写出y与x的关系式_________________;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.22.(2020·内蒙古呼和浩特市·中考真题)已知某厂以t小时/千克的速度匀速生产某种产品(生产条件要求0.11t<≤),且每小时可获得利润56031tt⎛⎫-++⎪⎝⎭元.(1)某人将每小时获得的利润设为y元,发现1t=时,180y=,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行分析说明;(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.23.(2020·湖北随州市·中考真题)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式; (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式,并判断第几天的利润最大; (3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为______.24.(2020·湖北中考真题)网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W (元). (1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值.25.(2020·浙江绍兴市·中考真题)如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在取1.4)26.(2020·浙江嘉兴市·中考真题)在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式.(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3).东东起跳后所持球离地面高度h1(m)(传球前)与东东起跳后时间t(s)满足函数关系式h1=﹣2(t﹣0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2(m)与东东起跳后时间t(s)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).27.(2020·浙江衢州市·中考真题)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?28.(2020·浙江中考真题)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h (单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.29.(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)30.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?31.(2020·黑龙江中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.32.(2020·甘肃天水市·中考真题)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元. (1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.33.(2020·辽宁鞍山市·中考真题)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经。
三亚市中考数学专题题型复习01:方程、不等式、函数的实际应用
三亚市中考数学专题题型复习01:方程、不等式、函数的实际应用姓名:________ 班级:________ 成绩:________一、解答题 (共2题;共20分)1. (10分)某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?2. (10分)一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.二、综合题 (共14题;共155分)3. (10分) (2016七下·邻水期末) 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130290 (x)累计购物在甲商场127…在乙商场126…(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?4. (10分) (2019七下·确山期末) 甲、乙两家工厂生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元,甲、乙两个厂家推出各自销售的优惠方案:甲厂家,买张桌子送三把椅子:乙厂家,桌子和椅子全部按原价的8折优惠现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x把() .(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家的桌椅所需金额为________;购买乙厂家的桌椅所需金额为________ 。
不等式、方程、函数的综合应用(2)
不等式、方程、函数的综合应用(2)【学习目标】在解决问题中体会函数、方程、不等式的综合运用. 【巩固练习】 一、选择题: 1.(10眉山)已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅ 的值( )A .7-B .3-C .7D .3 2.(10黄冈).已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为 ( ) A .1或-2 B .2或-1 C .3 D .4 3.(10绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是 ( ) A. y 3<y 1<y 2 B. y 2<y 1<y 3 C. y 1<y 2<y 3 D. y 3<y 2<y 1 4.(09荆门)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是 ( )A .1a >-B .1a -≥C .1a ≤D .1a <5.如图,等腰Rt △ABC 位于第一象限,AB =AC =2,点A 在直线y =x 上,点A 的横坐标为1,边AB 、AC 分别平行于x 轴、y 轴.若双曲线y = kx 与△ABC 有交点,则k 的取值范围为( )A .1<k <2B .1≤k ≤3C .1≤k ≤4D .1≤k <45.(08芜湖)在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数k y x=的图象的一个交点为(2)A a ,,则k 的值等于 .6.△ABC 中,∠A =∠B =30°,AB =△ABC 放在平面直角坐标系中, 使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.当点B 在第一象限,2时,求点B 的横坐标 .7. 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE =5,P 落在线段CD 上时,PD = ;(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .8.(10宁波)如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC ∠为︒15,则引桥的水平距离BC 的长是_________米(精确到0.1米). 三、解答题:9.(10济宁)如图,正比例函数12y x =的图象与反比例函数k y x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知O AM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.10.(10湖州)如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长; (3)连结EF ,设△BEF 与△BFC 的面积之差为S , 问:当CF 为何值时S 最小,并求出这个最小值.xA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考复习二轮材料函数、方程、不等式综合应用专题一、专题诠释函数思想就是用联系和变化的观点看待或提出数学对象之间的数量关系。
函数是贯穿在中学数学中的一条主线;函数思想方法主要包括建立函数模型解决问题的意识,函数概念、性质、图象的灵活应用等。
函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。
也体现了函数图像与方程、不等式的内在联系,在初中阶段,应该深刻认识函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学生学习的基本指导思想,这也是初中阶段数学最为重要的内容之一。
而新课程标准中把这个联系提到了十分明朗、鲜明的程度。
因此,第二轮中考复习,对这部分内容应予以重视。
这一专题,往往以计算为主线,侧重决策问题,或综合各种几何知识命题,近年全国各地中考试卷中占有相当的分量。
这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。
考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力,要求学生熟练掌握三角形、四边形、三角函数、圆等几何知识,较熟练地应用转化思想、方程思想、分类讨论思想、数形结合思想等常见的数学思想。
解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。
二、解题策略和解法精讲函数与方程、函数与不等式密不可分,紧密联系。
利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等。
等式与不等式是两种不同的数量关系,但在一定条件下又是可以转化的,如一元二次方程有实数根,可得不等式Δ≥0等。
一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b(a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)的解,所对应的坐标(-b/a,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;•直线y=ax+b在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解.一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标。
两条直线的位置关系与二元一次方程组的解:(1)二元一次方程组有唯一的解直线y=k1x+b1不平行于直线y=k2x+b2 k1≠k2.(2)二元一次方程组无解直线y=k1x+b1∥直线y=k2x+b2 k1=k2,b1≠b2.(3)二元一次方程组有无数多个解直线y=k1x+b1与y=k2x+b2重合k1=k2,b1=b2.在复习中,本专题应抓好两个要点:第一个要点是各个内容之间相关概念之间的联系、第二个要点是各个内容之间相关性质之间的联系,以期在综合运用中灵活把握。
三、考点精讲考点一:函数与方程(组)综合应用例1.(2010广西梧州)直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b =0的解是x=______【分析】∵直线y=2x+b与x轴的交点坐标是(2,0),则x=2时,y=0,∴关于x的方程2x+b=0的解是x=2。
【解答】2【评注】本题考察的灵活运用所学的一次函数知识解决问题的能力,方法可以不同,但直接把函数转化为方程,理解它们之间的对应关系,无需求b 值,就会加快解题速度。
例2.(2010青海)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【分析】(1)根据利润的等量关系,列出方程,再根据题意,舍掉x 1(2)代入-=x a b 2即可【解答】解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-x)=1500解得:x 1=10 x 2=5 因为顾客要得到实惠,5<10所以 x=5答:每千克应涨价5元.(2)设商场每天获得的利润为y 元,则根据题意,得y=( x +5)(200-10x)= -10x 2+150x -500当x=5.7)10(21502=-⨯-=-a b 时,y 有最大值. 因此,这种水果每千克涨价7.5元时,能使商场获利最多【评注】(1)中列方程解应用题关键是找出相等关系, 根据实际情况,解答的取舍很关键,这是个易错点(2)中二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的最值即可解题.考点二:函数与不等式(组)综合应用例1.(2010江苏镇江)深化理解对非负实数x “四舍五入”到个位的值记为<x >即:当n 为非负整数时,如果11,22n x n -+≤<则<x >=n 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:①<π>= (π为圆周率);②如果<2x -1>=3,则实数x 的取值范围为 ;(2)①当><+>=+<≥x m m x m x :,,0求证为非负整数时;②举例说明><+>>=<+<y x y x 不恒成立;(3)求满足43x x <>=的所有非负实数x 的值; (4)设n 为常数,且为正整数,函数y =x 2-x +14的自变量x 在n ≤x ≤n +1范围内取值时,函数值y 为整数的个数记为a ;满足n <=的所有整数k 的个数记为b .求证:a =b =2n . 【分析】(1)第一空:π≈3,所以填3;第二空:根据题中的定义得3-12≤2x -1<3+12,解这个不等式组,可求得x 的取值范围;(2)根据定义进行证明和举反例;(3)用图象法解,可设y =<x >,y =43x ,在直角坐标系中画出这两函数的图象,交点的横坐标就是x 的值.(4)根据在12<n ≤x ≤n +1范围内y 随x 的增大而增大,所以可得出y 的取值范围,从而求出y的整数解的个数,同样地由定义得,1122n n -?+,把此式两边平方可得2211()(),22n k n -?+k 与y 的取值范围一致.所以a =b. 【解答】(1)①3;②x 79≤<44 2211()(),22n k n -?+ (2)①证明:[法一]设<x >=n ,则n -12≤x <n +12,n 为非负整数; 又(n +m )-12≤x +m <(n +m )+12,且m +n 为非负整数, ∴<x +m >=n +m =m +<x >[法二]设x =k +b ,k 为x 的整数部分,b 为其小数部分1)当0≤b <0.5时,<x >=km +x =(m +k )+b ,m +k 为m +x 的整数部分,b 为其小数部分<x +m >=m +k∴<x +m >=m +<x >2)当b ≥0.5时,<x >=k +1则m +x =(m +k )+b ,m +k 为m +x 的整数部分,b 为其小数部分<x +m >=m +k +1∴<x +m >=m +<x >综上所述:<x +m >=m +<x >②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x >+<y >= <x +y >不一定成立.(3)[法一]作x y x y 34,=>=<的图象,如图 (注:只要求画出草图,如果没有把有关点画成空心点,不扣分)y =<x >的图象与y =43x 图象交于点(0,0)、3(,1)4、3(,2)2 ∴x =0,33,42[法二]∵x ≥0,43x 为整数,设43x =k ,k 为整数 则x =34k ,∴<34k >=k ,∴131,0242k k k k -≤<+≥ ∵0≤k ≤2,∴k =0,1,2∴x =0,33,42(4)∵函数y =x 2-x +14=(x -12)2,n 为整数, 当n ≤x <n +1时,y 随x 的增大而增大,∴(n -12)2≤y <(n +1-12)2即(n -12)2≤y <(n +12)2, ① ∴n 2-n +14≤y <n 2 +n +14,∵y 为整数 ∴y = n 2-n +1,n 2-n +2,n 2-n +3,…,n 2-n +2n ,共2n 个y .∴a =2n ② (8分) 则,)21()21(,212122+<≤-∴+<≤-n k n n k n ③ 比较①,②,③得:a =b =2n【评注】这是一道创新题,要求学生读懂定义,能用定义解决简单的实际问题,然后能更进一步地结合已经学过的知识进行拓展,是一道不易的压轴题,学生要在短时间解决此问题,要求平时的学习要有一定的创新思维,特别是自学习能力的培养显得尤为重要.就这题而言,对不等式组,及不等式组的整数解的应用要掌握得非常熟练,还有二次函数式的变形能力也要求较高.例2.(2010湖北荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价y 1(万元)之间满足关系式y 1=170-2x ,月产量x (套)与生产总成本y 2(万元)存在如图所示的函数关系.(1)直接写出....y 2与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?【分析】(1)用待定系数法,根据图形容易求解;(2)根据题意列不等式组,可求得月产量x 的范围;(3)利用利润=总售价-总成本,根据二次函数的性质求解.【解答】解:(1)y 2=500+30x.(2)依题意得:⎩⎨⎧≥-≤+.902170,5030500x x x 解得:25≤x ≤40(3)∵W =xy 1-y 2=x (170-2x )-(500+30x )=-2x 2+140x -500,∴W =-2(x -35)2+1950.而25<35<40, ∴当x =35时,1950=最大W .即月产量为35件时,利润最大,最大利润是1950万元.【评注】本题是一次函数、二次函数的综合运用的最优方案设计问题,是中考的热点题型,也是代数知识部分的核心知识.考点三:方程(组)与不等式(组)综合应用例1.(2010四川内江)已知非负数a ,b ,c 满足条件a +b =7,c -a =5,设S =a +b +c 的最大值为m ,最小值为n ,则m -n = .【分析】把a +b =7和c -a =5两式相加,即可得b +c =12,所以S =a +b +c =a +12,故确定S 的最大值和最小值的关键就是确实a 的取值范围.由a +b =7得b =7-a ,根据a ≥0,b ≥0,有7-a ≥0,所以0≤a ≤7;由c -a =5,得c =5+a ,因为c ≥0,所以5+a ≥0,即a ≥-5,由于a ≥0,所以一定有a ≥-5,所以0≤a ≤7,所以m =7+12=19,n =0+12=12,从而m -n =7-0=7.【解答】7【评注】代数式的最值问题是中学数学中比较常见的问题,这类问题解法多样,灵活性较强,常用的方法有:配方法、计算法、消元法、构造法、换元法、利用基本不等式法,等等.例2.(2010福建福州)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元.用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后.余下不少于l OO 元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【分析】利用购买3个书包和2本词典的总价及二者单价间的关系可用一元一次方程求出书包和词典的单价;而在(2)中,根据购买书包和词典的价格范围列一元一次不等式组求出书包的范围,再根据书包的取值为正整数求出方案.【解答】(1)解:设每个书包的价格为x 元,则每本词典的价格为(x -8)元.根据题意得:3 x +2(x -8)=124解得:x =28.∴ x -8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设昀买书包y 个,则购买词典(40-y )本.根据题意得:1000[232040]11000[282040]120y y y y -+-⎧⎨-+-⎩(),().≥≤ 解得:10≤y≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.【评注】利用一元一次方程(或二元一次方程组)与一元一不等式组结合来设计方案问题是中考的热点.解答这类问题关键是根据题意列出不等关系,再根据实际问题求出不等式(或组)的整数解来确定方案考点四:函数、方程(组)与不等式(组)综合应用例1.(2010湖南衡阳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。