过盈量计算
过盈量与装配力计算公式
过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf因需保证F≥F,故f[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩应大于或等于转矩T。
擦阻力矩Mf设配合面上的摩擦系数为f①,配合尺寸同前,则M f=πdlpf·d/2≥T.故得因需保证Mf[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f 表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f 值压 入 法胀 缩 法 联接零件材料 无润滑时f 有润滑时f 联接零件材料结合方式,润滑f钢—铸钢钢—钢油压扩孔,压力油为矿物油钢—结构钢油压扩孔,压力油为甘油,结合面排油干净钢—优质结构钢在电炉中加热包容件至300℃钢—青铜 在电炉中加热包容件至300℃以后,结合面脱脂钢—铸铁 钢—铸铁油压扩孔,压力油为矿物油铸铁—铸钢0..25钢—铝镁合无润滑金3)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78)(710)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
摩擦力与过盈量的计算公式
摩擦力与过盈量的计算公式
摩擦力计算公式:摩擦力分为滑动摩擦力和静摩擦力。
f=μN为滑动摩擦力的计算公式。
计算公式
排序摩擦力的大小时,应先推论该摩擦力就是滑动摩擦力还是静摩擦力。
再用适当方法谋出来。
滑动摩擦力的大小计算公式为f=μn,式中的μ叫动摩擦因数,也叫滑动摩擦系数,它只跟材料、接触面粗糙程度有关,注意跟接触面积无关;n为正压力。
滑动摩擦力:出现在两个相互碰触而相对滑动的物体之间,制约着它们之间相对滑动的.力。
摩擦力的方向与物体相对运动的方向或相对运动趋势方向相反。
而不是与物体的运动方向相反。
摩擦力可作为动力也可作为阻力。
静摩擦力:最小静摩擦力(相当于滑动摩擦力)没计算公式;
滑动摩擦力:动摩擦因数f=μn。
f是物体的压力(不是重力),μ是动摩擦因数,n 是正压力。
滚动摩擦力:(实质就是静摩擦力)没。
过盈量与装配力计算公式
过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf因需保证F f≥F,故[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M f应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M f=πdlpf·d/2因需保证M f≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f值压入法胀缩法联接零件材料无润滑时f 有润滑时f联接零件材料结合方式,润滑 f钢—铸钢0.11 0.08钢—钢油压扩孔,压力油为矿物油0.125钢—结构钢0.10 0.07 油压扩孔,压力油为甘油,结合面排油干净0.18钢—优质结构钢0.11 0.08在电炉中加热包容件至300℃0.14钢—青铜0.150.20 0.030.06 在电炉中加热包容件至300℃以后,结合面脱脂0.2钢—铸铁0.120.15 0.050.10 钢—铸铁油压扩孔,压力油为矿物油0.1铸铁—铸钢0.150..25 0.150.10钢—铝镁合金无润滑0.100.153)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78)(710)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈量与装配力计算公式
过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf≥F,故因需保证Ff[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。
f设配合面上的摩擦系数为f ① ,配合尺寸同前,则M f =πdlpf·d/2因需保证M f ≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f 表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f 值压 入 法 胀 缩 法联接零件材料 无润滑时f 有润滑时f 联接零件材料结合方式,润滑 f钢—铸钢 0.11 0.08 钢—钢油压扩孔,压力油为矿物油 0.125钢—结构钢 0.10 0.07 油压扩孔,压力油为甘油,结合面排油干净0.18钢—优质结构钢 0.11 0.08 在电炉中加热包容件至300℃0.14钢—青铜 0.15~0.20 0.03~0.06 在电炉中加热包容件至300℃以后,结合面脱脂0.2钢—铸铁 0.12~0.15 0.05~0.10 钢—铸铁 油压扩孔,压力油为矿物油0.1铸铁—铸钢 0.15~0..25 0.15~0.10 钢—铝镁合金 无润滑 0.10~0.153) 承受轴向力F 和转矩T 的联合作用 此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(7~8)~(7~10)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈量与装配力计算公式
过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f =πdlpf因需保证Ff≥F,故[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩Mf应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M f =πdlpf·d/2因需保证Mf≥T.故得[7-9]①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f值0.15 0.20 0.03 0.060.12 0.15 0.05 0.100.15 0..25 0.150.100.100.153)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78(710)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈量计算
过盈量计算过盈配合压装压力参数制定方法目的过盈连接是生产中常使用的一种连接方式,制定过盈连接计算规范是要保证正常生产和研发过程使用正确的压力来连接料件,是装配标准化工作的重要目标之一,最终满足生产和客户的需求,为此,制定本规范。
范围本规范适用于计算金属件,及金属件与非金属件连接的过盈计算内容过盈连接是利用零件之间的过盈配合来实现连接的。
这种连接也叫干涉配合或者紧配合连接过盈连接的特点优点:结构简单,对中性好,承载能力大,在冲击载荷下能可靠地工作,对轴削弱少。
缺点:配合面的尺寸精度高,装拆困难。
过硬连接的主要用于轴与毂的连接,轮圈与轮芯的连接以及滚动轴承与轴或者座孔的连接等过盈连接的工作原理及装配方法过盈连接的工作原理过盈连接是将外径为dB的被包容体压入内径dA的包容件中(图1.1a)。
由于配合直径间有△A +△B的过盈量,在装配后的配合面上,以便产生一定的径向压力。
当连接承受轴向力F(图1.1b)或转矩T (图1.1c)时,配合面上便产生摩擦阻力或摩擦阻力矩以抵抗和传递外载荷过盈连接的装配方法过盈连接的装配方法有压入法和温差法压入法是利用压力机将被包容件直接压入包容件中。
由于过盈量的存在,在压入的过程中,配合表面微观不平度的峰尖不可避免的受到擦伤或压平,因此降低了连接的紧固性。
在被包容件和包容件上分别制出如图1.2所示的倒锥,并对配合面适当加润滑剂,可以减轻上述擦伤。
温差法是加热包容件或者冷却被包容件,使之既便于装配,又可减少或避免损伤配合表面,而在常温下即达到牢固连接。
加热利用电加热,冷却采用液态空气(沸点-1940℃)或者固态二氧化碳(干冰,沸点-790℃)温差法可以得到较大的固持力,常用于配合直径较大的连接;冷却法常用于配合直径较小时。
由于过盈连接拆装会使配合面受到严重的损伤,当过盈量很大时,装好后再拆开就更加困难。
因此,为了保证多次拆装后仍具有良好的紧固性,可采用液压拆卸,即在配合面间注入高压油,以涨大包容件的内径,缩小被包容件的外径,从而使连接便于拆卸,并减少配合面的擦伤。
过盈量计算公式及数据计算表格
211000 140000 0.277
0.27
0.723 1.75823125
0 0.44296296 3.4265E-06 1.2559E-05 0.46111535 0.67193859
0.5
95823.38291 8011.988537
0.12 785 390 980 540 15.45 11.96 27
材料抗拉强度
配合长度 配合直径 包容件外径 被包容件内径 配合面微观不平度十点高度 配合面轮廓算数平均偏差 量配合面压平高度之和 材料的线膨胀系数 装配环境温度 转配间隙 弹性模量
泊松比
Pmax2 Pmax2 Pmax1 PMAX1 T Fa μ σs1 σs2 σb1 σb2
l
d d2 d1 Rz Ra u α T Δ E1 E2 v1 v2
0 0 0
列8 列9 备注 值
列10 单位 大
8011.988537 16752.33967
521.7894975 358.0760971
481.210293
115.0720266
240.6051465
69.4229516 -55.652632
195 135
0.12 785 390 980 540 15.45 11.96 27
F
N
应力值 配合面压强
包容件最大应力 塑性材料 脆性材料
被包容件最大应
传递载荷所需最 小压强
传递扭矩 传递轴向力 同时传递扭轴时
零件不产生塑性 变形所允许的最 大压强
σmax σmax σmax
Pmin MPa Pmin MPa Pmin MPa
MPa
包容件 被包容件 基本参数
变换系数
过盈量与装配力计算公式
过盈量与装配力计算公式The final revision was on November 23, 2020过盈联接1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf因需保证F f≥F,故[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M f应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M f=πdlpf·d/2因需保证M f≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f值压入法胀缩法联接零件材料无润滑时f有润滑时f联接零件材料结合方式,润滑 f钢—铸钢钢—钢油压扩孔,压力油为矿物油钢—结构钢油压扩孔,压力油为甘油,结合面排油干净钢—优质结构钢在电炉中加热包容件至300℃钢—青铜在电炉中加热包容件至300℃以后,结合面脱脂钢—铸铁钢—铸铁油压扩孔,压力油为矿物油铸铁—铸钢0..25 钢—铝镁合金无润滑3)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78)(710)计算;MPa; d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈量与装配力计算公式
过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图:变轴向力的过盈联接图:受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f =πdlpf因需保证F f≥F,故[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M f应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M f =πdlpf·d/2因需保证M f≥T.故得[7-9]①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表:摩擦系数f值3) 承受轴向力F 和转矩T 的联合作用此时所需的径向压力为 [7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(7~8)~(7~10)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
热套过盈量计算
热套过盈量计算
摘要:
1.热套过盈量的定义
2.热套过盈量计算方法
3.热套过盈量的应用实例
4.总结
正文:
一、热套过盈量的定义
热套过盈量是指在热胀冷缩的情况下,一个零件(如轴)在另一个零件(如孔)中装配时,其直径尺寸与孔的直径尺寸之间的差值。
这个差值通常用来衡量两个零件之间的配合松紧程度。
热套过盈量的计算对于机械加工和装配有着重要的意义,因为它直接影响到零件的装配精度和设备的运行性能。
二、热套过盈量计算方法
热套过盈量的计算方法通常分为两个步骤:首先,需要计算出零件在热胀冷缩后的尺寸变化;其次,根据尺寸变化计算出过盈量。
1.计算零件的热胀冷缩尺寸变化
要计算零件的热胀冷缩尺寸变化,需要知道零件的材料、初始尺寸和热胀冷缩系数。
热胀冷缩系数是指材料在温度变化时,单位长度的尺寸变化量。
通常情况下,热胀冷缩系数是正值,表示材料在温度升高时膨胀,温度降低时收缩。
2.计算热套过盈量
根据零件的热胀冷缩尺寸变化,可以计算出过盈量。
过盈量的计算公式为:
过盈量= 零件直径变化量- 孔的直径变化量
三、热套过盈量的应用实例
在机械加工和装配过程中,热套过盈量的应用非常广泛。
例如,在轴和孔的装配过程中,需要根据热套过盈量选择合适的配合尺寸,以保证装配的精度和设备的运行性能。
四、总结
热套过盈量是机械加工和装配中一个重要的参数,其计算方法涉及到零件的热胀冷缩尺寸变化和配合尺寸的选择。
过盈量与装配力计算公式
过盈量与装配力计算公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)过盈联接1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则=πdlpfFf因需保证F≥F,故f[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力应大于或等于转矩T。
矩Mf设配合面上的摩擦系数为f①,配合尺寸同前,则Mf=πdlpf·d/2因需保证Mf≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f值压入法胀缩法联接零件材料无润滑时f有润滑时f联接零件材料结合方式,润滑 f钢—铸钢钢—钢油压扩孔,压力油为矿物油钢—结构钢油压扩孔,压力油为甘油,结合面排油干净钢—优质结构钢在电炉中加热包容件至300℃钢—青铜在电炉中加热包容件至300℃以后,结合面脱脂钢—铸铁钢—铸铁油压扩孔,压力油为矿物油铸铁—铸钢0..25 钢—铝镁合金无润滑3)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78)(710)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈量与装配力计算公式
过盈量与装配力计算公式-CAL-FENGHAI.-(YICAI)-Company One1过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf因需保证F f≥F,故[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M f应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M f=πdlpf·d/2因需保证M f≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f值压入法胀缩法联接零件材料无润滑时f有润滑时f联接零件材料结合方式,润滑 f钢—铸钢钢—钢油压扩孔,压力油为矿物油钢—结构钢油压扩孔,压力油为甘油,结合面排油干净钢—优质结构钢在电炉中加热包容件至300℃钢—青铜在电炉中加热包容件至300℃以后,结合面脱脂钢—铸铁钢—铸铁油压扩孔,压力油为矿物油铸铁—铸钢0..25 钢—铝镁合金无润滑3)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78)(710)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
活塞和缸体的过盈量计算
活塞和缸体的过盈量计算
【实用版】
目录
1.活塞和缸体的过盈量概念
2.过盈量的计算方法
3.过盈量的应用和影响
正文
一、活塞和缸体的过盈量概念
活塞和缸体的过盈量是指在活塞和缸体装配时,活塞的尺寸大于缸体的尺寸,形成的一种配合状态。
过盈量的大小决定了活塞和缸体之间的密封性能、承载能力和稳定性。
因此,在设计和制造过程中,合理计算过盈量是非常重要的。
二、过盈量的计算方法
过盈量的计算通常采用以下公式:
过盈量 = 活塞尺寸 - 缸体尺寸
需要注意的是,这里采用的尺寸应该是同一部位的尺寸,例如活塞的直径和缸体的内径。
此外,过盈量的单位通常为毫米(mm)。
三、过盈量的应用和影响
过盈量在活塞和缸体装配中具有重要作用,主要表现在以下几个方面:
1.密封性能:合理的过盈量可以保证活塞和缸体之间的密封性能,防止润滑油泄漏和外界杂质进入。
2.承载能力:过盈量越大,活塞和缸体之间的接触面积越大,承载能力越强。
但过大的过盈量会导致装配困难,增加制造成本。
3.稳定性:适当的过盈量有助于提高活塞和缸体的稳定性,降低磨损,
延长使用寿命。
热套过盈量计算
热套过盈量计算
摘要:
1.热套过盈量的概念
2.热套过盈量的计算方法
3.影响热套过盈量的因素
4.热套过盈量在实际应用中的意义
正文:
热套过盈量计算在机械工程领域具有重要意义,它涉及到热套配合的尺寸设计以及配合零件的加工精度等。
本文将详细介绍热套过盈量的概念、计算方法以及影响因素。
1.热套过盈量的概念
热套过盈量是指在高温下,由于热膨胀引起的配合尺寸的增大。
热套过盈量对于保证配合零件在高温环境下的密封性能和运动精度至关重要。
2.热套过盈量的计算方法
热套过盈量的计算方法有多种,其中最常用的方法是通过公式计算。
公式如下:
过盈量(μ)= E * (α1 - α2) / (1 - ν^2)
其中,E 为材料的弹性模量,α1 和α2 分别为配合零件的线性膨胀系数,ν 为泊松比。
3.影响热套过盈量的因素
热套过盈量受多种因素影响,主要包括材料的性质、温度变化、配合尺寸
等。
在实际工程应用中,需要根据具体情况考虑这些因素,以确保热套过盈量满足设计要求。
4.热套过盈量在实际应用中的意义
在实际应用中,热套过盈量对于保证配合零件的密封性能、运动精度和使用寿命具有重要意义。
例如,在发动机等高温环境下,热套过盈量的合理设计可以有效防止配合零件的松动和磨损,从而提高整个机械系统的可靠性和使用寿命。
综上所述,热套过盈量计算在机械工程领域具有重要意义。
轴向压入式管接头过盈量的计算
轴向压入式管接头过盈量的计算[摘要]为了达到轴向压入式管接头的连接强度和密封效果,计算管接头与管套的过盈量尤为重要。
本文通过ANSYS软件对2英寸管径各厚度的管接头压接过程进行数值模拟,得出最佳过盈量,并得知随着管道厚度增加最佳过盈量随之降低。
【关键词】轴向压入式管接头;密封效果;过盈量;有限元;厚度Magnitude of interference calculation of axial press-in- type pipe fittingLUO Hui jun YAN Chao huaAbstract:In order to reach the connection strength and seal ability,it is important which magnitude of interference calculation of pipe fitting. The finite element method of ANSYS has been used in this paper to simulate the interference fit process of 2 inches of thickness pipe fitting,then we can obtain the magnitude of interference. As the pipeline thickness increases the magnitude of interference decreases.Keywords:axial press-in-type pipe fitting;seal ability;magnitude of interference;the finite element;thickness1.引言轴向压入式管接头是一种新型管道机械接头连接技术,是指金属在低于再结晶温度下,同种或者多种材料之间,基于材料在过盈配合作用下产生弹塑性变形的基本原理实现相互连接或密封的技术[1]。
热压合过盈量的简化计算
热压合过盈量的简化计算热压合过盈量的简化计算刘逸民设计热压合时,可以按选定的材料求得若干过盈量,较好地发挥材料的强度性能,且可一次计算求得最佳设计尺寸;避开常规过盈量的烦琐计算。
这样,热压合技术就容易普及和推广。
一、按材料求得过盈量的简化式推导热压合大部分是钢,且是实心轴(d1=0),配合面间压强pmax与过盈量δmax的传统式为:强度校核式为:(1)把包容件的外内径d2/d之比值m,过盈量δmax换算为过盈量比n=103δmax/d,取钢弹性模量E=21×104MPa,代入上式,得无量纲式为:若在(1a)式添加,可改为计算,结果是无单位的量,且是小数,其表达式为:过盈量(4) (5)提出把式(4)代入(1a)、(2a)、(3a)式得:(1b)(2b)τ式中σ τ2max=xσS≤τS=(0.6~0.7)σS,MPa(3b)――最大切应力,MPa 2max――最大剪应力,MPat2max当然,可用(4)式把过盈量比n改写成103=σSx/105。
显然,配合面间压强值pmax与过盈量δmax的关系(式1)改为压强值pmax与材料的屈服强度值σS的关系(式1b),其计算结果相等。
二、常数x的特性和范围常数x不可以任意选取,必有一定范围。
常数x是由选定的材料(钢)的屈服强度值σS、弹性模量E和过盈量比n三结合求得的。
但在设计时,首先确定常数x;但要选取多大才能达到保证强度安全、传递载荷可靠。
这个问题,决定热压合联接的成败。
当取常数x<0.5,根据弹性定律(虎克定律),求得配合面间的压强值,只能使内表面产生弹性阶段(范围内)的变形;若是卸去载荷,立即恢复原样。
当常数x=0.5时,作用在配合面间的压强值,能使内表面刚开始产生流动,即屈服阶段的变形;这一现象,根据最大剪应力理论(第三强度理论):只要最大剪应力值τ2max=σS/2时,内表面产生流动。
当取常数0.5<x≤0.7时,首先使内表面进入弹性极限变形后而进入塑性变形一小部分,由于轴对称缘故,此塑性区域成圆环状;但厚壁筒的大部分仍处在弹性变形范围内,所以仍能保持正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算公式
结果 46.30841841
单位 N/mm^2
说明
Pfmin=
2*M/π
*Dl^2*Ll*μ
2
被包容件直径比
Qi=Di/Dl
0
3
包容件直径比
Qa=Dl/Da
0.294871795
4
包容件传递负荷所需要的最 小直径变化量
eamin=Pfmin*D
l*Ca/Ea
0.010823717
mm
Ca=
5
Da Dl Di
Ll
Raa=Rai σ Ea σ
i max a max
400 N/mm^2 220000 N/mm^2 400 N/mm^2 220000 N/mm^2 0.3 0.3 0.11 200000 N.mm
Ei Vi
Va
μ M
序号 1
计算步骤和结果 计算内容 传递负荷所需的最小结合压 力
mm
14
联结件不产生塑性变形所容 许的最大有效过盈量
δ
sman=
eamax+eimax
0.068700761
mm
1.490459
0.7
ቤተ መጻሕፍቲ ባይዱ
0.526487
0.5
被包容件传递负荷所需要的 最小直径变化量
eimin=Pfmin*D
l*Ci/Ei
0.005083401
mm
Ci=
6
传递负荷所需要的最小有效 过盈量
δ δ
min=
eamin+eimin
n min=δ min+2*(Sa+Si)
0.015907118
mm
7
考虑压平量的最小过盈量
0.021027118
mm
C
10
联结件不产生塑性变形所容 许的最大结合压力
200
N/mm^2
取小值
11
联结件不产生塑性变形的传 递力
50073.84531
N
12
包容件不产生塑性变形所容 许的最大直径变化量
0.046746216
mm
13
被包容件不产生塑性变形所 容许的最大直径变化量
eimax=Plmax*D
l*Ci/Ei
0.021954545
8
包容件不产生塑性变形所容 许的最大结合压力
Pamax=A*σ amax Pimax=C*σ imax Plmax Fs=Plmax*π *Dl*Ll*μ eamax=Plmax*D
l*Ca/Ea
210.5948202
N/mm^2
塑性材料 A
9
被包容件不产生塑性变形所 容许的最大结合压力
200
N/mm^2