随机信号处理考题答案.doc
随机信号处理-题目整理
第一章1、某离散时间因果LTI 系统,当输入)1()31(41)()31(x(n)1n -+=-n n n εε时,输出)()21()(y n n n ε= (1)确定系统的函数H(Z) (3分) (2)求系统单位序列相应h (n )(3分) (3)计算系统的频率特性H (e j θ)(3分)(4)写出系统的差分方程(3分)解:(1))41)(21()31(31413121)()()(1+--=-+--==-Z Z Z Z Z Z Z Z Z Z ZZ X Z Y Z H |Z|>21(2)497292)4)(2(31)(++-=+--=Z Z Z Z Z Z Z H |Z| >21)()41(97)()21(92)(h n n n n n εε-+=(3)因为H (z )收敛域为 |Z| >21,包含单位圆所以H (e j θ)存在41972192|)()(++-===θθθθθθj j j j e Z j e ee e Z H e H j(4)21121281-41131-181-4131)()()(-----=--==Z Z Z Z Z Z Z Z X Z Y Z H==>121)(31)()(81)(41)(----=--Z Z X Z X z z Y z z Y z Y )1(31)()2(81)1(41)(--=----n x n x n y n y n y2、x(n)的z 变换为X(z)=1(1-z -1)(1-2z -1) , ROC :1<│z │<2 ,z 的变换。
(12分) 设X(z)=A 1-z -1 +B1-2z -1 =X 1(z)+X 2(z) %写出此形式2分 则由部分分式分解法,可得A=(1-z -1)X(z)│z=1=-1, B=(1-2z -1)│z=2=2 %求出此结果6分 由ROC 的形式,可以判定x(n)是一个右边序列和一个左边序列之和。
(完整版)随机信号处理考题答案
填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
随机信号处理考试试题
(2)、如果不用匹配滤波器,而用滤波器为 信噪比为多少,你认为 的最佳值应该是多少? 解: (1)根据匹配滤波原理,输出的最大信噪比为:
,则输出最大
(4 分) (2)该系统为线性系统,满足线性可加性,输出包含两部分,一部分是 信号通过系统后的输出信号,另外一部分是白噪声通过系统后的输出噪 声,两部分没有差拍项,假设输出的信号为: ,噪声为: ,不难
的自相关函数可表示为
(4 分) , 如右图所示,
所以 2)按噪声等效通能带定义
(5 分)
, (可根据傅立业反变换在 点的取值)
七、计算题(共 1 小题,每小题 10 分,共 10) (5)
设线性滤波器输入为
,其中 的功率谱密度为
的白噪声, 为与 统计独立的矩形脉冲
求:(1)、利用匹配滤波器时,输出端的最大信噪比为多少?
得出,输出信号的最大值在 t=T 时刻,此时
使得信噪比最大的 值应该满足:
这时
,正是匹配滤波器的情况。
九、计算题(共 1 小题,每小题 10 分,共 10 分)
设有如下两种假设,观测次数为 N 次,
(6 分)
其中 服从均值为 0 方差为 的正态分布,假设 求
=0.5,
(1)、最小错误概率准则下的判决表达式;
3、设平稳随机序列 通过一个冲击响应为 表示,那么,下列正确的有:( a、d )
的线性系统,其输出用
(A)
(B)
(C)
(D)
4、 为 的希尔伯特变换,下列表达正确的有:(a、c、d )
(A) 与 的功率谱相等 (B)
(C)
(D) 与 在同一时刻相互正交
5、对于一个二元假设检验问题,判决表达式为:如果 T(z)>g,则判 成
随机信号习题及答案
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:
(完整word版)随机信号分析习题.(DOC)
随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
随机信号分析第3版习题及答案word资料18页
1. 有四批零件,第一批有2019个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
(2)发现次品后,它来自第二批的概率为, 2. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+- 3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
(北P181,T3) 解:(1)(2) X 的分布律为 Y 的分布律为(3)Z XY =的分布律为 (4)因为 则X 与Y 的相关系数0XY ρ=,可见它们无关。
5. 设随机变量()~0,1X N ,()~0,1Y N 且相互独立,U X YV X Y =+⎧⎨=-⎩。
(1) 随机变量(),U V 的联合概率密度(),UV f u v ;(2) 随机变量U 与V 是否相互独立? 解:(1)随机变量(),X Y 的联合概率密度为由反函数 22u v x u vy +⎧=⎪⎪⎨-⎪=⎪⎩,1112211222J ==--, (2)由于, 222244414uv u v e π+---⎛⎫⎛⎫=⨯⎪⎪⎪⎪⎭⎭所以随机变量U 与V 相互独立。
6. 已知对随机变量X 与Y ,有1EX =,3EY =,()4D X =,()16D Y =,0.5XY ρ=,又设3U X Y =+,2V X Y =-,试求EU ,EV ,()D U ,()D V 和(,)Cov U V 。
随机信号处理习题答案
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V ,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数 )])([()]()([),(b Vt b Vs E t X s X E t s R X ++== ][22b btV bsV stV E +++= 2b st +=2.4 设有随机过程)sin()cos()(t B t A t X ωω+=,其中ω为常数,B A ,是相互独立且服从正态分布),0(2σN 的随机变量,求随机过程的均值和相关函数。
解 因B A ,独立,),0(~2σN A ,),0(~2σN B 所以,2][][,0][][σ====B D A D B E A E 均值 )]sin()cos([)]([)(t B t A E t X E t m X ωω+== 0][)sin(][)cos(=+=B E t A E t ωω 相关函数[]))sin()cos())(sin()cos(()]()([),(22112121t B t A t B t A E t X t X E t t R X ωωωω++==[]1221212212sin cos sin cos sin sin cos cos t t AB t t AB t t B t t A E ωωωωωωωω+++= ][sin sin ][cos cos 221221B E t t A E t t ωωωω+=)sin sin cos (cos 21212t t t t ωωωωσ+= )(cos 212t t -=ωσ2.5 已知随机过程)(t X 的均值函数)(t m X 和协方差函数)(),,(21t t t B X ϕ为普通函数,令)()()(t t X t Y ϕ+=,求随机过程)(t Y 均值和协方差函数。
《随机信号处理》重点题目题型及相关知识点简介
《随机信号处理》重点题⽬题型及相关知识点简介第⼀组上台讲解题⽬(第2、7题)2. 复随机过程0()()j t Z t e ω+Φ=,式中0ω为常数,Φ是在(0,2)π上均匀分布的随机变量。
求:(1)[()()]E Z t Z t τ*+和[()()]E Z t Z t τ+;(2)信号的功率谱。
解: (1)0000[()][]201[()()]212j t j t j j E Z t Z t e e d e d e ωτωπωτωττππ+∞++Φ-+Φ*-∞+=Φ=Φ=?000[()][]2[(2)2]2(2)201[()()]212120j t j t j t j t j E Z t Z t e e d e d ee d ωτωπωτπωττπππ+∞++Φ+Φ-∞++Φ+Φ+=Φ=Φ=Φ=(2)00()[()]{[()()]}[]2()Z Z j S F R F E Z t Z t F e ωτωττπδωω*==+==-备注:主要考察第⼆章P37,功率谱计算,第⼀步求期望⽤数学积分⽅法,得到[()()]E Z t Z t τ*+即输出的⾃相关,对其进⾏傅⾥叶变换就得信号的功率谱。
7. ⼀零均值MA(2)过程满⾜Yule-Walker ⽅程:试求MA 参数: 0b ,1b ,2b解:由于对于零均值MA(q)过程⽽⾔,均值为0,令⽅差为1,其⾃相关函数220(0)qx k k r b ωσ==∑222012011202321b b b b b b b b b ++=+==220(0)qx k k r b ωσ==∑(公式:3.2.5)2,0()0,qk k l k l x b b l qr l l q ωσ-=?≤≤?=??>?∑ ()(),1x x r l r l q l =--≤≤-(公式:3.2.6)则可得:22201011210(0)(1)()q x q q x q x b b b r b b b b b b r b b r q -++=++==故由题意知,MA(2)过程的⾃相关函数为(0)3,(1)(1)2,(2)(2)12x x x x x r r r r r k ==-==-=?> 由此不难求得MA(2)过程的功率谱22122()()232kx xk s z r k zz z z z ---=-==++++∑(公式:2.4.14)其因式分解为:122()(1)(1)x s z z z z z --=++++根据功率谱分解定理2**()()(1/)x s z Q z Q Z σ=(公式:2.5.2a ),⽐较得传输函数:12()1Q z z z --=++ 即0121,1,1b b b ===备注:本题主要考察MA 模型满⾜Yule-Walker ⽅程的模型参数求解,根据P54页3.2.6求得⾃相关函数值,由P38页2.4.14求得复功率谱密度,因式分解,与P39页2.5.2a ⽐较得出结果。
随机信号处理考题答案
填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
(仅供参考)随机信号分析与处理简明教程--第二章习题答案
证明:设τ = t2 − t1
Rz
(τ
)
=
E[z( t1 )z( t 2
)]
≤
E[
z2
(t1)
+ 2
z2
(t2
)]
=
1 2
E[z2
(t1 )
+
z2
(t2
)]
=
1 2
E[z
2
(t1
)]+
1 2
E[z2(t2 Nhomakorabea)]=
1 2
(R
z
(0)
+
R
z
(0))
=
R
z
(0)
(平稳过程)
所以, R z (0)
= σz2
+
可看作一个随机过程 X (t) = Acos(Ωt + Θ) ,其中 A, Ω, Θ 是相互独立的随机变量,且已知
f
A
(a)
=
⎧ ⎪ ⎨
2a A02
,
a ∈ (0, A0 ) ,
fΩ (ω) = ⎪⎨⎧1010 ,
ω
∈ (250,350) ,
fΘ (θ
)
=
⎪⎧ ⎨
1 2π
,
θ ∈ (0, 2π )
⎪⎩0, 其他
第 2 章习题解答
2.1 设有正弦波随机过程 X (t) = V cosωt ,其中 0 ≤ t < ∞ , ω 为常数,V 是均匀分布于 [0,1] 区间的随机变量。
(1)画出该过程两条样本函数;
(2)确定随机变量
X (ti ) 的概率密度,画出 ti
=
0,
π 4ω
随机信号分析与处理习题解答_罗鹏飞
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
函数 g(x) 的图像如下
解法一:根据概率分布函数的定义计算。
当 y ≤ 0 时, FY ( y) = P{Y ≤ y} = P{X < x0} + P{X > x1} = P{X < x0}+1− P{X < x1} = F (x0 ) +1− F (x1)
当 y ≤ A 时, FY ( y) = P{Y ≤ y} = P{x0 < X < x1} = FX (x1) − FX (x0 )
所以 Y 的概率分布函数为
FY ( y) = [1− FX (x1) + FX (x0 )]U ( y) + [FX (x1) − FX (x0 )]U ( y − A)
解法二:从概率密度 fY ( y) 入手求概率分布函数 FY ( y) 。 由图可知 g(x) 的取值只可能为 0 或 A,求Y 的概率分布函数,也就是对 g(x) 取 0 或 A
<
X
≤
x2 )
=
P{Y ≤ y, x1 < X ≤ x2} P{x1 < X ≤ x2}
=
y x2 f (x, y)dxdy
−∞ x1
FX (x2 ) − FX (x1 )
随机信号分析与处理答案(罗鹏飞,张文明编著)
H( f )
2 2
f 图 ( 利 用 w 2 f , 得 到
2
4 2si nT)f ( ) H( f ) (注意图中要标出最大值及所对应的频率,且
为正数) 4.
(2)
R(0,1) E[ X (0) X (1)] E[2 cos 2 cos(2 )] 4 E[cos cos ] 1 1 4 [(cos 2 0) (cos 2 ) ] 2 2 2 1 4 2 2
5. P85:2.6 问题还需增加“求均值,自相关函数及验证平稳性”
作业一的参考答案 1. P28:1.10
f XY ( x, y ) fY ( y )
1 0
解:利用 f X /Y ( x / y )
fY ( y )
所以
f XY ( x, y)dx
2ax 2by a 2by dx ab ab
f X /Y ( x / y )
解: (1)
互相关系数 XY
Cov( X , Y ) 2 3 D( X ) D(Y )
CZW Cov(2 X Y , X 2Y )
(2)
E[(2 X Y )( X 2Y )] E (2 X Y ) E ( X 2Y ) 2
(3)
因为 X , Y 为高斯随机变量 所以
解:
因为 A , B 为独立的高斯随机变量 所以
E( AB) E( A) E( B) 0 E[ X ] E( A)cos wt E( B)cos wt 0
随机信号处理考试8
《随机信号分析与处理》期中自我测评试题(三)一、选择题(28分,每小题有四个选项,正确的选项可能不止一个,请把你认为正确的选项填在括号内,不选、少选、多选均不得分)1.下列说法那些是对的?(1)严格平稳随机过程一定也是广义平稳随机过程;(2)广义平稳随机过程也一定是严格平稳随机过程;(3)各态历经过程一定是广义平稳随机过程;(4)广义平稳随机过程一定是各态历经过程。
()2.设随机过程,其中为常数,在上均匀分布,则(1) ;(2) 是广义平稳随机过程,但不是各态历经过程;(3)是广义平稳随机过程,也是各态历经过程;(4) 是非平稳随机过程。
( )3.根据噪声等效通能带和相关时间的概念,白噪声通过一个线性系统后,(1)输出过程的相关时间与系统的等效噪声带宽无关;(2)输出过程的功率等于输出过程的相关时间乘以系统的等效噪声带宽;(3)如果系统的噪声等效通能带越大,输出过程的相关时间越小;(4)如果系统的噪声等效通能带越大,输出过程的相关时间越大;()4.马尔可夫序列的的特点是(1)在现在的状态已知道的条件下,未来的状态只与现在有关,与过去无关;(2)未来的状态只与过去有关,与现在无关;(3)具有平稳性和各态历经性;(4)相邻时刻的状态是相互独立的。
()5.关于平稳随机过程的功率谱,(1)表示单位频带内信号的频率分量消耗在单位电阻上的平均功率的统计平均值;(2)平稳随机过程的功率谱是相关函数的傅立叶变换;(3)功率谱密度是实函数、奇函数;(4)功率谱密度是实函数、偶函数。
()6. 根据正态随机过程的特点,(1)任意两个时刻的状态不相关的话,也必定是独立的;(2)任意两个时刻的状态不相关,但不一定独立;(3)广义平稳的正态随机过程也必定是严格平稳的;(4)广义平稳的正态随机过程不一定是严格平稳的。
7.根据窄带随机信号的特点,(1)窄带随机信号的功率谱集中在某个中心频率为中心的频带内,且中心频率远高于频带带宽;(2)窄带随机信号的包络和相位都是服从正态分布的;(3)窄带随机信号的时域波形具有准正弦振荡的形式;(4)窄带正态随机信号一定是马尔可夫过程。
信号分析与处理试题与答案
信号分析与处理试题与答案1. 设随机信号x(n)中含有加性噪声u(n),s(n)为有用信号,则:)()()n (n u n s x += ]()([)(s m n x n s E m R x +=)]()([m n s n s E +=)]()()()([m n u n s m n s n s E +++= )m (s R =2. 不改(FFT)的程序直接实现IFFT 的方法 : 由∑-=--==11,,1,0 ,)(1)(N k nkN N nWk X Nn x 得:∑-==*-=*101101N k nkN N ,,,n,W )k (X N )n (x ∑-===-=****1011011N k nk N N ,,,n )]}k (X {FFT[N]W )k (X [N )n (x1)先取共轭 2)执行FFT 程序 3)对运算结果取共轭,并乘以常数N1 3. 解:1)dt t t t )2()]3cos(5[513-+⎰∞-δ=0 2)10002.02=ππ, 周期=100 3)解:22)1()(ππ++=-s e s X s 当aa 1<时:4)1111110111111)()()()()()(22----∞=-∞=-∞=---∞=-∞-∞=--∞=∞=-----+-=+=+=+==∑∑∑∑∑∑∑z a z a z a az z a az azza zazn x z X n n n n n nn nn n n nnnnn当a a 1>时:az a 1>> 4. 1).混叠现象:在采样前加抗混叠滤波器。
2).频谱泄漏:增加采样点数或其他类型的窗函数 3)栅栏效应:在数据的末端补零。
4)频率的分辨率:增加信号的长度。
5. 解:)(n x *)(n h =2 3 5 9 6 6 4{ )(n x 与)(n h 5点的循环卷积为:} 5 9 6 8 7{ )(n x 与)(n h 8点的循环卷积为:}0 2 3 5 9 6 6 4{ 6.解过程如下:1)0(=x 1)2(-=x 2)1(=x 3)3(=x 5)0(=X jX +=2)1(5)2(-=X jX -=2)3(2)1(0)0(11==X X 1)1(5)0(22-==X X 04W jW -=14--4W -4W-7. 解:选汉明窗 πω25.0=∆=Nπ8 N=32 )(n h d ⋅--=)()](sin[απαωn n c 5.1521=⋅-=N α)()]312cos(46.054.0[*)13()]13(25.0sin[)(n R nn n n h N πππ---==∴8.解:数字低通滤波器的截止频率为ωc=0.25π,则巴特沃斯模拟滤波器Ωc 为:T TT c c 828.0225.0tan 22tan 2=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=Ωπω 模拟滤波器的系统函数为:)828.0/(11)/(11)(sT s s H c a +=Ω+=将双线性变换应用于模拟滤波器,有:11111124159.0112920.0)]1/()1)[(828.0/2(11)()(11----+-=-+=+-+==--z z z z s H z H z z T s a。
随机信号处理上机答案
电科1102 3110504042 戴善瑞第二题:计算长度为N=10000的高斯随机噪声信号的均值、均方值、方差和均方差(也称标准差,即对方差开根号的值)N=10000; %数据长度y=randn(1,N); %产生一个均值为0,方差为1,长度为N的随机序列disp('平均值:');yMean=mean(y) %计算随机序列的均值disp('均方值:');y2p=y*y'/N %计算其均方值,这里利用了矩阵相乘的算法disp('均方根:');ysq=sqrt(y2p) %计算其均方根值disp('标准差:');ystd=std(y,1) %计算标准差,相当于ystd=sqrt(sum((y-yMean).^2)/(N-1))disp('方差:');yd=ystd.*ystd第三题:求一白噪声加正弦信号以及白噪声的自相关函数,并进行分析比较。
(显示出信号及相关函数的波形)clf;N=1000; Fs=500; %数据长度和采样频率n=0:N-1;t=n/Fs; %时间序列Lag=100; %延迟样点数?x=sin(2*pi*20*t)+0.6*randn(1,length(t)); %白噪声加正弦信号[c,lags]=xcorr(x,Lag,'unbiased'); %估计原始信号x的无偏自相关subplot(2,2,1),plot(t,x);xlabel('时间/s');ylabel('x(t)');title('带噪声周期信号');grid on;subplot(2,2,2),plot(lags/Fs,c); %绘x信号的自相关,lags/Fs为时间序列xlabel('时间/s');ylabel('Rx(t)');title('带噪声周期信号的自相关');grid on;x1=randn(1,length(x)); %产生一与x长度一致的随机信号x1[c,lags]=xcorr(x1,Lag,'unbiased'); %求随机信号x1的无偏自相关subplot(2,2,3),plot(t,x1); %绘制随机信号x1xlabel('时间/s');ylabel('x1(t)');title('噪声信号');grid on;subplot(2,2,4);plot(lags/Fs,c); %绘制随机信号x1的无偏自相关xlabel('时间/s');ylabel('Rx1(t)');title('噪声信号的自相关');grid on第四题:已知两个周期信号)2sin()(ft t x π=,)602sin(2.0)(0+=ft t y π,其中f=20Hz ,求互相关函数)(τxy R ,并将这2个周期信号以及互相关的图形显示出来。
随机信号处理试卷
《随机信号分析与处理》期中自我测评一、填空(20分)1、按照时间和状态是连续还是离散,随机过程可以分成四类,这四类是_______________________________________________________________。
2、如果随机过程___________________________________________________________________,则称X(t)为严格平稳随机过程。
3、如果平稳随机过程_____________________________________,则称该随机过程为各态历经过程。
4、如果均匀分布的白噪声通过线性系统,输出服从____________________________________分布。
5、正态随机过程的任意N维分布只有由________________________确定。
6、窄带正态随机过程的相位服从________________,幅度服从_______________。
7、如果一个随机过程未来的状态只与_____________,与_________________,则该过程称为马尔可夫过程。
8、解析信号的功率谱负频部分为零,正频部分是实信号的________。
9、随机过程的相关时间反映了随机过程变化的快慢程度,相关时间越长,过程的取值变化______,相关时间越短,过程的取值变化___________。
10、平稳随机信号通过线性系统分析,输入、输出过程的自相关函数的关系可表示为__________________________,输出与输入过程的功率谱之间的关系可表示为_____________________________。
二、(20分)判断题(判断下列说法是否准确,正确的打T,错误的打F)。
1、随机变量的均值反映了它的取值的统计平均值,它的方差反映了它的取值偏离均值的偏离程度。
()2、如果一个平稳随机过程的时间平均值等于统计平均值,时间相关函数等于统计相关函数,那么它是各态历经过程。
(完整word版)随机信号处理考试3
《随机信号分析与处理》期末自我测评试题(三)一、填空(20分,每小题2分)1、随机变量X的k阶中心矩的定义是____________________。
2、二维随机变量之间反映相互关系的数字特征是 ____ ____ 和______________。
3、白噪声在任意两个相邻时刻的状态是______ ____,其平均功率是____________。
4、匹配滤波器输出的最大信噪比只与__________________和 _有关,与_____________无关。
5、非线性变换的主要方法有________________、___________和。
6、希尔伯特变换器的相频特性为 ____________,因此其也称为。
7、典型的独立增量过程有______ _______与_________________。
8、在信号检测时,若难以确定代价因子和先验概率,则通常采用的判决准则是_____ ________。
9、对于齐次马尔可夫过程,任意有限维概率密度完全由___ _____和决定。
10、若检测判决式为,则虚警概率可表示为__________________。
二、(10分)选择题(正确的结果可能不止一个,请选出正确的结果)1、下列函数哪些是功率谱密度()(1) (2)(3) (4)2、噪声等效通能带的等效原则可由下式表示()(1)(2)(3)(4)3、假定随机X(n)为ARMA(1,1)过程,则其模型可用下式表示()(1)(2)(3)(4)4、下列信号可构成理想二元通信系统的是()(1) (2)(3) (4)5、对于最小二乘估计,下列说法正确的是()(1)需要知道被估计量的先验概率密度(2)需要知道被估计量的一、二阶矩(3)需要知道似然函数(4)不需要任何先验信息三、(10分)设随机过程,其中w为常数,X为标准正态随机变量,求X(t)的一维概率分布函数和协方差函数。
四、(10分)设线性系统的输入是平稳随机过程X(t),其功率谱密度为,线性系统输出为Y(t).(1)求误差过程E(t)=Y(t)-X(t)的功率谱密度函数(2)如下图所示,设输入到RC电路的平稳随机过程相关函数,求误差过程的功率谱密度。
随机信号答案
1.1已知高斯随机变量X的概率密度22()2()x m f x σ--=,求它的数学期望和方差。
解:根据数学期望与方差定义:22()2()()x m E x xf x dx dx σ-∞∞--∞-∞==⎰⎰令x mt σ-=,dx dt σ=,代入上式并整理2222()0t t E x te dt e dt m -∞∞--∞==+=⎰⎰22()222()()()x m D x x m f x dx dx σ--∞∞-∞=-=⎰⎰与前面以一样同样变换,即令x mt σ-=,整理后2222()t D x t e dt ∞-=查数学手册的积分表,可得:221013(21)2n ax n nn x e dx a∞-+-=⎰令1n =及1/2a =,利用上式的积分结果,可得2()D x σ== 可见高斯变量的概率密度分布由它的数学期望和方差唯一决定。
1.2随即变量Y aX b =+,其中X 为随机变量,a 、b 为常数且a >0,求X 与Y 的相关系数解:根据数学期望的定义,若()X E X m =,则()()X Y E Y E X b am b m =+=+= 先求协方差,再求相关系数[][]{}[][]()()()()(,)XY XYC E X E X Y E Y x E X y E Y fx y dxdy ∞∞-∞-∞=--=--⎰⎰将Y aX b =+,Y X m am b =+代入,并由概率密度性质,消去y ,得到222()[(,)]()()XY X XY X X XC a x m f x y dy dx a x m f x dx a σ∞∞∞-∞-∞-∞=-=-=⎰⎰⎰ 同理,将()/X Y b a =-,()/X Y m m b a =-代入,并由概率密度性质,消去x 则有22211()[(,)]()()Y XYY XY Y Y C y m f x y dx dy y m f y dy a a a σ∞∞∞-∞-∞-∞=-=-=⎰⎰⎰ 有前两式联立,解得222Y Xaσσ=,XY X Y C σσ=可见,当X 与Y 呈线性关系b aX Y +=,且a >0时,二者的相关系数1XYXY X YC r σσ==即X 与Y 是完全相关的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空:
1.假设连续随机变量的概率分布函数为F( x)则 F( -∞) =0, F( +∞) =1
2.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合
3.如果随机过程 X(t)满足任意维概率密度不随时间起点的变化而变化,则称 X(t)为严平稳随机过程,如果随机过程 X(t)满足均值为常数,自相关函数只与时间差相关则称 X(t)为广义平稳随机过程
4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声 ,该过程的任意两个不同时刻的状态是不相关
5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布 ,窄带正态噪声的包络服从瑞利分布 ,而相位服从均匀分布
6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法
7.若实平稳随机过程相关函数为Rx(τ) =25+4/ (1+6τ),则其均值为 5 或 -5,方差为 4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号
2.具有高斯分布的噪声称为高斯噪声 ,具有均匀分布的噪声叫均匀噪声 ,而如果一个随机过程的概率谱密度是常数,则称它为白噪声
3.白噪声通过都是带宽的线性系统,输出过程为高斯过程
4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望
5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定
1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________ 。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,
离散型随机过程、随机序列、离散随机序列。
2.如果平稳随机过程均值和相关函数具有遍历性 ,则称该随机过程为各态历经过称。
3.如果均匀分布白的噪声通过线性系统,输出服从正态分布分布。
4.正态随机过程的任意 n 维分布,只有由一、二阶矩确定。
5.窄带正态随机过程的相位服从均匀分布,幅度服从瑞利分布。
6.随机过程相关时间反应了随机过程变化的快慢程度,相关时间越长,过程的取值变化越
慢 ,随机过程相关时间反应了随机过程变化的快慢程度,相关时间越短,过程的取值变化越快 ,
7.平稳随机过程信号通过线性系统分析,输入,输出过程的自相关函数可表示为
,输出与输入过程中功率谱之间的关系可表示为。
8.平稳随机过程信号通过非线性系统分析常用的方法是直接法和变换法与级数展开法。
9.典型的独立增量过程有泊松过程与维纳过程。
10.对于无偏估计而言均方误差总是大于等于某个量,这个量称为克拉美-罗(Cramer-Rao)下
限达到这个量的估计称为有效估计。
11. 功率谱密度是从频域描述随机过程很重要的数字特征
12. 等效原则:理想系统与实际系统在同一白噪声激励下的输出平均功率相等,且理想系
统的增益为实际系统的最大增益。
判断题
1、随机变量的均值反映了它取值的离散程度,它的方差反映了它取值的平均值。
(×)
2、如果一个随机过程是各态历经过程,那么它一定是广义平稳的。
(√)
3、窄带随机过程的正交分量和同相分量在同一时刻是相互独立的。
(×)
4、白噪声通过一个线性系统,它的输出服从瑞利分布。
(×)
5、正态随机信号通过任何线性系统,输出都服从正态分布。
(√)
6、随机信号通过线性系统不会产生新的频率分量,但随机信号通过非线性系统则可能会产
生新的频率分量。
(√)
7、随机信号的复信号表示的功率谱在正频率部分是该随机信号功率谱的两倍,在负频率部
分则为零。
(√)
8、非线性系统普遍具有“欺负”小信号的特点。
(×)
9、对于严格平稳随机过程,不相关和独立是等价的。
(√)
1.若平稳随机过程在任意两个不同时刻不相关,那么也一定是相互独立的 F
4.宽平稳的高斯过程一定是严平稳过程T
5.对于未知的非随机参量,如果有效估计存在,则其有效估计一定是最大后验估计T
2.非线性变换不可增加新的频率分量,则线性变换会增加新的频率分量 F
3.对于零均值的正态随机过程来说,随机信号的解析信号只存在正的功率谱T
1.严格平稳一定是广义平稳,广义平稳不一定是严格平稳。
T
2.功率谱密度是从时域上描述随机过程的重要的数字特征 F
3.相关性越弱功率谱越宽平,相关性越强,功率谱越陡窄T
4.白噪声通过有限带宽时线性系统后输出过程为高斯过程T
5.平稳高斯过程与确定信号之和是高斯过程,确定信号可认为是高斯过程的均值
1.随机变量的均值反应了他的取值统计平均值,它的方差反应了它的取值偏离均值的平均
值。
(∨)
2. 如果一个平稳随机过程的时间平均值等于统计平均值,实际相关函数等于统计相关函数,那么它是各态历经过称。
(∨)
3.对于均方连续的随机过程他的每一个样本函数也都是连续的。
(X)
4.白噪声通过一个理想的低通滤波器,它的输出过程仍为白噪声,但分布变成了正态分布。
(X)
5.对于平稳正态随机过程的任意n 维分布只由它的均值和自相关函数确定。
(∨)
6. 正态随机过程通过非线性系统输出仍为正态分布(X)
7.随机过程的严平稳是指任意维概率与时间无关(X)
8.对于零均值的正态随机过程正交、不相关和独立, 3 个概念是等价的(∨)
1.随机信号的均值计算是线性运算而方差则不是线性运算T
2.如果随机过程即时间平均和集合平均是依概率 1 是相等的,则该随机过程具有遍历性 F
3.平稳随机信号在 t=- ∞时刻起加入物理可实现线性系统,即输出为平稳随机信号;平稳随
机信号在 t=- ∞时刻起加入物理不可实现线性系统,即输出为非平稳随机信号 F
4. 随机信号的解析信号只存在正的功率谱T
5. 如果对随机参量的估计是有效估计,那么这个估计必定是最大似然估计 F
6. 广义各态历经随机信号不一定广义平稳,广义平稳随机信号也未必是广义各态历经 F
7. 希尔伯特变换将改变随机信号统计平均功率 F
8.系统等效噪声带宽由系统的冲激响应和输入信号功率共同决定 F
9.高斯随机过程的严平稳与广义平稳等价T
10.随机过程可以看成一组确知时间函数的集合,同时也可以看成是一组随机变量的集合T
1.随机信号的样本函数能量是无限的,但功率往往是有限的T
3.偶函数的希尔伯特变化是奇函数,奇函数的希尔伯特变化是偶函数T。