CPU的发展趋势

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CPU的发展趋势

1.

技术发展趋势

(1)工艺的影响。在过去30多年的发展过程中,高性能微处理器基本上都是按照著名的摩尔定律在发展。根据世界半导体行业共同制订的2003年国际半导体技术发展路线图及其2004年更新,未来15年集成电路仍将按摩尔定律持续高速发展。预测到2010年,高性能CPU 芯片上可集成的晶体管数将超过20亿个(到2018年超过140亿个)[4]。半导体技术的这些进步,为处理器的设计者提供了更多的资源(无论是晶体管的数量和种类)来实现更高性能的芯片,从而有可能在单个芯片上创造更复杂和更灵活的系统。

随着晶体管集成度的越来越高、频率和计算速度的越来越快,芯片的功耗问题、晶体管的封装、芯片的蚀刻等越来越难以处理。这些因素使得摩尔定律本身的发展及其对处理器的影响发生了一些深刻的变化。

首先,根据上述的路线图,摩尔定律指出的发展趋势已经变缓,由原来的1.5年一代变为2-3年一代。除了技术本身的难度增加以外,集成电路生产线更新换代的成本越来越昂贵,生产厂家需要更多的时间来收回生产线成本也是一个重要原因。

其次,处理器主频正在和摩尔定律分道扬镳。摩尔定律本质上是晶体管的尺寸以及晶体管的翻转速度的变化的定律,但由于商业的原因,摩尔定律同时被赋予每1.5年主频提高一倍的含义[4,5,6]。事实

上过去每代微处理器主频是上代产品的两倍中,其中只有1.4倍来源于器件的按比例缩小,另外1.4倍来源于结构的优化,即流水级中逻辑门数目的减少。但目前的高主频处理器中,指令流水线的划分已经很细,很难再细分。例如,Pentium IV的20级流水线中有两级只进行数据的传输,没有进行任何有用的运算。另外,集成度的提高意味着线宽变窄,信号在片内传输单位距离所需的延迟也相应增大,连线延迟而不是晶体管翻转速度将越来越主导处理器的主频。功耗和散热问题也给进一步提高处理器主频设置了很大的障碍。因此,摩尔定律将恢复其作为关于晶体管尺寸及其翻转速度的本来面目,摩尔定律中关于处理器主频部分将逐渐失效。

此外,虽然集成度的提高为处理器的设计者提供了更多的资源来实现更高性能的芯片,但处理器复杂度的增加将大大增加设计周期和设计成本。

针对上述问题,芯片设计越来越强调结构的层次化、功能部件的模块化和分布化,即每个功能部件都相对地简单,部件内部尽可能保持通信的局部性。

(2)结构的影响。在计算机过去60年的发展历程中,工艺技术的发展和结构的进步相得益彰,推动着计算机功能和性能的不断提高。工艺技术的发展给结构的进步提供了基础,而结构的进步不仅给工艺技术的发展提供了用武之地,同时也是工艺技术发展的动力[3]。

在过去60年的发展历程中,计算机的体系结构每20年左右就出现一个较大突破,已经经历了一个由简单到复杂,由复杂到简单,又由简

单到复杂的否定之否定过程。最早期的处理器结构由于工艺技术的限制,不可能做得很复杂,一般都是串行执行;后来随着工艺技术的发展,处理器结构变得复杂,流水线技术、动态调度技术、CACHE技术、向量机技术被广泛使用,典型的代表如IBM 360系列的机器以及Cray 的向量机;RISC技术的提出使处理器结构得到一次较大的简化;但后来随着工艺技术的进一步发展以及多发射技术的实现,RISC处理器的结构变得越来越复杂。以Intel和HP为代表研制的EPIC结构的实现并没有从根本上对处理器结构进行本质简化。在上述过程中,每一次由简单到复杂的变革都蕴涵着进一步简化的因素,例如在早期的复杂处理器CDC 6600以及Cray向量机中,已经有了只由load和store 进行访存的概念,IBM 360/91中的Tomasulo算法被后来的RISC处理器普遍使用。同样,每一次由复杂到简单的变革,也蕴涵着再次复杂的基础,例如RISC结构的特点使得它可以充分利用多发射以及乱序执行来提高性能,而多发射和乱序执行又会增加处理器的复杂度。以近年来RISC微处理器结构没有大的突破为标志,RISC结构已经成熟。现在的RISC微处理器普遍能允许几十到上百条指令乱序执行,如Alpha 21264处理器的指令队列最多可以容纳80条指令,MIPS

R10000为32条,HP 8700为56条,POWER 4为200多条,PIV为106条(PIV 处理器虽然指令系统是CISC,但内部的微操作则具备了很多RISC的特征)[7,8,9,12,13]。目前,包括超标量RISC和EPIC 在内的指令级并行技术使得处理器核变得十分复杂,通过进一步增加处理器核的复杂度来提高性能已经十分有限。

同时,由于以下原因,通过结构的方法细分流水线来提高主频的方法将来很难再延续下去:一是不可能使用少于6-8个FO4(等效4扇出反相器)产生出波形好的时钟脉冲;二是随着流水级的增加流水线结构的效率会越来越低;三是由封装承受能力引起的热包封限制使得难以实施很深的互连流水线结构;四是结构和电路的创新将越来越多地用于减轻给互连RC效应带来的不良影响而不太可能直接改善频率响应。目前的高主频处理器中,一级流水级只有10-15级FO4的延迟,考虑到控制流水线的锁存器本身的延迟,实际留给有效处理工作的逻辑只有6-9级FO4,已经难以再降低。

因此,传统的高主频复杂设计遇到了越来越严重的障碍,需要探索新的结构技术来在简化结构设计的前提下充分利用摩尔定律提供的片内晶体管,以进一步提高处理器的功能和性能。

(3)功耗问题。随着主频的不断提高,功耗问题越来越突出。现代的通用处理器功耗峰值已经高达上百瓦。例如,Alpha 21364为100瓦,AMD Opteron是90瓦,Intel的安腾2已超过100瓦。相应地,主板上向CPU供电的电流已接近100安培,跟发动汽车时蓄电池需要供出的电流差不多。最近,Intel公司利用90nm工艺重新实现了Pentium 4(简称P4)。但新的P4竟然和原先用0.13微米工艺制造出来的P4跑一样高的主频(不超过4GHz)。这主要是因为Intel没有办法把芯片在高频工作时的功耗降下来,如果进一步提高主频,芯片的功耗太大,芯片产生的热量散不出去导致片内温度升高,反过来导致芯片的性能和芯片的稳定性下降。有的发烧友通过提高芯片电压并

相关文档
最新文档