2018届高考数学二轮分值分布看重点专题卷(全国通用)
2018高考数学全国卷含答案解析
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.
2018年高考理科数学新课标全国2卷逐题解析
2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及稿本纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。
1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。
2018年高考理数真题试卷(全国Ⅱ卷)
2018年高考理数真题试卷(全国Ⅱ卷)一、选择题 (共12题;共24分)1.(2分)1+2i1−2i=()A.−45−35i B.−45+35i C.−35−45i D.−35+45i2.(2分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A.9B.8C.5D.43.(2分)函数f(x)=e x−e−xx2的图像大致为()A.B.C.D.4.(2分)已知向量a→,b→满足|a→|=1,a→⋅b→=−1 ,则a→·(2a→-b→)=()A.4B.3C.2D.05.(2分)双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A.y=±√2x B.y=±√3x C.y=±√22x D.y=±√32x6.(2分)在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A.4√2B.√30C.√29D.2√57.(2分)为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(2分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.1189.(2分)在长方形ABCD-A1B1C1D1中,AB=BC=1,AA1= √3,则异面直线AD1与DB1所成角的余弦值为()A.15B.√56C.√55D.√2210.(2分)若f(x)=cosx−sinx在[−a,a]是减函数,则a的最大值是()A.π4B.π2C.3π4D.π11.(2分)已知f(x)是定义为(−∞,+∞)的奇函数,满足f(1−x)=f(1+x)。
2018高考全国2卷理科数学带答案(K12教育文档)
2018高考全国2卷理科数学带答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考全国2卷理科数学带答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考全国2卷理科数学带答案(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =B .3y x =C .2y = D .3y = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .2B 30C 29D .252018高考全国27.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50- B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018全国高考II卷理科数学试题和答案解析
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期(3)由求对称轴,(4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷(1、2、3)考点及分值分布统计
细胞的生命历程
4*6=6Biblioteka 4 /2*=3合计
21
32
34
必修二
遗传的基本规律
32=12
32=12
31/1*=10
遗传细胞学基础
4=3
遗传分子学基础
2/6=12
5=6
30.3*/1*
可遗传的变异
6*
30.3=2
生物进化
29.1.2=5
合计
29
18
15
必修三
体液调节
31.1.2=6
3/29
6+8=14
神经调节
31.3=2
3=6
免疫
5*
植物激素
种群、群落
5=6
31*
6=3
生态系统
29. 3=5
31=11
6/32.1.2
3+8=11
合计
19
25
20
必修教材和探究实验
4/6*=6
1=6
选修一
微生物的培养技术
微生物的培养技术
微生物培养和传统发酵技术
现代生物科技
基因工程
基因工程
胚胎工程
2018年全国卷考点及分值分布统计
试卷类型
全国1卷
全国2卷
全国3卷
考点
必修一
元素及化合物
2*
1 /4*=6
30.1=2
细胞的结构功能
(含物质跨膜运输)
1=6
2=6
2/30.1.2/32.36+6+2=14
酶与ATP
1*/2*
3*
5*/30.2*
矿质和水分代谢
3=6
2018年全国二卷数学(含详解答案)
2018年全国二卷数学一、选择题:此题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29 D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为 A .15BCD10.假设()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.假设(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A . 23B .12C .13D .14二、填空题:此题共4小题,每题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.假设,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,假设SAB △的面积为__________.三、解答题:共70分。
2018年全国高考理科数学2卷---精美解析版.docx
2018 年普通高等学校招生全国统一考试(新课标II 卷)理科数学2018.6.29本试卷 4 页, 23 小题,满分150 分.考试用时120 分钟.一、选择题:本题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12i()12iA . 4 3 i B. 4 3 i C. 3 4 i D. 3 4 i555555551.【解析】12i112i 234i34i,故选 D.12i2i12i5552.已知集合A{( x, y) | x2y 23, x Z , y Z} ,则A中元素的个数为()A .9B . 8C. 5D. 42.【解析】A{(1,1), ( 1,0), (1,1), (0,1), (0,0), (0,1),(1,1), (1,0), (1, 1)} ,元素的个数为9,故选 A .3.函数f (x)e x e x的图像大致为()x 2y yA .1B .1O1x O 1xy yC.1 D .1O1x O 1xe x e xf ( x) ,即 f ( x) 为奇函数,排除 A ;由f (1) e 1D;由3.【解析】 f ( x)20 排除x ef (4)e4 e 41211)(e11f (1)排除 C,故选 B .16(ee2 )(ee)e16e e4.已知向量a, b满足a 1 , a b1,则a(2a b)()A .4B . 3C. 2D. 04.【解析】a(2a b)2a b 2 1 3 ,故选B.2ax2y 21( a0, b0) 的离心率为 3 ,则其渐近线方程为()5.双曲线b2a2A .y2x B.y3x C.y2x D.y3 2x25.【解析】离心率e c3c2 a 2b2b,渐近线方程为y 2 x ,故选A.a a 2a23 ,所以2a6.在ABC 中,cos C5, BC1, AC 5 ,则 AB()25A .4 2B .30C.29D.2 56.【解析】cosC 2 cos2C13,开始25由余弦定理得AB BC 2AC22BC ACcos4 2 ,N0, T0C故选 A .i17.为计算S11111,设计了右侧的是i100否1349921001程序框图,则在空白框中应填入()N Ni S N TA .i i11B .i i2T T输出 Si 1C.i i3结束D .i i47.【解析】依题意可知空白框中应填入i i 2 .第1次循环: N1,T 1,i 3 ;第2次循环:2N 11,T11,i5;;第50 次循环:N111,T111, i101 ,结32439924100束循环得 S11111,所以选 B.1349910028.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30723,在不超过30 的素数中,随机选取两个不同的数,其和等于30的概率是()1B .1C .11A .1415D .12188.【解析】 不超过 30 的素数有: 2,3,5,7,11,13,17,19,23,29 ,共 10 个.从中选取两个不同的数, 其和等于 30的有: 7 与 23、 11与 19、 13 与 17 ,共 3 对.则所求概率为31,故选 C .C 102159.在长方体 ABCD A 1B 1C 1 D 1 中, AB BC1, AA 13 ,则异面直线 AD 1 与 DB 1 所成角的余弦值为()1B . 5C . 52A .65D .529.【解析】建立如图所示的空间直角坐标系,z则 A(1,1,0) , D 1 (1,0, 3) , D (1,0,0) , B 1 (0,1, 3)C 1,1DA 1 B所以 AD 1(0, 1, 3) , DB 1 ( 1,1, 3) ,1AD 1 DB 12 5DCBy则cosAD 1, DB 1,故选 C .AAD 1 DB 12 55x10.若 f ( x)cos x sin x 在 [a,a] 上是减函数,则 a 的最大值是()A .B .3D .2C .4410.【解析】 因为 f ( x)cos x sin x2 cos( x) 在区间 [ , 3 ,] 上是减函数, 所以 a 的最大值是44 44故选 A .11 . 已 知 f (x) 是 定 义 域 为 ( ,) 的 奇 函 数 , 满 足 f (1 x)f (1 x) . 若 f (1)2 , 则f (1) f ( 2) f (3)f (50)()A .50 B . 0C . 2D . 5011.【解析】因为 f ( x)f ( x) ,所以 f (1 x) f (x 1) ,则 f ( x1) f (x 1) , f ( x) 的最小正周期 为 T4 . 又 f (1) 2 , f (2)f ( 0) 0 , f (3)f (1)2 , f (4) f (0)0 , 所 以f (1)f ( 2)f (3)f (50) 12[ f (1) f (2) f (3)f ( 4)] f (49)f (50)f (1)f (2) 2 ,选 C .x 2y 2 1( a b312.已知 F 1, F 2 是椭圆 C :2b 20) 的左、右焦点, A 是 C 的左顶点, 点 P 在过 A 且斜率为a6的直线上,PF 1F 2 为等腰三角形,F 1F 2 P 120 ,则 C 的离心率为()2B .11 1A .2C .D .33412.【解析】如图,因为PF 1F 2 为等腰三角形, F 1 F 2 P 120 且 F 1F 2 2c ,所以 PF 1 F 2 30 ,则 P的坐标为 (2c,3c) ,故 k PA3c 3,化简得 4c a ,所以离心率e c1,故选 D .2c a6a4yPA F1 O F 2x二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.曲线y2ln( x1)在点 (0,0)处的切线方程为.13.【解析】y2y|x 0 2 ,则曲线 y2ln( x1)在点 (0,0)处的切线方程为 y2x.x1x 2 y5014.若x, y满足约束条件x 2 y30 ,则z x y 的最大值为.x5014.【解析】可行域为ABC 及其内部,当直线y x z 经过点B(5,4)时,z max9 .yBAC-3O5x15.已知sin cos1, cos sin0 ,则 sin().15.【解析】sin cos2sin 2 2 sin cos cos21,cos sin2cos2 2 cos sin sin 20 ,则 sin 22sin cos cos2cos22cos sin sin 20 1 1 ,即2 2 sin cos2cos sin1sin()1.216.已知圆锥的顶点为S ,母线SA, SB所成角的余弦值为7, SA与圆锥底面所成角为45,若SAB的面8积为 515 ,则该圆锥的侧面积为.16.【解析】如图所示,因为cos ASB 7ASB15S ,所以 sin,88SSAB1SA SB sin ASB15SA2 5 15 ,所以 SA4 5 .216又 SA与圆锥底面所成角为45,即SAO45 ,AO则底面圆的半径 OA210 ,圆锥的侧面积S OA SA40 2 .B三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共 60 分.17.( 12 分)记 S n 为等差数列 a n 的前 n 项和,已知 a 17 , S 315 .( 1)求 a n 的通项公式;( 2)求 S n ,并求 S n 的最小值.17.【解析】( 1)设等差数列a n 的公差为 d ,则 由 1 7 , S 3 3a 1 3d 15 得 d 2 ,a所以 a n7 (n 1) 22n 9,即 a n 的通项公式为 a n 2n 9 ;( 2)由( 1)知 S nn( 72n9) n 2 8n ,2因为 S n (n 4)2 16 ,所以 n4 时, S n 的最小值为 16 .18.( 12 分)下图是某地区2000 年至 2016 年环境基础设施投资额y (单位:亿元)的折线图.投资额240220220209200184180 171160148140 122 129120 1006053 568035374242 4740192514202000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 年份为了预测该地区2018 年的环境基础设施投资额,建立了y 与时间变量 t 的两个线性回归模型,根据2000 年至 2016年的数据(时间变量 t 的值依次为 1,2, ,17y 30.4 13.5t ;根据 2010年至 2016)建立模型①: ?年的数据(时间变量 t 的值依次为 1,2, ,7 )建立模型②: y 99 17.5t .?( 1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;( 2)你认为哪个模型得到的预测值更可靠?并说明理由.18.【解析】( 1)将t19代入模型①:?30.4 13.5 19 226.1(亿元),y所以根据模型①得该地区2018 年的环境基础设施投资额的预测值为226.1亿元;将 t 9 代入模型②:?99 17.59256.5 (亿元),y所以根据模型②得该地区2018 年的环境基础设施投资额的预测值为256.5亿元.( 2)模型②得到的预测值更可靠.理由如下:答案一:从折现图可以看出,2010 年至 2016 年的数据对应的点并没有紧密地均分分布在回归直线y30.413.5t的上下,2009年至2010年的环境基础设施投资额出现了明显的大幅度增加,这说明模型?①不能很好的反应环境基础设施投资额呈线性增长.而2010 年至 2016年的数据对应的点紧密的分布在回归?17.5t 的附近,这说明模型②能更好地反应环境基础设施投资额呈线性增长,所以模型②得到的直线 y 99预测值更可靠.答案二:从计算结果来看,相对于2016 年的环境基础设施投资额为220 亿元,利用模型①得到的该地区2018 年的环境基础设施投资额的预测值为226.1 亿元的增幅明显偏低,而利用模型②得到的该地区2018 年的环境基础设施投资额的预测值为256.5亿元的增幅明显更合理,所以模型②得到的预测值更可靠.19.( 12 分)设抛物线 C : y24x的焦点为F,过F且斜率为k (k0) 的直线l 与 C 交于A, B两点,AB8 .(1)求l的方程;(2)求过点A, B且与C的准线相切的圆的方程.19.【解析】( 1)焦点F为 (1,0),则直线 l :y k( x1) ,联立方程组y k( x1),得22( 224)x 20,yy24x k x k k A令 A( x1 , y1 ), B( x2 , y2 ) ,则 x1x22k 24x1 x21.k2,- 1O F x根据抛物线的定义得AB x1x2 2 8 ,B 即 2k 24 6 ,解得k 1 (舍去 k1),k 2所以 l 的方程为y x1;( 2)设弦AB的中点为M,由( 1)知x1x2 3 ,所以M的坐标为(3,2),2则弦 AB 的垂直平分线为y x5,令所求圆的圆心为(m,5m) ,半径为 r ,2m5m12根据垂径定理得r AB221234 ,22m m由圆与准线相切得m 1221234,解得 m3或 m11 .m m则所求圆的方程为:( x 3) 2( y 2) 216 或 ( x 11) 2( y 6) 214420.( 12 分)如图,在三棱锥P ABC 中,AB BC22 ,PA PB PC AC4, O 为 AC 的中点.( 1)证明:PO平面 ABC ;( 2)若点M在棱BC上,且二面角M PA C 为30,求 PC 与平面 PAM 所成角的正弦值.P20.【解析】( 1)证明:连接OB,PA PC , O 为 AC 的中点,PO AC ,AB BC22, AC 4,AB 2BC 2AC 2,即AB BC ,OB 1AC 2 ,AOC 2又 PO23, PB 4 ,则 OB2PO 2PB 2,即 OP OB ,B MAC OB O ,PO平面 ABC ;( 2)由( 1)知OB,OC , OP两两互相垂直,z以 O 为坐标原点建立如图所示的空间直角坐标系,P则 B(2,0,0) , C (0,2,0) , A(0,2,0) , P(0,0,2 3) ,BC ( 2,2,0), AP(0,2,23), CP(0,2,23)令 BM BC ,[ 0,1] .A OC y 则 OM OB BC(22,2,0) , AM(22,22,0) ,M令平面 PAM 的法向量为 n(x, y, z) ,Bxn AP 2 y 2 3z0,取 x3 1 ,得n ( 3 1 , 3 1 ,1)由n AM(2 2 )x ( 22) y 0易知平面 PAC 的一个法向量为m(1,0,0) ,所以 cos n, mn m3(1)3(1)3,1) 21) 2) 27 2cos302n m3(3((127解得1(舍去3),即n( 43,23,2) ,3333n CP 83因为 cos n, CP333.8,所以PC 与平面 PAM 所成角的正弦值为n CP444 321.( 12 分)已知函数 f ( x)e x ax2.( 1)若a1,证明:当 x0 时,f ( x)1;( 2)若f ( x)在(0,) 只有一个零点,求 a .21.【解析】( 1)方法 1:欲证明当x0 时, f ( x)1,即证明e x1 .x21令 g ( x)e x,则g ( x)e x (x 21)2xe x(x 1) 2 e x0,x 2x 2 1 2x2 1 2 1则 g ( x) 为增函数, g (x)g (0) 1 ,得证.方法 2:a1时, f ( x) e x x2,则 f ( x) e x2x ,令 f (x)g( x) ,则 g ( x)e x 2 ,x[0, ln 2) 时, g (x)0 , g( x) 为减函数, x(ln 2,) 时, g ( x)0 , g( x) 为增函数,所以 g( x) min g(ln 2)22ln 20,即当x0 时, f (x)0, f (x) 为增函数,所以 f ( x) f (0) 1 ,因此 a 1 , x0 时, f (x) 1.( 2)方法 1:若f ( x)在(0,) 只有一个零点,则方程e xa 只有一个实数根.x2令 h(x)e xh( x) 的图像与直线y a 只有一个公共点.x2,等价于函数y又 h ( x)x2e x2xe x x 2 e xx4x3,x(0,2) 时, h ( x)0 , h( x) 为减函数, x (2,) 时, h ( x)0 , h( x) 为增函数,所以 h( x) min h(2)e2, x0 时h(x), x时 h( x).4则 a e2) 只有一个零点.时, f ( x) 在 (0,4方法 2:若f ( x)在(0,) 只有一个零点,则方程e xax 只有一个实数根.x令 h(x)e xh(x) 的图像与直线y ax 只有一个公共点.,等价于函数 yx当直线 y ax 与曲线y h(x) 相切时,设切点为(x0, e x0) ,x0又 h ( x)xe x e x x 1 e x x0 1 e x0e x0x0 2 ,此时a h ( x0)e2 x2x 2,则 h ( x0 )x02x02.4又当 x(0,1) 时, h ( x)0 , h( x) 为减函数,yx (1, ) 时, h ( x) 0 , h(x) 为增函数,所以 h( x) min h(1) e ,且 x 0 时 h(x), x 时 h( x).根据 yh( x) 与 yax 的图像可知,O 1 2xe 2 时,函数 yh(x) 的图像与直线 yax 只有一个公共点,即f ( x) 在 (0,) 只有一个零点.a4(二)选考题:共 10 分.请考生在第 22、 23 题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修 4—4:坐标系与参数方程]( 10 分)在 直 角 坐 标 系 xOy 中 , 曲 线 C 的 参 数 方 程 为x 2 cosy( 为 参 数 ) , 直 线 l 的 参 数 方 程 为4sinx 1 t cos y2 (t 为参数 )t sin( 1)求 C 和 l 的直角坐标方程;( 2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2) ,求 l 的斜率.22.【解析】( 1)消去参数,得 C 的直角坐标方程为x 2 y 2 41;16消去参数 t ,得 l 的直角坐标方程为 sin x cos y sin2 cos0 ;( l 的直角坐标方程也可写成:y tan (x 1)2() 或 x 1 .)2( 2)方法 1:将 l 的参数方程:x 1 t cos x 2 y 2y 2t sin(t 为参数 ) 代入 C :164 4 1 t cos22 t sin216 ,即 1 3 cos2t24 2 cossint由韦达定理得 t 14 2cossint 23 cos 2,1依题意,曲线 C 截直线 l 所得线段的中点对应t 1t 2 0,即 2 cossin2因此 l 的斜率为 2 .方法 2:令曲线 C 与直线 l 的交点为 A( x 1 , y 1 ), B(x 2 , y 2 ) ,x 1 2 y 1 2 1416x 2 x 1x 2y 1y 2 y 1y 2则由x 10 ,其中 x 1x 2 2 y 2 2 得4 1614161得:8 0 ,0 ,得 tan 2 .x 2 2, y 1 y 2 4 .所以x 1x2y 1 y 2y 1 y 2 2 ,即 l 的斜率为 2 .24x 1 x 223. [选修 4—5:不等式选讲 ]( 10 分)设函数f (x)5x ax 2 .( 1)当 a1时,求不等式f (x)0 的解集;( 2)若 f ( x)1 ,求 a 的取值范围.23.【解析】( 1) a1时, f ( x) 5 x 1x 2 ,x 1时, f( x) 5 x1 x2 2x 4 0 ,解得2 x 1 ; 1 x 2 时, f ( x) 5x1 x2 2 0,解得 1 x 2 ; x 2 时, f ( x)5 x 1 x22x6 0 ,解得 2 x3,综上所述,当 a 1 时,不等式 f (x) 0 的解集为 [ 2,3] .( 2) f (x)5 x ax2 1,即 xa x2 4 ,又 x a x 2 x a x 2 a 2 ,所以 a 24 ,等价于 a 2 4 或 a 24 ,解得 a 的取值范围为 { a | a2 或 a6} .。
2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本
2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有项是符合题目要求的。
1. i 2 3iA. 3 2iB. 3 2iC. 3 2iD. 3 2i2 .已知集合A1,3,5,7 , B 2,3,4,5,则Al BA. 3B. 5C.3,5D. 1,2,3,4,5,7x xe e3•函数f x —2—的图像大致为x2 26.双曲线笃与1( a 0,b 0)的离心率为3,则其渐近线方程为a bA. y 2xB. y 、3xC. y 2xD. y3x22C7 .在△ ABC 中,cos-55, BC 1 , AC 5,贝U AB25A. 4.2B. ■ 30C. 29D. 2 51 1 1 1 18.为计算S 1 2 3 4 L 99顽,设计了如图的程序框图,则在空白框中应填入已知向量a , b满足| a | 1 , a bB. 35 .从2名男同学和3名女同学中任选A. 0.6B. 0.51,则a (2a b)C. 2D. 0人参加社区服务,则选中的2人都是女同学的概率C. 0.4D. 0.3值为23 -5A .B .C.D .222210.若 f(x)cosx si nx 在[0, a ]是减函数,则a 的最大值疋nn3nA .B .C.D . n424x 2y 5 > 0, 14•若x, y 满足约束条件x 2y 3> 0,则z x y 的最大值为 . x 5 w 0,5 n 115. 已知 tan (仏 —) —,贝U tan a __________ .4 516. 已知圆锥的顶点为 S ,母线SA , SB 互相垂直,SA 与圆锥底面所成角为 30 ,若厶SAB的面积为8,则该圆锥的体积为 ____________ .三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
2018年全国卷(2)理科数学
A. y 2 x
B. y 3 x
C. y
2 x 2
D. y
3 x 2
陕西省横山区横山中学刘克忠整理
(QQ1044051885)
2018 年普通高等学校招生全国统一考试全国卷(Ⅱ)理科数学
第 2 页 共 5 页
6.在 ABC 中, cos A. 4 2
C 5 , BC 1 , AC 5 ,则 AB 2 5
2018 年普通高等学校招生全国统一考试全国卷(Ⅱ)理科数学
第 1 页 共 5 页
2018 年普通高等学校招生全国统一考试 全国卷(Ⅱ)理科数学
适用地区:黑龙江、吉林、辽宁、内蒙古、宁夏、甘肃、新疆、青海、陕西、重庆、海南
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项 中,只有一项是符合题目要求的. 1 2i 1. 1 2i 4 3 4 3 A. i B. i 5 5 5 5
x 2 y 5 0 14.若 x , y 满足约束条件 x 2 y 3 0 ,则 z x y 的最大值是 x 5 0
15.已知 sin cos 1 , cos sin 0 ,则 sin( ) 16.已知圆锥的顶点为 S ,母线 SA, SB 的所成角的余弦值为 角为 45 ,若 SAB 的面积为 5 15 ,则该圆锥的侧面积为 .
DB1 所成角的余弦值为
A.
1 5
B.
5 6
C.
5 5
D.
2 2
10.若函数 f ( x) cos x sin x 在 [ a, a ] 是减函数,则 a 的最大值为 A.
4
2018年全国高考理科数学2卷-精美解析版
2018 年一般高等学校招生全国一致考试(新课标II 卷)理科数学本试卷 4 页, 23 小题,满分150 分.考试用时120 分钟.一、选择题:此题共12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.12i()12iA .4 3 i B.4 3 i C.3 4 i D.3 4 i555555551.【分析】12i112i234i34i ,应选D.1 2i2i12i5552.已知会合A.9 2.【分析】A{( x, y) | x2y 23, x Z , y Z} ,则A中元素的个数为()B . 8C. 5D. 4A{( 1,1), ( 1,0), (1, 1), (0,1), (0,0), (0, 1),(1,1), (1,0), (1, 1)},元素的个数为9,应选 A .e x e x的图像大概为()3.函数f (x)2xy yA .1B.1O1x O1xy yC.1 D .1O1x O1xe x e xf ( x) ,即 f ( x) 为奇函数,清除A;由f (1) e1D;由3.【分析】 f ( x)20 清除x ef (4)e4 e 4 1 (e21)(e1)(e1)e1 f (1) 清除C,应选B.1616e2e e e4.已知向量a, b知足a 1 , a b1,则a(2a b)()A .4B . 3C. 2D. 04.【分析】a(2a b)2a b 2 13,应选B.2ax2y 21( a0, b0) 的离心率为 3 ,则其渐近线方程为()5.双曲线b2a2A .y2x B.y3x C.y2x D.y3 2x25.【分析】离心率c3c2 a 2b23 ,所以b2,渐近线方程为y 2 x ,应选A.ea 2a2aa6.在ABC 中,cos C5,BC1, AC5,则 AB()25A.4 2B.30C.29D.2 56.【分析】cosC 2 cos2C13,开始25由余弦定理得AB BC 2AC22BC ACcos4 2 ,N0, T0C应选 A.i17.为计算S11111,设计了右边的是i否13499100 21001程序框图,则在空白框中应填入()N Ni S N TA .i i11B .i i2T T输出 Si 1C.i i3结束D .i i47.【分析】依题意可知空白框中应填入i i2.第 1次循环:N1,T 1,i3;第 2次循环:2N 11,T11,i5;;第50 次循环:N111,T111, i101 ,结32439924100束循环得 S11111,所以选 B.1349910028.我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就.哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30723,在不超出30 的素数中,随机选用两个不一样的数,其和等于30的概率是()111D.1A .B.C.181214158.【分析】不超出30的素数有:2,3,5,7,11,13,17,19,23,29 ,共10个.从中选用两个不一样的数,其和等于 30的有: 7 与 23、 11与 19、 13 与 17 ,共3对.则所求概率为31,应选 C.C102159.在长方体ABCD A1B1C1 D1中,AB BC 1,AA1 3 ,则异面直线AD1与 DB1所成角的余弦值为()1552A .B.C.D.56529.【分析】成立以下图的空间直角坐标系,则 A(1,1,0) , D (1,0,3) ,D (1,0,0),B (0,1,3)11所以 AD1(0, 1, 3), DB1( 1,1,3) ,则cos AD1, DB1AD1DB125AD1DB1255C1z,B1D 1A1CByD,应选 C.Ax10.若f ( x)cos x sin x 在 [a,a] 上是减函数,则 a 的最大值是()A .B .3D .C.42410.【分析】由于f ( x)cos x sin x 2 cos( x)在区间 [3] 上是减函数,所以 a 的最大值是,,4444应选 A.11 .已知f (x)是定义域为(,) 的奇函数,满足 f (1x) f (1 x) .若 f (1) 2 ,则f (1) f ( 2) f (3) f (50)()A.50B.0C.2D.5011.【分析】由于 f (x) f ( x) ,所以 f (1 x) f (x1) ,则 f ( x1) f (x1), f ( x) 的最小正周期为T 4.又 f(1)2, f (2) f ( 0)0 , f (3) f (1)2, f (4) f (0) 0,所以f (1) f ( 2) f (3) f (50)12[ f (1) f (2) f (3) f ( 4)] f (49) f (50) f (1) f (2)2,选C.12.已知F1, F2是椭圆C :x2y 21( a b3 a2b20) 的左、右焦点,A是C的左极点,点P在过A且斜率为6的直线上,PF1F2为等腰三角形,F1F2 P 120,则 C 的离心率为()21C.11A .B.3D.32412.【分析】如图,由于PF1F2为等腰三角形,F1F2 P120 且F1F22c ,所以PF1 F2 30 ,则P的坐标为 (2c, 3c) ,故 k PA3c 3,化简得 4c a ,所以离心率 ec 1 ,应选 D .2c a6a 4yPAF 1 O F 2x二、填空题:此题共 4 小题,每题 5 分,共 20 分.13.曲线 y 2ln( x 1) 在点 (0,0) 处的切线方程为 .13.【分析】 y2y |x 02 ,则曲线 y2ln( x 1) 在点 (0,0) 处的切线方程为 y 2x .1xx 2 y 5 014.若 x, y 知足拘束条件x 2 y 3 0 ,则 z x y 的最大值为.x 514.【分析】可行域为 ABC 及其内部,当直线 yxz 经过点 B(5,4) 时, z max9 .15.已知 sin cos 1, cos sin0 ,则y sin().15.【分析】sincos2sin 22 sin cos cos 2 B 1,2cos 2sin2ACcossin2 cos sinO 0 ,5x-3则 sin 22sin coscos 2cos 2 2cos sinsin 2 011,即 2 2 sin cos2cossin1sin()1.216.已知圆锥的极点为 S ,母线 SA, SB 所成角的余弦值为7 ,与圆锥底面所成角为45 ,若SAB 的面8SA积为 5 15 ,则该圆锥的侧面积为.16.【分析】以下图,由于cos ASB 7 ,所以 sinASB15 ,S88SSAB1SA SBsin ASB15 SA 2 5 15 ,所以 SA 4 5 .216又 SA 与圆锥底面所成角为45 ,即SAO 45 ,AO则底面圆的半径 OA 210 ,圆锥的侧面积 SOA SA40 2 .B三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都一定作答.第22、 23 题为选考题,考生依据要求作答.(一)必考题:共 60 分.17.( 12 分)记 S n 为等差数列 a n 的前 n 项和,已知 a 17, S 315.( 1)求 a n 的通项公式;( 2)求 S n ,并求 S n 的最小值.17.【分析】( 1)设等差数列a n 的公差为 d ,则 由 a 1 7 , S 3 3a 1 3d 15 得 d2 ,所以 a n7 (n 1) 22n 9 ,即 a n 的通项公式为 a n 2n 9 ;( 2)由( 1)知 S nn(7 2n 9) n 2 8n ,2由于 S n (n 4)2 16 ,所以 n4 时, S n 的最小值为 16 .18.( 12 分)下列图是某地域 2000 年至 2016 年环境基础设备投资额 y (单位:亿元)的折线图.投资额240220220209200184180 171160148140 122 129120 1006053 5680353742424740192514202000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016年份为了展望该地域 2018 年的环境基础设备投资额,成立了y 与时间变量 t 的两个线性回归模型,依据 2000年至 2016 年的数据(时间变量 t 的值挨次为1,2, ,17)成立模型①: ?30.4 13.5t;依据 2010 年至 2016y年的数据(时间变量t的值挨次为 1,2,,7)成立模型②:y 99 17.5t.?( 1)分别利用这两个模型,求该地域2018 年的环境基础设备投资额的展望值;( 2)你以为哪个模型获得的展望值更靠谱?并说明原因.181t 19y 30.4 13.5 19 226.1 (亿元),.【分析】( )将代入模型①: ?所以依据模型①得该地域2018 年的环境基础设备投资额的展望值为226.1 亿元;将 t?99 17.5 9256.5 (亿元),9 代入模型②: y所以依据模型②得该地域2018 年的环境基础设备投资额的展望值为256.5 亿元.( 2)模型②获得的展望值更靠谱.原因以下:答案一:从折现图能够看出,2010 年至 2016 年的数据对应的点并无密切地均分散布在回归直线y?30.4 13.5t 的上下,2009年至2010年的环境基础设备投资额出现了显然的大幅度增添,这说明模型①不可以很好的反响环境基础设备投资额呈线性增添.而2010 年至 2016 年的数据对应的点密切的散布在回归直线 y? 99 17.5t 的邻近,这说明模型②能更好地反响环境基础设备投资额呈线性增添,所以模型②获得的展望值更靠谱.答案二:从计算结果来看,相关于2016 年的环境基础设备投资额为220 亿元,利用模型①获得的该地域2018 年的环境基础设备投资额的展望值为226.1亿元的增幅显然偏低,而利用模型②获得的该地域 2018 年的环境基础设备投资额的展望值为 256.5 亿元的增幅显然更合理,所以模型②获得的展望值更靠谱.19.( 12 分)设抛物线 C : y24x 的焦点为F,过F且斜率为 k (k 0) 的直线l与C交于 A, B 两点,AB8 .(1)求l的方程;(2)求过点A, B且与C的准线相切的圆的方程.19.【分析】( 1)焦点F为 (1,0) ,则直线 l :y k( x1) ,联立方程组y k( x1),得k 2x2( 224)x k20,yAy24x k令 A( x1 , y1 ), B( x2 , y2 ) ,则 x1x22k 241.k2,x1 x2- 1O F x依据抛物线的定义得AB x1x2 2 8 ,B 即 2k 24 6 ,解得k 1 (舍去k 1 ),k 2所以 l 的方程为y x1;( 2)设弦AB的中点为M,由( 1)知x1x2 3 ,所以M的坐标为(3,2) ,2则弦 AB 的垂直均分线为y x5,令所求圆的圆心为(m,5m) ,半径为 r ,2m5m12依据垂径定理得AB221234,r22m m由圆与准线相切得1221234 ,解得或.m m m m3m 11则所求圆的方程为:( x3) 2( y2) 216 或 ( x11) 2( y6) 214420.( 12 分)如图,在三棱锥P ABC 中,AB BC22,PA PB PC AC4, O 为 AC 的中点.( 1)证明:PO平面 ABC ;( 2)若点M在棱BC上,且二面角M PA C为30,求 PC 与平面 PAM 所成角的正弦值.20.【分析】( 1)证明:连结OB,PPA PC , O 为 AC 的中点,PO AC ,ABBC 2 2, AC 4,AB 2 BC 2AC 2,即 AB BC , OB1 AC2 ,2又 PO2 3,PB 4,则 OB 2PO 2 PB 2,即 OPOB ,AC OB O , PO 平面 ABC ;( 2)由( 1)知 OB,OC , OP 两两相互垂直, z以 O 为坐标原点成立以下图的空间直角坐标系,P则 B(2,0,0) , C(0,2,0) , A(0, 2,0) , P(0,0,2 3) ,BC ( 2,2,0) , AP(0,2,2 3), CP(0, 2,2 3)令 BMBC ,[ 0,1] .AOCy则 OMOBBC(22 ,2 ,0) , AM (22 ,22,0) ,M令平面 PAM 的法向量为 n(x, y, z) ,BxnAP2 y2 3z 0,取 x 31 ,得 n ( 31 , 31 ,1)由n AM(2 2 )x ( 22) y 0易知平面 PAC 的一个法向量为 m (1,0,0) ,所以 cosn, mn m3(1)3(1)3 ,1) 21) 2) 27 2cos302n m3( 3((1 27解得1 (舍去 3),即 n(43,2 3,2), 33 3 3n CP8 3 3 3由于 cosn, CP3.8,所以 PC 与平面 PAM 所成角的正弦值为n CP4 44321.( 12 分)已知函数 f ( x) e x ax 2 .( 1)若 a1,证明:当 x 0 时, f ( x) 1;( 2)若 f ( x) 在 (0,) 只有一个零点,求 a .21.【分析】( 1)方法 1:欲证明当 x 0 时, f ( x)令 g ( x)e x ,则 g ( x)e x (x 2 1) 2xe x2x22x 111,即证明e x 1 .2x 1(x1) 2 e x0 ,x 221则 g ( x) 为增函数, g (x) g (0) 1 ,得证.方法 2:a 1时,f ( x) e x x2,则 f ( x) e x2x ,令 f (x) g( x) ,则 g ( x)e x x [0, ln 2) 时, g (x)0 , g(所以 g( x) min g(ln 2)22ln 所以 f ( x) f (0) 1 ,2 ,x) 为减函数,x (ln 2, ) 时, g ( x)0 , g( x) 为增函数,2 0,即当x0 时, f (x)0 , f (x) 为增函数,所以 a 1 , x0 时, f (x) 1.( 2)方法1:若f ( x)在(0,) 只有一个零点,则方程e xa 只有一个实数根.x 2令 h(x)e xh( x) 的图像与直线y a 只有一个公共点.x2,等价于函数y又 h ( x)x2e x2xe x x 2 e xx4x3,x (0,2) 时, h ( x)0 , h( x) 为减函数, x (2,) 时, h ( x)0 , h( x) 为增函数,所以 h( x) min h(2)e20 时h(x), x时 h( x), x.4e2) 只有一个零点.则 a时, f ( x) 在 (0,4方法 2:若f ( x)在(0,) 只有一个零点,则方程e xax 只有一个实数根.x令 h(x)e xy h(x) 的图像与直线y ax 只有一个公共点.,等价于函数x当直线 y ax 与曲线y h(x) 相切时,设切点为(x0, e x0) ,x0又 h ( x)xe x e x x 1 e x x0 1 e x0e x0x0 2,此时a h ( x0 )e2 x 2x 2,则 h ( x0 )x02x02.4又当 x(0,1) 时, h ( x)0 , h( x) 为减函数,yx (1,) 时, h ( x)0 , h(x) 为增函数,所以 h( x) min h(1)e,且 x0 时h(x), x时 h( x).依据 y h( x) 与y ax 的图像可知,O 1 2xe2时,函数 y h(x) 的图像与直线y ax只有一个公共点,即 f ( x) 在 (0,) 只有一个零点.a4(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答.假如多做,则按所做的第一题计分.22. [选修 4—4:坐标系与参数方程]( 10 分)在 直 角 坐 标 系 xOy 中 , 曲 线 C 的 参 数 方 程 为x 2 cos y( 为 参 数 ) , 直 线 l 的 参 数 方 程 为4sinx 1 t cos y2 (t 为参数 )t sin( 1)求 C 和 l 的直角坐标方程;( 2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2) ,求 l 的斜率.22.【分析】( 1)消去参数,得 C 的直角坐标方程为x 2 y 2 41;16消去参数 t ,得 l 的直角坐标方程为 sin x cos y sin2 cos0 ;( l 的直角坐标方程也可写成:ytan (x 1)2() 或 x 1 .)2x 1 t cos22( 2)方法 1:将 l 的参数方程:(t 为参数 ) 代入 C : xy y 2 t sin4164 1 t cos22 t sin 216 ,即 1 3 cos2t24 2 cossint由韦达定理得 t 1t 24 2cos sin,13 cos2依题意,曲线 C 截直线 l 所得线段的中点对应t 1t 2 0 ,即 2 cossin2所以 l 的斜率为 2 .方法 2:令曲线 C 与直线 l 的交点为 A( x 1 , y 1 ), B(x 2 , y 2 ) ,x 1 2y 121416x 1 x 2 x 1x 2y 1y 2 y 1y 2则由得0 ,此中 x 1 x 22y 2 24161416所以x1x 2 y 1 y 2 0y 1 y 2 2 ,即 l 的斜率为 2 .24x 1 x 223. [选修 4—5:不等式选讲 ]( 10 分)设函数 f (x)5 x a x 2 .( 1)当 a1时,求不等式 f (x)0 的解集;( 2)若 f ( x) 1 ,求 a 的取值范围.23.【分析】( 1) a1时, f ( x)5 x 1 x 2 ,x1时, f( x) 5 x 1 x 2 2x 4 0 ,解得 2 x 1 ;1 x2 时, f ( x) 5x 1x 22 0 ,解得1 x2 ;1得:8 0 ,0 ,得 tan 2 .x 2 2, y 1 y 24 .x 2 时, f ( x) 5 x1x 22x60 ,解得2x 3,综上所述,当 a1时,不等式 f (x)0 的解集为 [2,3] .( 2)f (x)5x a x 2 1,即 x a x24,又 x a x 2 x a x 2 a 2 ,所以 a 2 4 ,等价于 a2 4 或 a24,解得 a 的取值范围为 { a | a2或 a6} .。
2018年高考真题理科数学全国卷II含解析
适用全国卷Ⅱ(甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷2理科数学真题附含答案解析
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x 6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C 的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018普通高等学校招生全国统一考试(全国卷Ⅱ)·理科数学
2018普通高等学校招生全国统一考试(全国卷Ⅱ)·理科数学总分数 160分时长:不限题型单选题填空题综合题题量12 4 7总分60 20 801(5分)()A.B.C.D.2(5分)已知集合,则中元素的个数为()A. 9B. 8C. 5D. 43(5分)函数的图象大致为()A.B.C.D.4(5分)已知向量a,b满足,,则()A. 4B. 3C. 2D. 05(5分)双曲线(a>0,b>0)的离心率为则其渐近线方程为()A.B.C.D.6(5分)在△ABC中,,BC=1,AC=5,则AB=()A.B.C.D.7(5分)为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.8(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9(5分)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10(5分)若在是减函数,则a的最大值是A.B.C.D.11(5分)已知是定义域为的奇函数,满足.若,则()A. -50B. 0C. 2D. 5012(5分)已知F1,F2是椭圆C:(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P =120°,则C的离心率为()A.B.C.D.13(5分)曲线在点处的切线方程为____1____.14(5分)若满足约束条件则的最大值为____1____.15(5分)已知,,则____1____.16(5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为,则该圆锥的侧面积为____1____.17(12分)记S n为等差数列{a n}的前项和,已知a1=-7,S3=-15.(1)(6分)求{a n}的通项公式;(2)(6分)求S n,并求S n的最小值.18(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,...,17)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为1,2, (17)建立模型②:.(1)(6分)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)(6分)你认为用哪个模型得到的预测值更可靠?并说明理由.19(12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,=8.(1)(6分)求直线l的方程;(2)(6分)求过点A,B且与C的准线相切的圆的方程.20(12分)如图,在三棱锥P-ABC中,AB=BC=,PA=PB=PC=AC=4,O为AC的中点.(1)(6分)证明:PO⊥平面ABC;(2)(6分)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM成角的正弦值.21(12分)已知函数.(1)(6分)若a=1,证明:当时,;(2)(6分)若在只有一个零点,求a的值.22(10分)[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为(为参数).(1)(5分)求C和l的直角坐标方程;(2)(5分)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23(10分)[选修4-5:不等式选讲]设函数.(1)(5分)当a=1时,求不等式的解集;(2)(5分)若,求a的取值范围.2018普通高等学校招生全国统一考试(全国卷Ⅱ)·理科数学参考答案与试题解析1(5分)()A.B.C.D.【解析】根据复数除法法则化简复数,即得结果.详解:选D.【答案】D2(5分)已知集合,则中元素的个数为()A. 9B. 8C. 5D. 4【解析】根据枚举法,确定圆及其内部整点个数.由 x2+y2≤3知,-≤x≤,-≤y≤,所以x∈,y∈,所以A中元素的个数是9个.【答案】A3(5分)函数的图象大致为()A.B.C.D.【解析】f(x)=因为f(x)==-f(x)(x),所以f(x)为定义域上的奇函数,排除A,又x,,,但指数增长快些,另外f(1)=e->2,所以排除选项C,D,选B.【答案】B4(5分)已知向量a,b满足,,则()A. 4B. 3C. 2D. 0【解析】根据向量模的性质以及向量乘法得结果.详解:因为,所以选B.【答案】B5(5分)双曲线(a>0,b>0)的离心率为则其渐近线方程为()A.B.C.D.【解析】根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.【答案】A6(5分)在△ABC中,,BC=1,AC=5,则AB=()A.B.C.D.【解析】先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.【答案】A7(5分)为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【解析】根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项. 详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.【答案】B8(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.【解析】先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.【答案】C9(5分)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.【解析】建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(1,0,0)B1(1,1,)D1(0,0,),因为cos<>=所以异面直线AD1与DB1所成角的余弦值为,选C.【答案】C10(5分)若在是减函数,则a的最大值是A.B.C.D.【解析】先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.【答案】A11(5分)已知是定义域为的奇函数,满足.若,则()A. -50B. 0C. 2D. 50【解析】先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C12(5分)已知F1,F2是椭圆C:(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P =120°,则C的离心率为()A.B.C.D.【解析】先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,OF2=c,∴点P在过点A,且斜率为的直线上,∴,解得,∴.所以,选D.【答案】D13(5分)曲线在点处的切线方程为____1____.【解析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程. 详解:【答案】14(5分)若满足约束条件则的最大值为____1____.【解析】先作可行域,再平移直线,确定目标函数最大值的取法.详解:作可行域,则直线过点A(5,4)时取最大值9.【答案】915(5分)已知,,则____1____.【解析】先根据条件解出再根据两角和正弦公式化简求结果.详解:因为,,将两式分别平方得sin2a+cos2a+sin2β+cos2β+2(sinacosβ+cosasinβ)=1,所以sin(a+β)=.【答案】16(5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为,则该圆锥的侧面积为____1____.【解析】设S在底面的射影为S,连接AS,SS.△SAB的面积为SA×SB×sin∠ASB=×SA²=5,∴SA2=80,所以SA=4∵SA与底面所成的角为45°,∴∠SAS=45°,AS=SAcos45°=2∴底面周长l=2πAS=4π∴圆锥的侧面积为×4×4π=40π.【答案】17(12分)记S n为等差数列{a n}的前项和,已知a1=-7,S3=-15.(1)(6分)求{a n}的通项公式;(2)(6分)求S n,并求S n的最小值.【解析】(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.【答案】(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.18(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,...,17)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为1,2, (17)建立模型②:.(1)(6分)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)(6分)你认为用哪个模型得到的预测值更可靠?并说明理由.【解析】(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,求得结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9,10,19共22分
11,16,20共22分
6,15,21共22分
17年3
6,17共17分
9,14共10分
3,18共17分
8,16,19共22分
5,10,20共22分
11,15,21共22分
近5年平均
15.2
12
15.7
21.5
22
23.9
近11年平均
15.7
11
16.5
22
22.3
1.分值:非常稳定于17分,
2.题型:一个选择题+一个大题
1.分值:绝对稳定于22分
2.题型:两小一大
1.分值:绝对稳定于22分
2.题型:两小一大
函数的思想,求最值等等在各个章节都有反应,其实分值不止如此
7,11,20共22分
16年2
7,9,13共15分
17共12分
10,18共17分
6,14,19共22分
4,11,20共22分
12,16,21共22分
17年2
14,17共17分
3,15共10分
13,18共17分
4,10,19共22分
9,16,20共22分
11,21共17分
16年3
5,8,14共15分
12,17共17分
全国卷分析方法2——分值分布看重点
1、高频考点分布表
三角函数、恒等变换,解三角形
数列
概率统计
立体几何
解析几何
函数与导数
07年
3,9,17共22分
4共5分
11,19共17分
8,12,22共22分
6,13,19共22分
10,14,21共22分
08年
1,3,7共15分
4,17共17分
3,16,19共22分
4,7,18共22分
11,12,20共22分
8,10,19(1),21共26分
14年2
4,14共10分
17共12分
19题12分
6,11,18共22分
10,16,20共22分
8,12,15,21共27分
15年2
10,17题共12分
4,16共10分
3,18共17分
6,9,19共22分
7,11,20共22分
7,12,15,18共27分
11,12,20共22分
10,21共17分
09年
5,4,17共22分
7,16共10分
3,18共17分
8,11,19共22分
4,8,13,20共27分
12,21共17分
10年
9,16共10分
17题12分
6,19共17分
10,14,18共22分
12,15,20共22分
3,4,8,11,13,21共37分
23.9
分布规律
1.分值:有一定波动,主要是15分和17分
2.题型:三小或一大一小
08,10,11,14和16第2,3卷无大题共5年无大题出现,主要集中在偶数年,和数列大题交替出现,
1.分值:波动很小,主要是10分,12分
2.题型:两小或一大10,11,14和16全国2都只有17题
09,12,13,15都是简单选择题+16题
3,19共17分
6,8,18共22分
4,10,20共22分
11,16,21共22分
14年1
6,8,16共15分
17共12分
18共12分
12,19共17分
4,10,20共22分
3,11,21共22分
15年1
2,8,16共15分
17共12分
4,19共17分
6,11,18共22分
5,14,20共22分
12,13,21共22分
16年1
17共12分
3,15共10分
4,19共17分
6,11,18共22分
5,10,20共22分
7,8,12,21共27分
17年1
9,17共17分
4,12共10分
2,19共17分
7,16,18共22分
10,15,20共22分
5,11,21共22分
13年2
15,1711年
5,11,16共15分
17题12分
3,19共17分
6,15,18共22分
7,8,20共22分
2,9,12,21共27分
12年
9,17共17分
5,16共10分
3,15,18共18分
7,11,19共22分
4,8,20共22分
5,12,18,21共27分
13年1
15,17共17分
7,12,14共15分