排列组合与二项式定理的综合练习题

合集下载

排列组合+二项式定理(含答案)

排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。

排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。

13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。

三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。

排列组合及二项式定理试题和答案

排列组合及二项式定理试题和答案

排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果()n x x x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是 A .6810C xB .5710C xxC .468C xD .6811C xx6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于 A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为 A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139(2),()()x a a x a x a x a a a a a a -=+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案二、填空题:19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答).22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分): 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案 DBCBBDCBABBADDBCBD提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。

排列组合二项式定理定积分--专题卷---(全国通用)

排列组合二项式定理定积分--专题卷---(全国通用)

排列组合、二项式定理一、排列组合1、某校选定甲、乙、丙、丁、戊共5名教师到3个边远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,则不同的选派方案共有( )A .27种 B. 30种 C. 33种 D.36种2、将4名大学生分配到A,B,C 三个不同的学校实习,每个学校至少分配一人.若甲要求不到A 学校,则不同的分配方案共有( )A.36种B.30种C.24种D.20种3、某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B. 120C. 144D. 1684、从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有一人的选派方法种树为 .(用数字作答)5、将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子有2个连号小球的所有不同放法有___________种.(用数字作答)二、二项式定理1、24(1)(1)x x x ++-展开式中2x 的系数为______ 2、若26()b ax x +的展开式中3x 项系数为20,则22a b +的最小值为( )A. 4B. 3C. 2D. 1 3、二项式61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为 4、设二项式()60a x a x ⎛⎫-≠ ⎪⎝⎭学科网的展开式中2x 的系数为A ,常数项为B ,若B=44,则a = 5、在二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于________(用数字作答); 6、()()52132x x --的展开式中,含x 次数最高的项的系数是_________(用数字作答).7、已知的展开5(12)x -式中所有项的系数和为m ,则21m x dx =⎰_________.8、已知0sin a xdx π=⎰,则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为9、二项式66(ax+的展开式中5x 20a x x d =⎰ .三、定积分1、已知函数()f x 的部分图像如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计1()0f x dx 的值约为( )A. 61100B. 39100B. C.10100 D.1171002、如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率为__________.参考答案:1、B2、C3、B4、445、18参考答案:1、32、C3、204、-35、12156、-647、ln28、-809、1 3【解析】61xx⎛⎫+⎪⎝⎭中的通项为61rr n rC xx-⎛⎫⎪⎝⎭,若为常数项,则3r=,366120rr n rC x Cx-⎛⎫==⎪⎝⎭.参考答案:1、D2、1 3。

排列组合二项式定理综合测试卷(B卷)

排列组合二项式定理综合测试卷(B卷)

演练篇 核心考点AB 卷 """""t""高二数学 2021年5月 T 于王"排"#合二&式()综合测试卷(B -)■河南省南乐县第一高级中学吉晓波D. 3医院了:果店一、选择题1 -已知 A ' = 100 A ',则'=( )。

A. 11 B. 12#. 13 D. 142. 满足条件C )>#6的正整数"的个数是( )。

A. 10B. 9#. 43. 小张从家出发去看望生病的同学,他需要先去 水果店买水果,然后 去花店买花,最后到达医院。

相关.........................的网格纸上,网格线是道........图1路,则小张所走路程最短的走法种数为!)。

A. 72B. 56#. 48 D. 404. 在一-次运动会上有四项比赛的冠军在甲、乙、丙3人中产生,那么不同的夺冠情况共有()种。

A. A )B. 43#. 34 D. #3/ 2 \ 65. (2' — 3;?"的展开式中'3的系数为( )。

#. 64D. —1286. 由0,1,2,5四个数组成没有重复数字的四位数中,能被5整除的个数是()$A. 24B. 12#. 10 D. 67. 从2名教师和5名学生中选出3人参加“我爱我的祖国”主题活动,要求入选的3人中至少有1名教师,则不同的选取方案数是( )$A. 20B. 25#. 30 D. 558. 将4张座位编号分别为1,2,3,4的电影票全部分给3人,每人至少1张$如果分给同一人的2张电影票具有连续的编号,那 么不同的分法数是!)$A. 24B. 18#. 12 D. 69.从6种不同的颜色中选出一些颜色给如图2所示的4个格子涂色,每个格子涂图2一种颜色,且相邻的两个格子颜色不同,则不同的涂色方法有()$A.360 种B.510 种#.630 种 D.750 种10.如图 3, *MON的边O8上有4个点A i 、A 2、A 3、A 4,ON 上有 3 个点 21、22、2,,则以 O 、A 1>A 2>A 3>A 4>21、22、23中的3个点为顶点的三角形的个数为()$A. 30B. 42#. 54 D. 5611. A 、2、C 、/4名学生报名参加学校的 甲、乙、丙、丁 4个社团,若学生A 不参加甲社团,2不参加乙社团,且4名学生每人报一个社团,每个社团也只能1人报名,则不同的 报名方法数为( )$A. 14B. 18#. 12 D. 412.为了提高命题质量,命题组指派5名 教师对数学卷的选择题、填空 题和解答题这3种题型进行改编,则每种题型至少指派1名教师的不同分派方法种数为( )$A. 90B.36#. 150D. 10813. 2020年春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战&某医院呼吸科要从3名男医生,2名女医生中选派3人到湖北省的A , 2, C 三地参加疫情防控工作,若这3人中至少有1名女医生&则选派方案有( )$A. 9 种B. 12 种#. 54 种D.72 种14.(2------2)(1 + "y )6 展开式中'23315中孝生皋捏化演练篇核心考点AB卷高二数学2021年5月项的系数为160,则a=!"$A.2B.4C-—22-—2215.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列种数为!"$A.A4A5B.A3A4A5C.C1A4A5 2.A2A4A516.若(2+a'"$(a(0)的展开式中各项的二项式系数之和为512,且第6项的系数最大,则a的取值范围为("$A.(—7,0)UC.+317.已知二项式(1+丄一2'),则展开式中常数项为!)$A.49B.—47C.—1 2.11)已知二项式(2'2+1)的展开式中二项式系数之和等于64,则展开式中常数项等于()A.240B.120C.48 2.361*.某校实行选科走班制度(语文、数学、英语为必选科目,此外学生需在物理、化学、生物、历史、地理、政治六科中任选三科),根据学生选科情况,该校计划利用三天请专家对九个学科分别进行学法指导,每天依次安排三节课,每节课一个学科,语文、数学、英语只排在第二节,物理、政治排在同一天,化学、地理排在同一天,生物、历史排在同一天,则不同的排课方案数为()$A.36B.48C.144 2.28820.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站正中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有()$A.240种B.252种C.264种 2.288种21.已知(3—')(2'—3)8"a$+a1('—1)+a2('—1)2+…+a g('—1)9,则a6"()$A.—1792B.1792C.—5376 2.537622.5名护士上班前将外衣放在护士站,下班后从护士站取外衣,由于灯光暗淡,只有2人拿到了自己的外衣,另外3人拿到别人外衣的情况有!)$A.60种B.40种C.20种 2.10种23.停车场划出一排9个停车位置,今有5辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有!)$A.A5种B.2A5A4种C.5A5种 2.6A5种24.从正方体的8个顶点中选取4个作为顶点,可得到四面体的个数为()$A.C;—12B.C;—8C.C4—6 2.C8—425.从装有$+1个不同小球的口袋中取出,个小球(0V,'$,,,$#N$),共有C,+1种取法$在这C,+1种取法中,可以分为两类:第一类是某指定的小球未被取到,共有C$・C,种取法;第二类是某指定的小球被取到,共有C1・C,1种取法。

高二数学排列组合二项式定理单元测试题(带答案).doc

高二数学排列组合二项式定理单元测试题(带答案).doc

排列、组合、二项式定理与概率测试题一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. )1、 如图所示的是 2008 年北京奥运会的会徽,其中的 “中国印 ”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来 (如同架桥 ),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ()A.8种B.12种C. 16种D.20种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96 种B .180 种C .240 种D .280 种3、五种不同的商品在货架上排成一排,其中 a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则不同的选排方法共有( )A .12 种B .20 种C .24 种D .48 种4、编号为 1、2、 3、4、5 的五个人分别去坐编号为1、2、 3、4、5 的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A. 10种B. 20 种C. 30 种D . 60 种5、 设 a 、 b 、 m 为整数( m>0),若 a 和 b 被 m 除得的余数相同,则称a 和b 对模 m 同余 .记为 a ≡b(mod m)。

已知12·2+C3 20,则 b 的值可以是( )a=1+C 20 +C 2020 ·22+ +C ·219, b ≡a(mod 10)20.2011 C6、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22 种B .23 种C .24 种D .25 种n 1n 11、 令 a n 为(1 x) 的展开式中含 x 项的系数,则数列 { } 的前 n 项和为()7a nn(n 3)n(n 1) n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5(x 1)5 ,则 a 0 = ()A . 32B .1C . -1D . -32n9、 二项式 3x 22(n N * ) 展开式中含有常数项,则 n 的最小取值是 ()3xA 5B 6C 7D 810、四面体的顶点和各棱中点共 10 个点,在其中取 4 个不共面的点,则不同的取法共有()A .150 种B .147 种C .144 种D . 141 种11、两位到北京旅游的外国游客要与2008 奥运会的吉祥物福娃( 5 个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( )A .1440B . 960C .720D .48012、若 x ∈ A 则 1 ∈ A ,就称 A 是伙伴关系集合,集合 M={ - 1, 0, 1 , 1,1,2,3,4}x3 2的所有非空子集中,具有伙伴关系的集合的个数为()A .15B . 16C . 28D . 25题号 1 23456789101112答案二、填空题 (每小题 5 分,共 20 分,把答案填在题中横线上)13.四封信投入 3 个不同的信箱,其不同的投信方法有_________种.14、在 ( x 2 1)( x 2) 7 的展开式中 x 3 的系数是.15、已知数列 { a n }的通项公式为 a n2n 1 1,则 a 1C n 0 +a 2C 1n + a 3C n 3 + a n 1C n n =16、对于任意正整数,定义“n 的双阶乘n!!如”下:对于n 是偶数时,n!!=n (n ·- 2) (n ·-4)6× ;4×2对于n 是奇数时, n!!=n (n ·- 2) (n ·- 4)5×.3×1现有如下四个命题:① (2005!!) (2006!!)=2006!· ;② 2006!!=2 1003·1003!;③ 2006!! 的个位数是5.正确的命题是 ________.0;④ 2005!! 的个位数是 三、解答题(注意各题要写出简要的解答过程,并要计算出具体的数字,否则不给分)17、某学习小组有 8 个同学,从男生中选2 人,女生中选 1 人参加数学、物理、化学三种竞赛,要求每科均有 1人参加,共有 180 种不同的选法.那么该小组中男、女同学各有多少人18、设 m, n∈ Z+, m、 n≥1,f(x)=(1+x)m+(1+x)n的展开式中, x 的系数为 19.( 1)求 f(x)展开式中 x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、 n 的值,求 x7的系数.19、7 位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种(2)甲、乙和丙三个同学都相邻的排法共有多少种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种20、已知( x1) n 的展开式中前三项的系数成等差数列.2 x(Ⅰ )求n 的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

排列组合及二项式定理练习测验题2

排列组合及二项式定理练习测验题2

排列组合及二项式定理练习一、选择题(列式或数字作答)1.将A、B、C、D四个球放入编号为1,2,3地三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同地放法有 b5E2RGbCAP2.令1)1(++n n x a 为地展开式中含1-n x 项地系数,则数列}1{na 地前n 项和为.3.从5位男教师和4位女教师中,选出3位教师分别担任3个班级地辅导员,每班一位辅导员,要求这3位辅导员中男、女老师都要有,则不同地选派方案共有 .4.有两排座位,前排11个座位,后排12个座位.现安排2人就座,规定前排中间地3个座位不能坐,并且这2人不左右相邻,那么不同地排法地种数是 .5.从编号为1,2,3,4,5,6地6地小球中任取4个,放在标号为A,B,C,D地4个盒子里,每盒一球,且2号球不能放在B盒中,4号球不能放在D号盒中,则不同地放法种为.6.有6本不同地书,全部借给4人,每人至少1本,有多少种不同地借法.7.某班参加植树节活动,苗圃中有甲、乙、丙3种不同地树苗,从中取出5棵分别种植在排成一排地5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗地种法共有.8.编号为1、2、3、4、5地5个人分别去坐编号为1、2、3、4、5地5个座位,其中有且只有两个地编号与座位号一致地坐法是.9.在一条南北方向地步行街同侧有8块广告牌,牌地底色可选用红、蓝两种颜色,若只要求相邻两块牌地底色不都为红色,则不同地配色方案共有 .10.5名奥运火炬手分别到香港,澳门、台湾进行奥运知识宣传,每个地方至少去一名火炬手,则不同地分派方法共有 .11.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间地3个座位不能坐,并且这2人不左右相邻,那么不同地坐法种数是 .12.现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6地六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上地标号恰好成等差数列地取法数为 .13.在()()x x --216地展开式中,3x 地系数是 .14.四面体地顶点和各棱中点共有10个点,在其中取4个不共面地点,不同地取法共有 . 15.空间6个点,任意四点都不共面,过其中任意两点均有一条直线,则成为异面直线地对数为 . 16.从6名短跑运动员中选出4人参加4×100 m 接力赛,如果甲、乙两人都不跑第一棒,那么不同地参赛方案有 .17.某银行储蓄卡地密码是一个4位数码,某人采用千位、百位上地数字之积作为十位、个位上地数字(如2816)地方法设计密码,当积为一位数时,十位上数字选0,千位、百位上都能取0.这样设计出来地密码共有 .18.从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同地工作,每人承担一项,其中甲不能从事翻译工作,则不同地选派方案共有 .19.设22(13)40a x dx =-+⎰,则二项式26()a x x+展开式中不含..3x 项地系数和是 A .-160 B .160 C .161 D .-16120.某一排共12个座位,现甲、乙、丙三人按如下要求入座,每人左右两旁都有空座位,且三人地顺序是甲必须在另两人之间,则不同地座法共有 .21.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人地相对顺序不变,则不同调整方法地种数是 .23.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,女生中有且只有2位女生相邻,则不同排法地种数是 .24.显示屏有一排7个小孔可显示0或1,若每次显示其中3个小孔,但相邻两孔不能同时显示,则该屏能显示信号地种数共有 .25.把20个相同地小球放入编号为1,2,3地三个盒子,使得每个盒中地球数不少于盒子地编号,则不同地方法有 .26.5男5女共10人从左到右排成一排,要求男生从高到矮排列,女生由矮到高排列(假设男、女生中身高各不相同),则不同地排法有 .二.填空题27.如果x +x 2+x 3+……+x 9+x 10=a 0+a 1(1+x )+a 2(1+x )2+……+a 9(1+x )9+a 10(1+x )10,则a 9=_____28.已知数列{n a }地通项公式为121+=-n n a ,则01n C a +12n C a + +33n C a +n n n C a 1+=29.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同地选择方案共有 .30.已知(1+x )+(1+x )2+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n,且a 1+a 2+…+a n -1=29-n ,则n =;31.将,,a b c 三个字母填到3×3方格中,要求每行每列都不能出现重复字母,不同地填写方法有_____种. 32.甲、乙两人从4门课程中各选修2门,则甲、乙所选地课程中至少有1门相同地选法种数为 .33.10双互不相同地鞋子混装在一个袋子中,从中任意取4只,4只鞋子中有两只成双,另两只不成双地取法数为________版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.zvpgeqJ1hk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.NrpoJac3v1Users may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.1nowfTG4KI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.fjnFLDa5ZoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.tfnNhnE6e5。

高考复习专题:排列组合、二项式定理测试题及答案

高考复习专题:排列组合、二项式定理测试题及答案

专题20 排列组合、二项式定理测试题满分150分 时间120分钟一、选择题(本大题共12小题,每题5分,共60分) 1.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 42.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种4.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( ) A .945 B .-945 C .1 024 D .-1 0245.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .168C .144D .1006.若⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .360B .180C .90D .457.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ) A .232 B .252 C .472 D .4848.若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016 x 2 016,则a 12+a 222+…+a 2 01622 016的值为( ) A .2 B .0 C .-1 D .-29.某校开设A 类课3门,B 类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( )A .15种B .30种C .45种D .90种10.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则不同的安排方法有( )A .24种B .48种C .96种D .114种11.若n⎛⎫的展开式中的二项式系数之和为64,则该展开式中3y 的系数是( ) A .15 B .15- C .20 D .20-12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S =( ) A .23 008 B .-23 008 C .23 009 D .-23 009 二、填空题(本大题共4小题,每题5分,共20分)13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 . 14.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).16.若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则函数f (x )=a 2x 2+a 1x +a 0的单调递减区间是________.三、解答题(本大题共6小题,共70分)17.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?18.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中选6人上艇,平均分配在两舷上划浆,有多少种不同的选法?19、在二项式n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中的常数项;(2)求展开式中各项的系数和.20(1)求展开式中各项的系数和;(2)求展开式中的有理项.21.从1到9这九个数字中取三个偶数和四个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个? (4)在(1)中任意两个偶数都不相邻的七位数有几个?22、已知()(23)n f x x =-展开式的二项式系数和为512,且2012(23)(1)(1)n x a a x a x -=+-+-(1)n n a x ++-L .(1)求2a 的值; (2)求123n a a a a ++++L 的值.专题20 排列组合、二项式定理测试题参考答案一、选择题1.解析:选A 二项式的通项为T r +1=C r 6x 6-r i r,由6-r =4,得r =2. 故T 3=C 26x 4i 2=-15x 2.故选A.2.解析:选D 从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类:第一类是取四个偶数,即C 44=1种方法;第二类是取两个奇数,两个偶数,即C 25C 24=60种方法;第三类是取四个奇数,即C 45=5,故有5+60+1=66种方法.学_科网3.解析:选A 甲、乙两人从4门课程中各选修2门有C 24C 24=36种选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30种.4.解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C 1315×32×(-1)13=-943. 5.解析:选D 先安排小品类节目和相声类节目,然后让歌舞类节目去插空.(1)小品1,相声,小品2.有A 22A 34=48; (2)小品1,小品2,相声.有A 22C 13A 23=36; (3)相声,小品1,小品2.有A 22C 13A 23=34.共有48+36+36=100种. 6.解析:选B 依题意知n =10, ∴T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102r·x 5-52r , 令5-52r =0,得r =2,∴常数项为C 21022=180.7..解析:选C 由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取3张,有4C 34种取法,取出2张红色卡片有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=560-16-72=472种,选C.8.解析:选C 当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01622 016, ∴0=1+a 12+a 222+…+a 2 01622 016.即a 12+a 222+…+a 2 01622 016=-1.9.解析:可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有C 13C 25种不同的选法;②A 类选修课选2门,B 类选修课选1门,有C 23C 15种不同的选法.∴根据分类计数原理知不同的选法共有C 13C 25+C 23C 15=30+15=45(种).答案:C10解析:5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35A 33=60(种),A ,B 住同一房间有C 13A 33=18(种),故有60-18=42(种);当为(2,2,1)时,有C 25C 23A 22·A 33=90种,A ,B 住同一房间有C 23A 33=18(种),故有90-18=72(种).根据分类计数原理共有42+72=114(种),故选D. 答案:D11. 【答案】A 【解析】由题意得264,6nn ==,因此3363622166r r r r r r r T C C x y ---+==,从而333,42r r -==,因此展开式中3y 的系数是426615.C C ==选A. 12. 答案:B 解析:设(x -2)2 006=a 0x 2 006+a 1x 2 005+…+a 2 005x +a 2 006,则当x =2时,有a 0(2)2006+a 1(2)2 005+…+a 2 0052+a 2 006=0①;当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 0052+a 2 006=23 009②.①-②得2[a 1(2)2 005+…+a 2 005(2)]=-23 009,即2S =-23 009,∴S =-23 006.故选B. 二、填空题 13.【答案】65【解析】分二类:第一类,甲上7楼,有52种;第二类:甲不上7楼,有4×2×5种,52+4×2×5=65.14.解析:T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2. 答案:-215.解析:把8张奖券分4组有两种方法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,∴不同获奖情况种数为A 44+C 23A 24=24+36=60. 答案:6016.解析:∵(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,∴a 0=1,a 1=-C 15=-5,a 2=C 25=10,∴f (x )=10x 2-5x +1=10⎝ ⎛⎭⎪⎫x -142+38,∴函数f (x )的单调递减区间是⎝ ⎛⎦⎥⎤-∞,14.答案:⎝ ⎛⎦⎥⎤-∞,14三、解答题17、解 方法一 共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).方法二 将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个18.解 分三类,第一类.2人只划左舷的人全不选,有C 35C 35=100(种);第二类,2人只划左舷的人中只选1人,有C 12C 25C 36=400(种);第三类,2人只划左舷的人全选,有C 22C 15C 37=175(种).所以共有C 35C 35+C 12C 25C 36+C 22C 15C 37=675(种).位置放入隔板,将其分为七部分),有C 69=84(种)放法.故共有84种不同的选法.19.解:展开式的通项为2311()(0,1,22n rr r r n T C x r -+=-=,…,)n由已知:00122111()()()222n n n C C C -,,成等差数列,∴ 121121824n n C C n ⨯=+∴=,(1)5358T = (2)令1x =,各项系数和为125620.【解析】在展开式中,恰好第五项的二项式系数最大,则展开式有9项,∴ 8=n .∴ 中,令1=x(2)通项公式为 ,1,2, (8)整数,即8,5,2=r 时,展开式是有理项,有理项为第3、6、9项,即21.解 (1)分步完成:第一步:在4个偶数中取3个,有C 34种情况. 第二步:在5个奇数中取4个,有C 45种情况. 第三步:3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34·C 45·A 77=100 800(个).(2)上述七位数中,三个偶数排在一起的有C 34·C 45·A 55·A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34·C 45·A 33·A 44·A 22=5760(个). (4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空位(包括两端),共有C 34·C 45·A 44·A 35=28 800(个).22.【解析】(1)根据二项式的系数和即为2n ,可得25129n n =⇒=,因此可将()f x 变形为99()(23)[2(1)1]f x x x =-=--,其二项展开式的第1r +为9919(1)2(1)(09)r r r r r T C x r --+=--≤≤,故令7r =,可得727292(1)144a C =-=-;(2)首先令令901,(213)1x a ==⨯-=-,再令令2x =,得901239(223)1a a a a a +++++=⨯-=L ,从而1239012390()2a a a a a a a a a a ++++=+++++-=L L . (1)由二项式系数和为512知,9251229n n ==⇒= 2分,99(23)[2(1)1]x x -=-- ,∴727292(1)144a C =-=- 6分;(2)令901,(213)1x a ==⨯-=-,令2x =,得901239(223)1a a a a a +++++=⨯-=L ,∴1239012390()2a a a a a a a a a a ++++=+++++-=L L 12分.。

高二数学排列组合及二项式定理检测题

高二数学排列组合及二项式定理检测题

排列组合及二项式定理检测题一、选择题:本大题共10小题,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( ) A.82 B. 83 C. 1或83 D.1或822.1003)23(+x 展开所得关于x 的多项式中,系数为有理数的共有( )项A.50B.17C.16D. 153.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为( )A.1B.-1C.0D.24.对于二项式)()1(3+∈+N n x xn ,四位同学作了四种判断,其中正确的是( ) (1)存在+∈N n ,展开式中有常数项; (2)对任意+∈N n ,展开式中没有常数项; (3)对任意+∈N n ,展开式中没有x 的一次项; (4)存在+∈N n ,展开式中有x 的一次项。

A. (1)(3)B.(2)(3)C.(2)(4)D.(1)(4) 5已知naa )12(3+的展开式的常数项是第七项,则正整数n 的值为 ( ) A .7 B .8 C .9 D . 106.5555除以8,所得余数是( )A.7B. 1C.0D. 1-7.设n 为自然数,则nn n k n k n k n n n n C C C C )1(2)1(22110-++-++--- 等于 ( )A.n2 B.0 C.-1 D. 18.如图是某汽车维修公司的维修点环形分布图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行。

那么要完成上述调整,最少的调动件数(n 件配件从一个维修点调整到相邻维修点的调动件数为n )为( )A.18B.17C.16D. 159.某市为改善生态环境,计划对城市外围A 、B 、C 、D 、E 、F 六个区域(如图)进行治理,第一期工程拟从这六个区域中选取三个,根据要求至多有两个区域相邻,则不同的选取方案共有( )A.6B.10C.16D.1510.甲、乙、丙、丁与小强一起比赛围棋,每两人都要比赛一盘,到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁只赛了1盘,则小强已经赛了( ) A .4盘 B .3盘 C .2盘 D .1盘本大题共5小题,每小题5分,共25分。

排列组合与二项式定理综合专项训练(有答案)

排列组合与二项式定理综合专项训练(有答案)
A.15; B.18;C.30; D.36;
9、有6本不同的书,全部借给4人,每人至少1本,有多少种不同的借法( )
A.120种B.150种C.180种D.210种
10、将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有
A.30种B.90种C.180种D.270种
11、某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )
53、若 的展开式中的第5项等于 ,则 的值为( ).
A.1 B. C. D.
54、代数式 的展开式中,含 项的系数是
A.-30B.30C.70D.90
55、将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为
65、用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有()种。
A.24B.48C.72D.96
66、若 的展开式中 的系数是80,则实数a的值为
A.-2B.2 C. D.2
38、若 的展开式中 的系数是()
A. B. C. D.
39、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有
A. 种B. 种C. 种D. 种
40、有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是
(A)36种(B)108种(C)216种(D)432种
19、在 展开式中,含 的负整数指数幂的项共有( )
A.8项B.6项C.4项D.2项

高二数学排列组合二项式定理单元测试题(带答案)

高二数学排列组合二项式定理单元测试题(带答案)

排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出得四个选项中,只有一项就是符合题目要求得.)1、如图所示得就是2008年北京奥运会得会徽,其中得“中国印”得外边就是由四个色块构成,可以用线段在不穿越另两个色块得条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同得连接方法共有 ( ) A 、 8种 B 、 12种 C 、 16种 D 、20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同得工作,其中甲乙两名志愿者不能从事翻译工作,则不同得选排方法共有( )A.96种B.180种C.240种D.280种3、五种不同得商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同得选排方法共有( )A.12种B.20种C.24种D.48种4、编号为1、2、3、4、5得五个人分别去坐编号为1、2、3、4、5得五个座位,其中有且只有两个得编号与座位号一致得坐法就是( )A 、 10种B 、 20种C 、 30种D 、 60种5、设a 、b 、m 为整数(m >0),若a 与b 被m 除得得余数相同,则称a 与b 对模m 同余、记为a≡b (mod m )。

已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 得值可以就是( ) A 、2015 B 、2011 C 、2008 D 、20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多得前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队得积分可出现得不同情况种数为( ) A.22种 B.23种 C.24种 D.25种7、令1)1(++n n x a 为得展开式中含1-n x项得系数,则数列}1{na 得前n 项与为 ( )A.2)3(+n n B.2)1(+n n C.1+n n D.12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A.32B.1C.-1D.-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 得最小取值就是 ( )A 5B 6C 7D 810、四面体得顶点与各棱中点共10个点,在其中取4个不共面得点,则不同得取法共有( ) A.150种 B.147种 C.144种 D.141种11、两位到北京旅游得外国游客要与2008奥运会得吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同得排法共有 ( ) A.1440 B.960 C.720 D.480 12、若x ∈A 则x1∈A,就称A 就是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4}得所有非空子集中,具有伙伴关系得集合得个数为( )8 5二、填空题(每小题4分,共16分,把答案填在题中横线上) 13.四封信投入3个不同得信箱,其不同得投信方法有_________种.14、在72)2)(1(-+x x 得展开式中x 3得系数就是 .15、已知数列{n a }得通项公式为121+=-n n a ,则01n C a +12n C a + +33n C a +nn n C a 1+=16、对于任意正整数,定义“n 得双阶乘n!!”如下:对于n 就是偶数时,n!!=n ·(n -2)·(n -4)……6×4×2;对于n 就是奇数时,n!!=n ·(n -2)·(n -4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!得个位数就是0;④2005!!得个位数就是5.正确得命题就是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要得文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同得选法.那么该小组中男、女同学各有多少人?18、设m,n ∈Z +,m 、n ≥1,f(x)=(1+x)m +(1+x)n 得展开式中,x 得系数为19. (1)求f(x)展开式中x 2得系数得最值;(2)对于使f(x)中x 2得系数取最小值时得m 、n 得值,求x 7得系数. 19、7位同学站成一排.问:(1)甲、乙两同学必须相邻得排法共有多少种? (2)甲、乙与丙三个同学都相邻得排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头与排尾得排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起得排法有多少种? 20、已知()2n x x+得展开式中前三项得系数成等差数列.(Ⅰ)求n 得值; (Ⅱ)求展开式中系数最大得项. 21、由0,1,2,3,4,5这六个数字。

排列组合二项式定理综合测试(含详细解答)

排列组合二项式定理综合测试(含详细解答)

排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。

排列组合、二项式定理典型题(含答案)

排列组合、二项式定理典型题(含答案)

排列、组合、二项式定理典型题一、选择题(共24题)1.(北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A )36个 (B )24个 (C )18个(D )6个解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有33A 种方法(2)3个数字中有一个是奇数,有1333C A ,故共有33A +1333C A =24种方法,故选B2.(福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有3374A A -=186种,选B.3.(湖北卷)在24(x -的展开式中,x 的幂的指数是整数的项共有 A .3项 B .4项 C .5项 D .6项解:72424312424rr rr rr T C x C x --r +=(=(-1),当r =0,3,6,9,12,15,18,21,24时,x 的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C4.(湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种B.36种C.42种D.60种解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有123436C A ⋅=种方案,二是在三个城市各投资1个项目,有3424A =种方案,共计有60种方案,选D.5.(湖南卷)若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 A .-2 B . 22 C. 34 D . 2解析:5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 6.(湖南卷)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24解析:先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.(江苏卷)10)31(x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6 【思路点拨】本题主要考查二项式展开通项公式的有关知识.【正确解答】1031⎪⎭⎫ ⎝⎛-x x的展开式通项为31010102121011()()33r r r r r r C C x x ---=,因此含x 的正整数次幂的项共有2项.选B【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别. 8.(江西卷)在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( )A.23008B.-23008C.23009D.-23009 解:设(x)2006=a 0x 2006+a 1x 2005+…+a 2005x +a 2006则当x时,有a 0)2006+a 1)2005+…+a 2005)+a 2006=0 (1) 当x时,有a 0)2006-a 1)2005+…-a 2005)+a 2006=23009 (2) (1)-(2)有a 1)2005+…+a 200523009÷2=-23008,故选B9.(江西卷)在2nx ⎫⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3B.6C.9D.12解:n 3rrn rr r r 2r 1nn r rn 2T C 2C x x n 3r 02C 60⨯⎧⎨⎩--+=()=-==,由r r n n 3r 02C 60⎧⎨⎩-==解得n =6故选B10.(辽宁卷)1234566666C C C C C ++++的值为( )A.61 B.62C.63 D.64解:原式=62262-=,选B11.(全国卷I )设集合{}1,2,3,4,5I =。

排列组合二项式定理练习1(含答案)

排列组合二项式定理练习1(含答案)

一、选择题1.由太原去北京如果一天之内火车有4个班次,汽车有17个班次,飞机有6个班次,那么,每天由太原去北京有( )种不同的方法.A 4B 17C 27D 4082. 某班有男生26人,女生20人,若要选男、女生各1人作为学生代表参加学校伙食管理委员会,共有( )种选法.A 520B 26C 20D 46 3. 6个朋友聚会,每两人握手一次,一共握手( )次. A 30 B 20 C 15 D 64. 从5名学生中,选出2名学生, 担任两项不同的工作,有( )种不同的选法 A 40 B 20 C 7 D 25. 如果7名学生排成一列照集体照,有两名学生必须要相邻,那么共有( )种不同的排法. A 360 B 720 C 1440 D 28806. (1-x )9的二项式展开式中第4项的系数是( ) A -84B -126C 84D 1267. 二项式(x -3y )5的展开式中,第4项的二项式系数为( ) A .-3240 B .3240 C .-10 D .10 8. 二项式(3x -2y )6的展开式中,各项的系数之和为( ) A .-1B .1C .-64D .649. 满足等式65181717C C C m =+的m 的值为( )A .6B .12C .5D .6或1210. 平面内有12个点,其中任意3点都不在同一条直线上,以任意3点为顶点画三角形,则可画出的三角形 ( ) 个A .36B .219C .220D .1320 二、判断题:1.计算05C的值为0.()2.用数字1,2,3可以组成27个三位数. ()3. 6个朋友每两人互通一次电话,一共需要通15次电话.()4.从5名学生中,选出2名学生去参加一个调查会,有20种不同的选法. ( ) .5. 5个人争夺3项比赛冠军,每项比赛无并列冠军,冠军得主共有35种情况.()6.抛掷一枚硬币,会出现正面向上或反面向上两种结果,现将一枚硬币抛3次可能出现的结果共有6种.()7. 5支球队进行单循环足球比赛的分组情况,属于组合.()8. 平面上有7个不同的点,其中任何3点不在同一直线上.如果任取3点作为三角形顶点,那么一共可作37C个三角形. ()9.二项式(x-3y)5的展开式中,第4项的二项式系数为-10.()10.将3个球放入2个不同的盒子中,每个盒子至少一个球,共有12种放法. ()三、填空题1.有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有______种不同的报名方法.2.某商场有4个门,一人从一门进,从另一门出,则不同的进出走法有______种.3.2Pn=30,则n=_____.4.5名男生和3名女生站成一排,女生不相邻且不站在排头的站法有_______种.5.二项式52xx⎛⎫-⎪⎝⎭的展开式中第5项的系数为_______.三、解答1. 10件产品中有2件次品,从中任意抽取2件产品进行检查.问(1)一共有多少种不同的抽取方法?(2)抽取的2件产品中,恰有一件是次品的不同抽取方法有多少种?(3)抽取的2件产品中,至少有一件是次品的不同抽取方法有多少种?2. 求10+的二项展开式的常数项. 一、选择题1. C 【解析】由太原去北京共有三类方案.第一类是乘火车,有4种方法;第二类是乘汽车,有17种方法;第三类是乘飞机,有6种方法.并且,每一种方法都能够完成这件事(从太原去北京).所以每天从太原去北京的方法共有417627++=(种).故选C2. A 【解析】这件事可以分成两个步骤完成: 第一步:从26名男生中选出1人,有126k =种选法; 第二步:从20名女生中选出1人,有220k =种选法. 由分步计数原理有2620520N =⨯=(种). 即共有520种选法.故选A3. C 【解析】握手无先后,所以是组合问题, 一共握手2665C 1521⨯==⨯.次. 故选C 4. B 【解析】不同的选法共有25P 5420=⨯=(种).故选B5. C 【解析】分成两步来排队.第一步,将这两个人的顺序排好;第二步,将这两个人作为一个总体,与剩下的5名学生一起排队.2626P P 216543211440⋅=⨯⨯⨯⨯⨯⨯⨯=(种).故选C6. A 【解析】∵T 4=T 3+1=39C (-x )3=-84x 3, ∴系数为-84,故选A .7.D 【解析】第4项的二项式系数为35C =10,故选D .8. B 【解析】 二项式(3x -2y )6中令x =y =1,可得各项的系数之和为1,故选B .9. D 【解析 】 由组合数的性质公式,得656171718C C C +=,所以61818C C m =故,m =6或m =12. 故选D .10.C 【解析】因任意3点都不在同一条直线上,故从12个点中任取3点可组成一个三角形,所以可画出的三角形的个数为312C =220,故选C . 二、判断题:1.【解析】规定0C n =1.故本题×.2.【解析】个位、十位、百位,每一个数位都有3种选择,故共可以组成3×3×3=27个三位数. . 故本题√.3.【解析】每两人互通一次电话是有先后顺序的,所以是排列问题, 一共通26P 6530=⨯=次电话. 故本题×.4. 解析】从5名学生中,选出2名学生去参加一个调查会,选出2名学生后完成的任务是一样的.所以这是一个组合问题.共有2554C 1021⨯==⨯种不同的选法. 故本题×. 5.【解析】每一项比赛冠军得主都有5种可能,故冠军得主共有35种情况. 故本题√.6. 【解析】现将一枚硬币抛3次,每一次都有两种情况.故共有2×2×2=8种情况. 故本题×.7.【解析】本题√.8.【解析】任取三点画三角形,是无顺序的,属于组合问题.本题√. 9.【解析】第4项的二项式系数为35C =10. 故本题×.10.【解析】将3个球放入2个不同的盒子中,每个盒子至少一个球,所以一定有一个盒子放2个球.故先将球分成两组,再把球放入盒子中,故共有2232C P 6=种不同的放法. 故本题×.三、填空题1.【解析】34=81(种).2.【解析】 由分步计数原理可知,不同的走法有N =4×3=12(种).3.【解析】∵2P n =30∴n (n -1)=30,即n 2-n -30=0, ∴(n -6)(n +5)=0,由此可得n =6或n =-5(舍去),∴n =6.4.【解析】用插空法,先排男生有55P 种排法,再从男生之间的4个空中排入3名女生有34P 种排法.∴共有5354P P =2880(种)排法.5.【解析】T 5=T 4+1=444433552C =(2)C =80x x x x --⎛⎫-- ⎪⎝⎭,∴第5项的系数为80 三、解答1.【解析】(1)不同的抽取方法的总数为从10件产品中取出件的组合数210109C 4521⨯==⨯.(2)分成两步来完成.第一本从2件次品中抽出1件,第二步从8件正品中抽出的1件.由分步计数原理知,恰有1件次品的不同抽取方法的种数为1128C C 2816⋅=⨯=.(3)从任意抽取不同的2件产品的抽取方法总数中,减去2件全是正品的抽取方法种数,就是至少有一件是次品的不同抽取方法种数.即22108C C 452817-=-=. 2.【解析】 由于101022110101C ()C m mmmm m m T x x x---+==(),故1002m m--=2.解得m =5. 所以二项式展开式中第6项是常数项,为51010987625254321C ⨯⨯⨯⨯==⨯⨯⨯⨯.。

高二数学排列组合二项式定理单元测试题(带答案)

高二数学排列组合二项式定理单元测试题(带答案)

排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。

已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a + +33n C a +n n n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知(nx 的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

专题05排列组合与二项式定理小题综合(原卷版)

专题05排列组合与二项式定理小题综合(原卷版)

专题05 排列组合与二项式定理小题综合1.分类计数原理(加法原理) 12n N m m m =+++.2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯.3.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.4.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).5.排列数与组合数的关系m m n n A m C =⋅! .6.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.7.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.8.二项式定理 nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;冲刺秘籍二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,, =.一、单选题1.(2023·安徽亳州·安徽省亳州市第一中学校考模拟预测)如图,小明从街道的A 出发,选择一条最短路径到达C 处,但B 处正在维修不通,则不同的路线有( )种A .66B .86C .106D .1262.(2023·吉林长春·东北师大附中校考模拟预测)2022年11月30日,神舟十四号航天员陈冬、刘洋、蔡旭哲和神舟十五号航天员费俊龙、邓清明、张陆顺利“会师太空”,为记录这一历史时刻,他们准备在天和核心舱合影留念.假设人站成一排,要求神舟十四号3名航天员互不相邻且刘洋不站在两端,不同站法共有( ) A .36种B .48种C .72种D .144种3.(2023·广东深圳·统考二模)现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .184.(2023·河北沧州·校考模拟预测)()52x x y -+的展开式中52x y 的系数为( ) A .10-B .10C .30-D .305.(2023·辽宁·辽宁实验中学校考模拟预测)2023年的五一劳动节是疫情后的第一个小长假,公司筹备优秀员工假期免费旅游.除常见的五个旅游热门地北京、上海、广州、深圳、成都外,淄博烧烤火爆全国,山东也成为备选地之一.若每个部门从六个旅游地中选择一个旅游地,则甲、乙、丙、丁四个部门至少有三个部门所选旅游地全不相同的方法种数共有( ) A .1800B .1080C .720D .3606.(2023·河北·校联考一模)为了提高同学们对数学的学习兴趣,某高中数学老师把《周髀算经》、《九章算冲刺训练术》、《孙子算经》、《海岛算经》这4本数学著作推荐给学生进行课外阅读,若该班A,B,C三名同学有2名同学阅读其中的2本,另外一名同学阅读其中的1本,若4本图书都有同学阅读(不同的同学可以阅读相同的图书),则这三名同学选取图书的不同情况有()A.144种B.162种C.216种D.288种7.(2023·河北衡水·衡水市第二中学校考三模)第19届亚运会将于2023年9月在杭州举行,在杭州亚运会三馆(杭州奥体中心主体育馆、游泳馆和综合训练馆)对外免费开放预约期间,甲、乙、丙、丁4人预约参观,且每人预约了1个或2个馆,则这4人中每个馆恰有2人预约的不同方案有()A.76种B.82种C.86种D.90种8.(2023·湖南益阳·安化县第二中学校考三模)某个单位安排7位员工在“五·一”假期中1日至7日值班,每天安排1人值班,且每人值班1天,若7位员工中的甲、乙排在相邻的两天,丙不排在5月1日,丁不排在5月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1200种9.(2023·湖北武汉·统考模拟预测)2023年武汉马拉松于4月16日举行,组委会决定派小王、小李等6名志愿者到甲乙两个路口做引导员,每位志愿者去一个路口,每个路口至少有两位引导员,若小王和小李不能去同一路口,则不同的安排方案种数为()A.40B.28C.20D.1410.(2023·浙江·校联考模拟预测)某校开设A类选修课4门,B类选修课2门,每位同学从中选3门.若要求两类课程中都至少选一门,则不同的选法共有()A.32种B.20种C.16种D.14种11.(2023·河北·校联考三模)在我国古代,杨辉三角是解决很多数学问题的有力工具,像开方问题、数列问题、网格路径问题等.某一城市街道如图1所示,分别以东西向、南北向各五条路组成方格网,行人在街道上行走(方向规定只能由西向东、由北向南前行).若从这个城市的最西北角A处前往最东南角B处,则有70种走法,如图2.现在由平面扩展到空间,即立体交通方格网的路径问题,如图3,则从点P到点Q 的最短距离走法种数为()A .60B .70C .80D .9012.(2023·浙江·校联考模拟预测)某校银杏大道上共有20盏路灯排成一列,为了节约用电,学校打算关掉3盏路灯,头尾两盏路灯不能关闭,关掉的相邻两盏路灯之间至少有两盏亮的路灯,则不同的方案种数是( )A .324B .364C .560D .680二、多选题13.(2023·江苏南京·南京市第一中学校考模拟预测)下列关于排列组合数的等式或说法正确的有( )14.(2023·山东菏泽·山东省鄄城县第一中学校考三模)已知多项式220121(12)(13),19m n n x x a a x a x a x a --=+++⋅⋅⋅+=-,则( )A .12m n +=B .12324n a a a a +++⋅⋅⋅+=C .24a =-D .12323368n a a a na +++⋅⋅⋅+=-三、填空题202320230122023,a x T a a a a ++=++++,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合与二项式定理的综合应用
1.()()5121x x -+的展开式中3x 的系数为( )
A .10
B .-30
C .-10
D .-20
2.若()()72801281212x x a a x a x a x +-=++++…,则0127a a a a ++++…的值为( )
A .2-
B .3-
C .253
D .126
3.()()512x x +-的展开式中2x 的系数为( )
. A .25 B .5 C .-15 D .-20
4.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )
A .40种
B .60种
C .100种
D .120种
5.从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参加C ,D 两科竞赛,则不同的参赛方案种数为( )
6.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )
A.828
9A A B.82810A A C.8287A A D.8286A A 7.小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个.小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿最大的一个,则梨子的不同分法共有( )
A .96种
B .120种 种 D .720种
8.已知身穿红,黄两种颜色衣服的各两人,身穿蓝衣服的有1人,现将五人排成一列,要求穿相同颜色衣服的人不能相邻,则不同的排法有( ) 种 种 种 种
9.3n
x ⎫+⎪⎭的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,且72A B +=,则展开式中常数项为( )
10.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取两个数字,一共可以组成没有重复数字的五位偶数的个数为( )
A .2880
B .7200
C . 1440
D .60
11.某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有( )
A .10种
B .20种
C .30种
D .40种
12.51
()(21)ax x x
+-的展开式中各项系数的和为2,则该展开式中常数项为( )
A .-20
B .-10
C .10
D .20
13.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )
A .12种
B .10种
C .9种
D .8种
14.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案种数为( )
A .150
B .240
C .60
D .120
15.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )
种 种 种 种
16.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )
A .240种
B .288种
C .192种
D .216种
17.三位老师和三位学生站成一排,要求任何两位学生都不相邻,则不同的排法总数为 .
18.在二项式252()x x -的展开式中,x 的一次项系数为 .(用数字作答)
19.在送医下乡活动中,某医院安排甲、乙、丙、丁、戊五名医生到三所乡医院工作,每所医院至少安排一名医生,且甲、乙两名医生不安排在同一医院工作,丙、丁两名医生也不安排在同一医院工作,则不同的分配方法总数为 .
20.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)
21.61(2)x x
-的展开式中常数项是___________.
22.在(1+x+x 2)(1-x)6的展开式中,x 6的系数为
23.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法______种.
24.(必须列式,不能只写答案,答案用数字表示)有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)求共有多少种放法;
(2)求恰有一个盒子不放球,有多少种放法;
(3)求恰有两个盒内不放球,有多少种放法;
25.某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种
(2)求其中的甲乙两人不相邻的站法有多少种
(3)求甲不站最左端且乙不站最右端的站法有多少种
参考答案1.C
2.C
3.C
4.B
5.C
6.A
7.C
8.C
9.B
10.A
11.C
12.C
13.A
14.A
15.B
16.D
17.144
18.80
19 84
20.14
21.-160
22.10
23.15
24.(1)256 (2)144 (3)84
25.(1)48(2)72(3)78。

相关文档
最新文档