二极管伏安特性曲线测量方法

合集下载

二极管的伏安特性曲线实验报告

二极管的伏安特性曲线实验报告

二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。

p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。

当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。

实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。

实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。

当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。

二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。

实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。

实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。

伏安法测二极管的伏安特性(精)

伏安法测二极管的伏安特性(精)

3.R0为限流器(即电阻箱),改变电阻箱的阻值可改变正向电 流值。R1为限流器,R2为分压器。改变R1和R2可输出不 同的电压值,并由电压表指示,目的是与二极管两端的电 压进行比较。
4. 通常R1值越大,可测量的UD越小,R1值很小甚至为零, 可测量较大的UD值。
实验步骤和要求
1、根据图8-2连接线路,并预置R0为最大值,R1为最大 值,R2的输出为零,注意电表的极性!
2、接通电源,注意观察有无异常情况发生,否则马上 切断电源,根据现象检查故障。
3、选择各种值UD (0.1~0.6 V),对于每种UD值,调节 R0,使检流计指示为零,记下电流表的电流值. 4.根据测量数据,绘出二极管正向伏—安特性曲线
实验8 伏安法测二极管的伏—安特性
伏安法是测绘电阻元件伏安特性曲线的最简单的实验 方法。为了使测量更为精确,还可以利用电位差计、示波 器或电桥等检测仪器测量电阻的伏安特性曲线。 非线性电阻的伏安特性所反映的规律,总是与特定的一些 物理过程相联系的,对于非线性电阻特性和规律的深入分 析,有利于对有关物理过程的理解和认识。 实验目的 1、掌握分压器和限流器的使用方法。 2、熟悉测量伏安特性的方法。 3、了解二极管的正向伏安特性。
实验仪器和用具 器、 可变电阻箱、检流计、开关、待测二极管

图8-1 二极管的伏安特性
图8-2 伏安法测量二极管的特性电路
1. 当检流计指零时,电压表指示着二极管两端的正向电压值,
电流表A指示着流过二极管的正向电流 2. 如果将稳压电源的极性反向连接,按上述相同方法测量, 也可得到UD与ID的许多组数据,但这些数据表征着二极管 的反向特性。

实验1 二极管伏安特性曲线的测试

实验1  二极管伏安特性曲线的测试

实验1 二极管伏安特性曲线的测试
一、实验目的:
学会使用电流表和电压表(或万用表)测试二极管的伏安特性。

二、实验器材
稳压电源、万用表(两个)、二极管(IN4007、2AP9)、电位器、电阻、实验电路板。

三、实验内容和步骤
1、测试二极管的正向特性
(1)按实验线路图1连接好电路。

(2)接通电源,调节R1的值,按表1所列的数据逐渐增大二极管两端的电压。

测出对应的流过二极管的正向电流I V,把测量结果填入表1中
(3)按表1中记录数据,在直角坐标系上逐点描出两种二极管的正向特性曲线。

图1
正向电压(V) 0 0.2 0.4 0.6 0.8 1 2 3
正向电流(mA)1N4007 2AP9
2、测试二极管的反向特性
(1)按实验线路图2连接好电路(电压表与二极管并联)
(2)输出电压从0V开始起调,按每2V间隔依次提高加在二极管两端的反向电压,并测量不同反压时的反向漏电流并将其数据记入表2中(测量时要注意万用表的量程和极性)。

(3)按表2中记录数据,在同一个直角坐标系上描出两种二极管的反向特性曲线。

图2
反向电压(V)0 2 4 6 8
1N4007
反向电流(μA)
2AP9。

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告实验题目:二极管伏安特性曲线测量实验内容:1.先搭接一个调压电路,实现电压1-5V连续可调;2.在面包板上搭接一个测量二极管伏安特性曲线的电路;3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好;4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输入输出波形;5.用excel或matlab画二极管的伏安特性曲线。

实验环境:数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。

实验原理:对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。

为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。

调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。

电路图如下所示:用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。

电路图如下:实验记录及结果分析:得到二极管的伏安特性曲线如下:结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。

2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):分析:二极管在交流电中呈现单向导通性,所以当电源信号为正向电压时,二极管导通,呈现正弦波形信号,当电源信号为反向电压时,二极管处于截止状态,此时无信号输出,如波形图所示。

实验总结:这一次的实验,让我们更加深入地了解的二极管的性质,通过实验的方式,加深了对二极管伏安特性的理解。

实验4 二极管伏安特性曲线的测量

实验4 二极管伏安特性曲线的测量

实验4 二极管伏安特性曲线的测量
一.实验目的
学会用万用表在面包板上测量二极管的电压和电流
学会用信号发生器为二极管输入信号以及用示波器对信号进行测量二.实验设备
直流电压源(5v)
示波器(RIGOL DS105VE)
函数信号发生器(EE1640C 中文版)
数字万用表(VC890D)
100Ω电阻
电位器
三.实验过程
1.先用万用表检验电位器的好坏
2.用万用表检验二极管的好坏并找出二极管的正负极
3.在面包板上搭建实验电路
4.调节电位器,分别测出电压和电流
四.实验电路及数据
电压(V)0 0.15 0.24 0.38 0.52 0.59 0.62 0.63 电流(mA)00 0 0.03 0.5 2.8 4.0 7.2
五.二极管单项导通性的验证
1.按图连接好电路
2.打开示波器输入正弦信号
3.在示波器上观察波形并记录
Vpp(V)Vmax(V)Vmin(V)频率(hz)CH1 3.02 +1.54 -1.48 1000 CH2 1.46 0 -1.46 1000
六.实验总结
1.检查电位器时观察电位器转动时示数是否均匀变化,否则电位器是无效的
2.测量一组电压后及时测量电流
3.在电流电压的测量切换间注意万用表表头和档位的切换。

实验3-1 伏安法测晶体二极管特性.

实验3-1 伏安法测晶体二极管特性.

实验3-1 伏安法测晶体二极管特性给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。

通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。

这种研究元件特性的方法称为伏安法。

伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。

伏安法的主要用途是测量研究线性和非线性元件的电特性。

非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。

【实验目的】1.具体了解和分析二极管的伏安特性曲线。

2.学会分析伏安法的电表接入误差,正确选择电路使其误差最小。

3.学会电表、电阻器、电源等基本仪器的使用。

【仪器用具】安培计、伏特计、变阻器、转盘电阻箱、甲电池、待测二极管、导线、双刀双掷倒向开关、单刀开关【实验原理】半导体二极管的核心是一个PN结,这个PN结处在一小片半导体材料的P区与N区之间(如图3-1-1),它由这片材料中的P型半导体区域和N型半导体区域相连所构成。

连接P 型区域的引出线称为P极,连接N型区域的引出线称为N极。

当电压加在PN结上时,若电压的正端接在P极上,电压的负端接在N极上(如图3-1-2),称这种连接为“正向连接”;反之,档PN结的两极反向连接到电压上时为“反向连接”。

正向连接时,二极管很容易导图3-1-1 图3-1-2通,反向连接时,二极管很难导通。

我们称二极管的这种特性为单向导电性。

实验工作中往往利用二极管的单向导电性进行整流、检波、作电子开关等。

二极管电流随外加电压变化的关系曲线称为伏安特性曲线。

二极管的伏安特性曲线如图3-1-3和图3-1-4所示。

这两个图说明了二极管的单向导电性。

由图可见,在正向区域,锗管和硅管的起始导通电压不同,电流上升的曲线斜率也不同。

图3-1-3 图3-1-4利用绘制出的二极管的伏安特性曲线,可以计算出二极管的直流电阻及表征其它特性的某些参数。

测定半导体二极管的伏安特性

测定半导体二极管的伏安特性

测定半导体二极管的伏安特性1背景知识电子器件的伏安特性电子器件的伏安特性是指流过电子器件的电流随器件两端电压的变化特性测定出电子器件的伏安特性,对其性能了解与其实际应用具有重要意义。

在生产和科研中,可用晶体管特性图示仪自动测绘其曲线,在现代实验技术中,可用传感器及计算机进行测定给出测量结果。

如果手头没有现成的自动测量仪器,提出应用电流表和电压表进行人工测量的方法,进行应急的测量是很有用的。

半导体二极管半导体二极管是具有单向导电性的非线性电子元件,其电阻值与工作电流(或电压)有关。

二极管的单向导电性就是PN结的单向导电性:PN结正向偏置时,结电阻很低,正向电流甚大(PN结处于导通状态);PN结反向偏置时,结电阻很高,反向电流很小(PN结处于截止状态),这就是PN结的单向导电性。

(正向偏置);(反向偏置)。

二极管的结构:半导体二极管是由一个PN结,加上接触电极、引线和管壳而构成。

按内部结构的不同,半导体二极管有点接触和面接触型两类,通常由P区引出的电极称为阳极,N区引出的电极称为阴极。

二极管的伏安特性及主要参数:二极管具有单向导电性,可用其伏安特性来描述。

所谓伏安特性,就是指加到二极管两端的电压与流过二极管的电流的关系曲线,如下图所示。

这个特性曲线可分为正向特性和反向特性两个部分。

图1二极管的伏安特性曲线(1)正向特性当二极管加上正向电压时,便有正向电流通过。

但是,当正向电压很低时,外电场还不能克服PN结内电场对多数载流子扩散运动所形成的阻力,故正向电流很小,二极管呈现很大的电阻。

当正向电压超过一定数值(硅管约,锗管约)以后,内电场被大大削弱,二极管电阻变得很小,电流增长很快,这个电压往往称为阈电压UTH(又称死区电压:0-U0)。

二极管正向导通时,硅管的压降一般为,锗管则为。

导通以后,在二极管中无论流过多大的电流(当然是允许范围之内的电流),在极管的两端将始终是一个基本不变的电压,我们把这个电压称为二极管的“正向导通压降”。

晶体二极管的伏安特性曲线

晶体二极管的伏安特性曲线

晶体二极管的伏安特性曲线二极管最重要的特性就是单向导电性,这是由于在不同极性的外加电压下,内部载流子的不同的运动过程形成的,反映到外部电路就是加到二极管两端的电压和通过二极管的电流之间的关系,即二极管的伏安特性。

在电子技术中,常用伏安特性曲线来直观描述电子器件的特性。

根据图1的试验电路来测量,在不同的外加电压下,每转变一次RP的值就可测得一组电压和电流数据,在以电压为横坐标,电流为纵坐标的直角坐标系中描绘出来,就得到二极管的伏安特性曲线。

图1 测量晶体二极管伏安特性a) 正向特性b) 反向特性图2 2CZ54D伏安特性曲线图3 2AP7伏安特性曲线图2和图3分别表示硅二极管2CZ54D和锗二极管2AP7的伏安特性曲线,图中坐标的右上方是二极管正偏时,电压和电流的关系曲线,简称正向特性;坐标左下方是二极管反偏时电压和电流的关系曲线,简称反向特性。

下面我们以图1为例加以说明。

当二极管两端电压为零时,电流也为零,PN结为动态平衡状态,所以特性曲线从坐标原点0开头。

(一)正向特性1. 不导通区(也叫死区)当二极管承受正向电压时,开头的一段,由于外加电压较小,还不足以克服PN结内电场对载流子运动的阻挡作用,因此正向电流几乎为零,二极管呈现的电阻较大,曲线0A段比较平坦,我们把这一段称作不导通区或者死区。

与它相对应的电压叫死区电压,一般硅二极管约0.5伏,锗二极管约0.2伏(随二极管的材料和温度不同而不同)。

2. 导通区当正向电压上升到大于死区电压时,PN结内电场几乎被抵消,二极管呈现的电阻很小,正向电流增长很快,二极管正向导通。

导通后,正向电压微小的增大会引起正向电流急剧增大,AB 段特性曲线陡直,电压与电流的关系近似于线性,我们把AB 段称作导通区。

导通后二极管两端的正向电压称为正向压降(或管压降),也近似认为是导通电压。

一般硅二极管约为0.7伏,锗二极管为0.3伏。

由图可见,这个电压比较稳定,几乎不随流过的电流大小而变化。

实验二十四二极管伏安特性的测定

实验二十四二极管伏安特性的测定

实验三十二 二极管伏安特性的测定【实验目的】1.熟悉测量伏安特性的方法。

2.了解二极管的正、反向伏安特性。

【实验仪器】直流电源、电压表、毫安表、微安表、滑线变阻器、二极管、开关等。

【实验原理】通过一个元件的电流随元件上的外加电压而变化,这种变化关系如以电压为横坐标、电流为纵坐标可得出其关系曲线,该曲线就称为这一元件的伏安特性曲线。

通过元件中的电流I 随外加电压U 的变化可用公式I =U/R 表示,其中比例系数1/R 就是该元件的电导。

如果R 为定值,则伏安特性曲线是一条直线,具有这类性质的元件称为线性电阻元件,它们是严格服从欧姆定律的;如果R 不是定值,而是随着外加电压的变化而变化,则伏安特性是一条曲线,这类元件称为非线性电阻元件。

常用的晶体二极管就是非线性电阻元件,其阻值不仅与外加电压的大小有关,而且还与方向有关。

当二极管正极接高电势端,负极接低电势端时,电流从二极管的正极流入,负极流出,这时的伏安特性称为正向特性;反之,称为反向特性。

用伏安法测量二极管的特性曲线时,线路一般采用两种方法,即外接法(见图32-1a )和内接法(见图32-1b )。

由于测量电表内阻的存在,不管采用哪一种方法都会给测量结果带来系统误差。

下面将分析误差产生的原因和大小,以便在测量时合理选择线路接法。

在图32-1a 所示的外接法中,由于采用这一接法而产生的系统误差就是电压表中流过的电流I V ,并且VD D D V R U I I I I =∆=-= (32-1) 或写成相对误差的形式VD D D R R I I =∆ (32-2) 显然,电压表内阻R V 越大,二极管内阻R D 越小,电流测量产生的系统误差相对越小。

在图32-1b 所示的内接法中,由此而带来的系统误差就是电流表两端的电压U A ,并且D A D D A I R U U U U =∆=-= (32-3)其相对误差为DA D D R R U U =∆ (32-4) 显然,电流表内阻R A 越小,二极管内阻R D 越大,电压测量产生的系统误差相对越小。

实验3电路元件特性曲线的伏安测量法

实验3电路元件特性曲线的伏安测量法

实验3电路元件特性曲线的伏安测量法实验3 电路元件特性曲线的伏安测量法⼀、实验⽬的1.了解⾮线性元件的伏安特性;2.学习⾮线性元件伏安特性的测试⽅法;3.掌握绘制曲线的⽅法。

⼆、实验原理1.了解晶体⼆极管和稳压⼆极管的伏安特性曲线。

2.晶体⼆极管是由⼀个PN 结,加相应的电极引线和管壳封装⽽成,了解⼆极管的死区、门限电压、导通电压、击穿电压和反向电流,根据其来确定实验时电压的数据范围。

⼆极管正向电阻和反向电阻区别很⼤,电阻值随着流过电流的⼤⼩⽽变化,伏安特性曲线不对称于坐标原点,具有单向导向性。

3.稳压⼆极管利⽤反向击穿特性,稳压范围从1v 到⼏百伏。

了解稳压⼆极管的主要参数,稳定电压、最⼤允许耗散功率(超过此功率稳压⼆极管会因过热⽽烧坏)、最⼤稳定电流和最⼩稳定电流(反向击穿区起始电流)。

稳压⼆极管的正向伏安特性类似于普通晶体⼆极管,反向伏安特性则不同。

稳定电压⼀般为-5V ,电流突增,端电压维持恒定。

4.了解曲线绘制的知识。

三、主要仪器设备元器件板、直流电源、直流电压表、电流表、数字万⽤表四、操作⽅法和实验步骤1.按照接线图连好各元器件(先将⼆极管正向连接),将电阻箱电阻调到零时,按要求调节电压并记录⼀系列数据,再将⼆极管⽅向连接,按要求调节记录数据。

2.调节电阻箱电阻,按步骤⼀测量。

3.再测量稳压⼆极管,将稳压⼆极管代替⼆极管,再按照步骤⼀测量正反向。

4.将稳压源⽤恒流源代替,再做步骤三。

4.将数据⽤计算机软件绘制成曲线图。

五、实验数据记录和处理1.逐点伏安测量法的接线图:装订线2.数据记录和曲线图表7-3-1 逐点伏安测量法在恒压源下的测量数据(晶体⼆极管)电阻为不为零表7-3-3 逐点伏安测量法在恒压源下的测量数据(稳压⼆极管)电阻不为零晶体⼆极管在两种情况下的伏安特性曲线:稳压⼆极管的伏安特性曲线:表7-3-4 逐点伏安测量法在恒流源下的测量数据(稳压⼆极管)以上数据说明⽤电流源也是可以测得稳压管伏安特性数据的,且数据与电压源测得的接近。

二极管伏安特性曲线测量

二极管伏安特性曲线测量

二极管伏安特性曲线测量
二极管又称晶体二极管。

它是一种能够单向传导电流的电子器件。

在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。

一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。

在其界面的两侧形成空间电荷层,构成自建电场。

当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。

外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。

这个不能使二极管导通的正向电压称为死区电压。

外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。

由于反向电流很小,二极管处于截止状态。

这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。

外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。

面包板是专为电子电路的无焊接实验设计制造的。

由于各种电子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。

分类:单面包板,组合面包板,无焊面包板。

内部结构:面包板上下部分内部连线和中间部分不同。

使用:不用焊接和手动接线,将元件插入孔中就可测试电路及元件,使用方便。

使用前应确定哪些元件的引脚应连在一起,再将要连接在一起的引脚插入同一组的5个小孔中。

介绍测二极管伏安特性的几种方法

介绍测二极管伏安特性的几种方法

收稿日期:2004—05—10作者简介:王春会(1974-),女,辽宁朝阳市人,讲师,主要从事应用电子教学研究.【学术研究】介绍测二极管伏安特性的几种方法王春会1,佟瑞栋2(11朝阳师专,辽宁朝阳122000;21朝阳市第六中学,辽宁朝阳122000) 摘 要:通过对电表内接法、外接法、补偿法、电桥法、等效法等测二极管的伏安特性曲线的研究,评价出测量二极管伏安特性曲线的最佳方法.关键词:V -I 特性曲线;电流表;电压表;检流计中图分类号:O44116 文献标识码:A 文章编号:1008-5688(2006)03-0008-02测量二极管的伏安特性曲线是大学物理实验的重要内容之一.教学中通常使用电流表内接法和外接法,此外还有补偿法、电桥法和等效法等.本文就这几种测量方法的优缺点作一比较.1 电流表内接法如图1所示(开关K 打向1位置),这时电流表的读数I 为通过二极管D 的电流I D ;电压表上的读数V 不是二极管两端的电压V D ;而是二极管两端电压和电流表两端电压之和(比实际值偏大),V =V D +V A .如果V 、I 写成欧姆定律形式有: V =I (R D +R A ) (1)用电压表和电流表读数V 、I 作伏安特性曲线图,从(1)式可以看出,它不是二极管的伏安特性曲线,而是电流表和二极管串联后共同的伏安特性曲线.这种方法测量二极管的伏安特性曲线,存在理论误差.而且在测量时随着测量电压V 的提高,二极管的等效电阻R D 也将减小,R A 的作用加大,相对误差增大.但这种测量方法电路简单,操作方便.2 电流表外接法如图1所示(开关K 打向2位置),这时电压表的读数V 等于二极管的两端电压V D ;电流表的读数I 不是流过二极管的电流I D ,而是流过二极管和电压表电流之和(比实际偏大),即I =I D +I V .把V 、I 写成欧姆定律形式有:I =V R V +V R D V =I ・11R V+1R D =I・(R V ∥R D ) (2)用V 、I 作伏安特性曲线,从(2)式可看出,它不是二极管的伏安特性曲线,而是二极管和电压表并联后共同的伏安特性曲线.这种方法测量二极管的伏安特性曲线也存在理论误差,在测量低电压点时,二极管内阻较大,测量误差较大,随着测量点电压变高,二极管内阻变小,误差也相对变小.从(2)式我们可以看出,误差大小取决于电压表内阻和二极管等效电阻的大小.当R V µR D 时,理论误差可以忽略.一般讲,二极管正向电阻都较小,易满足R V µR D ,故电流表外接法测量二极管伏安特性曲线比电流表内接法误差要小,效果相对要好.3 补偿法第8卷第3期2006年9月 辽宁师专学报JournalofLiaoningTeachersCollege Vol 18No 13Sep 12006 补偿法测量基本原理如图2所示.工作原理为:当两直流电源的同极性端相连接,而且其电动势大小恰好相等时(U BC =U BA ),回路中无电流流过灵敏度电流计,G 的指示为0.这时流经电流表A 的电流全部通过二极管(没有任何分流).电压表上的读数就是二极管两端电压V D (G 上无电流,故压降为零).这样在表上读取电压和电流的数据,作V -I 曲线就是二极管的伏安特性曲线.测量步骤如下:(1)调C 点到最左端,调R 点到最大;(2)合上K 1;断开K 0、K;(3)调节C 点到选定电压V ;(4)合上K 、K 0;调节R ,使G 指示为0;(5)闭合和断开K 0看G 有无变化,若有变化则进一步调节R ,直到K 0断开、闭合时G 无变化为止,记录G 和A 的读数;(6)重复2~5步骤,测量出一组V -I 值,作V -I 曲线.补偿法的理论误差为零,测量误差主要来自:一是检流计的灵敏度和电流表、电压表的精度;二是测量过程中的随机误差和过失误差.这种方法测量精度较高,但电路复杂,操作麻烦.4 等效法等效法测量电路如图3所示.测量原理为:保持P 点不变,调节R 0使无论K 在1位置还是2位置,电压表上读数不变,这时有:R P ∥R V ∥R D =R P ∥R V ∥(R A +R 0),所以有:R D =R A+R 0,故I =I A .这里的R P 为R 的P 点下部电阻,可见流过二极管的电流I可通过电流表直接读取,避免了测量二极管支路电流时由于接入电表引起的接入误差.则二极管的伏安特性曲线就是V -I A的关系曲线. 测量步骤如下:(1)P 点调到最下端,R 0调到最大,合上K 1;(2)K 2合到1位置,调节P 点使V 达到测量电压值;(3)保持P 点不动,K 2合到2位置,调节R 0使电压表数值为V (不变),记录下V 、I A 值;(4)重复2~3步骤,测出一组V -I A 值,作出V -I 曲线.这种方法的优点为没有理论误差,线路简单、易操作,测量精度较高,测量误差基本和补偿法一样.5 电桥法利用电桥平衡原理,把电流表A 、电压表V 、被测二极管D 和调节电阻R W 2各作一个桥臂构成电桥电路,电路图如图4所示,图中G 为检流计,R W 2为限流电阻.调节R W 1、R W 2使电桥平衡,则此时电流表上的电流I A即为流经过二极管D 中的电流I D ,电压表所测得的电压等于二极管D 两端的电压V D ,调节R W 1、R W 2选择不同的V D值和相应的I D 值,作出V D —I D 曲线即是二极管的伏安特性曲线.测量骤如下:(1)调节R W 到最下端,打开K,合上K 1;(2)粗调R W 3、R W 2、R W 1,选定一个测量电压V ,这时合上K,看G 摆动大小和方向,分析地调节R W 2与R W 3直到检流计平衡;(3)断开、合上K,看G 有无变化;若有变化,进一步调节R W 2,直至K 合上、断开时G 无变化为止;(4)调节R W 1,选定另一个电压测量点V (由于R D 为非线性,故当调节R W 时,原电桥平衡被破坏,需要重新调平衡);(5)再调R W 2或R W 3使电桥达到新的平衡;(6)重复3~5步骤,测出一组V D 、I D 值,作出V D -I D 曲线.(下转16页)王春会,等介绍测二极管伏安特性的几种方法9 器代用品及简易装置,为学生后期实验提供良好的条件.这样做,不仅节约实验经费,还能使学生学会根据现有知识和当地条件,因陋就简地解决一些实际问题,能够培养学生自己动手、艰苦奋斗的精神.例如:在自制指示剂一节中,学生通过学习自制指示剂的基本原理,可以在不同季节里找出不同的鲜花,不同地方找出不同植物及果实,自制几种不同的指示剂.学生还可以自制一些生活用品,诸如胶水、酒精块、香皂、汽水等产品.通过这类实验,能使学生的动手能力、实践能力及实验技能得到锻炼和提高.3 激发化学制作兴趣,加强创新能力的培养兴趣是学生学习的内在动力,成功的教学需要的不是强制,而是激发学生的兴趣,自觉地启动思维的阀门.在化学制作实验教学中,有些趣味实验就是为此而专门设计开发的.例如,自制汽水、会报天气的娃娃、自制肥皂、检验是否吸烟喝酒等一些与生活实际相联系的实验,学生对此会很有兴趣.有了兴趣就有了学习的动力,有了实现实验结果的愿望,就激发了学生的求知欲.陶行知先生曾说过,创造始于问题,有了问题才有思考,有了思考,才有解决问题的方法.通过制作实验,使学生自主参与实验改革创新过程,并且把所学专业知识和专业技能融合起来,将其转化为创新精神,创新能力.例如:在制作会报天气的娃娃一节时,要求每人做一个娃娃,在潮湿天气中有颜色变化即可.同学们展开丰富的想象力,每人做的娃娃形状各异,有洋娃娃金发碧眼,有古典娃娃端庄美丽、有男有女,但都有明显的个性特征.学生们都很兴奋,感到课程角色发生了根本变化,即由课程的被动参与者和接受者变成了开发者和设计者.4 挖掘学生潜能,展示实践能力人具有极大的潜能,这一点,已经被生理学家、心理学家所证实.但一个人的潜能,深隐在思维的深处,学生自己也不知道自己有多大的潜能,这就需要在教学活动中不断地发现观察,更多地引导与鼓励.为此,创造一个良好的课堂氛围,让每个学生实实在在地感到自我存在的价值,自我理智的力量以及情感的满足.这是一种建构性的追求,尊重个性体验的课程观.在上化学制作实验课时,要抓住学生喜欢追求“新、奇、异”的特点,每做化学制作实验前,可预先告知制作的题目,要求学生制定化学制作的初步方案,学生就会查找资料,跃跃欲试,一展自己的个性潜能和聪明才智.在实验技能训练与制作作品展示中有的同学就展示了“鲜花三变”、“火山爆发”、“指纹检验”、“踩地雷”等作品,有的同学利用已有知识设计出3种不同方案,设计出使液体自燃的实验等等.展示了学生的实践能力,使学生的个性潜能得到发挥.5 综述教学实践表明,教师的教学观和学生的学习观都会发生很大的变化.从教师观来看,在教学中既强调引导和协助,又有示范和调控.从学生观来看既有学习的主导性,开放性和实践性,又有学生与教师的合作,从而教学相长.因此,高职学生在学科教学中进行技能训练及创造能力的培养,既符合高职教育的实际,又是我们现阶段现有教育的薄弱之处.应把培养创新能力和实践能力作为实验改革的核心,把实验教育视为培养创新能力和实践能力的主要途径,以满足社会发展对人才的要求.(责任编辑 王心满,朱成杰)(上接9页)电桥法测量二极管的伏安特性曲线,理论误差为零,原理简单,测量误差原因同补偿法一致,但电路较复杂,操作麻烦,不易调到想测的电压点.上面讨论了测量二极管的伏安特性曲线的五种方法,这五种方法各有优缺点.总体看,伏安法原理简单,易操作,但误差较大.补偿法、电桥法和等效法测量精度理论上一样,作出的曲线较好,但补偿法和电桥法操作麻烦,易产生偶然误差和过失误差.等效法结构简单,操作方便,测量准确,是测量二极管伏安特性曲线的一种理想方法.参考文献:[1]贾玉润.大学物理实验[M].上海:复旦大学出版社,1987.201-204.[2]林抒.普通物理实验[M].北京:人民教育出版社,1983.235-238.[3]杨介信.普通物理实验[M].北京:高等教育出版社,1987.46-59.[4]华中工学院.物理实验[M].北京:高等教育出版社,2002.84-87.(责任编辑 邵宝善,王 巍)16 辽宁师专学报2006年第3期。

二极管伏安特性曲线测量实验报告

二极管伏安特性曲线测量实验报告

二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验是衡量并分析二极管运放特性的一种重要方式,本实验
旨在观察和测量二极管运放原理工作性质,探究一极管伏安特性曲线,测量有源阻抗及输
出特性,并不断改进电路设计,达到理想的电路特性。

实验过程:
1、准备实验设备:万用表、恒流源、可调电阻、电容、Power控制仪、二极管。

2、根据实验报告要求使用万用表调节可调电阻的电阻值,并使用恒流源将合适的电
流流入二极管。

3、进行实验,将二极管的输入和输出特性记录下来,并绘制出二极管伏安特性曲线,分析其特性。

4、修改电路,将实验结果与理论值对比,进行性能指标的比较,确定电路的优劣,
并不断改进电路设计,最终达到理想的电路特性。

本次实验测量了二极管伏安特性曲线,从实验结果可以看出,随着施加偏压的增加,
二极管控制区渐渐变大,放大系数逐渐增大,电路稳定性和可靠性也提高,功耗较低,噪
声低无失真,符合要求,可实现正常工作、放大及信号处理等功能。

实验可视化表明,原
理性能良好,各指标符合设计要求,将有助于更好更准确地测量电路特性,改进电路的设计,提高电路性能。

二极管伏安特性曲线测量方法

二极管伏安特性曲线测量方法

二极管伏安特性曲线测量方法电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。

人们常需要了解它们的伏安特性,以便正确的选用它们。

通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。

如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。

本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。

1、实验原理晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。

当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。

开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。

在导通后,电压变化少许,电流就会急剧变化。

当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。

该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN 结被反向击穿。

2、实验方法2.1 伏安法图2.1.1 伏安法测二极管伏安特性曲线电路图电流表外接法:如图,此时电压表的读数等于二极管两端电压D U ;电流表的读数I 是流过二极管和电压表的电流之和(比实际值大),即I =D I +Iv 。

由欧姆定律可得:I=V/Rv+V/D R(1.1)用V 、I 所作伏安特性曲线电流是电压表和二极管的电流之和,显然不是二极管的伏安特性曲线,所用此方法测量存在理论误差。

在测量低电压时,二极管内阻较大,误差较大,随着测量点电压升高,二极管内阻变小,误差也相对减小;在测量二极管正向伏安曲线时,由于二极管正向内阻相对较小,用此方法误差相对较小。

表2.1.1 电流表外接法测二极管正向伏安特性曲线测量数据此次测量用作标纸绘图绘出伏安曲线电流表内接法:如图,这时电流表的读数I 为通过二极管D 的电流,电压表读数是电流表和二极管电压之和,U =D U +A U 。

二极管伏安特性曲线的测绘

二极管伏安特性曲线的测绘

二极管伏安特性曲线的测量实验目的1.掌握设计合适的检测电路和了解各元件的特点2.测绘二极管伏安特性曲线实验原理实验步骤1.反向特性测试电路。

二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。

测量电路如下,变阻器设置700Ώ.2.正向特性测试电路。

二极管在正向导通时,呈现的电阻值较小,拟采用电流表外接测试电路,如图所示,电源电压在0~10V内调节,变阻器开始设置700Ώ,调节电源电压,以得到所需电流值。

实验数据处理又公式可得如下数值U(V) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14I(mA)0 0 0 0 0 0 0 0 0 0 0 0 0 0 0电阻计0 ∞∞∞∞∞∞∞∞∞∞∞∞∞∞算值(kΏ)U(V) 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.6200 0.6400 0.6600 0.6800 I(mA)0.0000 0.0000 0.0007 0.0016 0.0134 0.4680 0.8715 1.5020 2.3570 3.4050 ∞∞428.57 250.00 37.3134 1.2821 0.7114 0.4261 0.2800 0.1997 R测(kΏ)R实(k∞∞750.00 333.33 37.7597 1.2840 0.7126 0.4269 0.2810 0.2005 Ώ)U(V) 0.7000 0.7200 0.7400 0.7600 0.7800 0.8000 0.8200 0.8400 0.8600 0.8800 I(mA) 4.6190 5.9720 7.4290 8.9500 10.5230 12.156 13.820 15.526 17.260 19.0150.1515 0.1206 0.0996 0.0849 0.0741 0.0658 0.0593 0.0541 0.04982 0.04630 R测(kΏ)R实(k0.1520 0.1211 0.0999 0.0852 0.0743 0.0659 0.0594 0.0541 0.04982 0.04630 Ώ)由于电压表电阻比较大,2V量程时电压表电阻为1M Ώ,所以根据公式可以计算出R实际如上表,但可以几乎可以忽略电压表的影响。

物理实验二极管特性曲线

物理实验二极管特性曲线

(2)试验设备及仪器
(3)实验原理
(4)实验步骤及内容
(5)实验数据及处理
实验目的:
(1)学习电学基本测量方法/步骤及注意事项 (2)测绘二极管的I~V曲线 (3)学习作图法及最小二乘法处理数据 (4)学习滑动变阻器的分压特性和限流特性 (5)学习电表的内/外接条件和方法
注意的要点:
(1). 测晶体二极管正向伏安特性时,毫安表读数 不得超过二极管允许通过的最大正向电流值,加在 晶体二极管上的电压不得超过管子允许的最大电压 值。
如图所示, 曲线某一点 切线的斜率 表示在该电 压下二极管 的电阻大小
如图中P点 斜率: K=Tan∂=Rx
0.300
I(mA)
0.04 0.03
0.02
P
0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
U(v)
误差分析:
伏安采用法 测试二极管正向特性曲线时采用电流表外接法,会产生电流的测量误差,这些 接入误差属于系统误差,必须对测量结果加以 修正,操作起来比较繁琐。对于半导体整流二极管,正向导通电流为 mA数量级,而反向电流仅为数量级,所以在选择测量电路和仪表 时必须加以考虑
(4).用作图法处理数据,在图纸上画出二极管正向I-V曲 线图。
数据记录表:
非线性电阻(二极管正向)的数据记录表
电压表量程:0~10.0V
电流表量程:0~25mA
U(V)
0.1 0.2
0.3
0.4
0.5
0.6
0.7
0.8
I(mA)
0
0
0
0
0.001 0.003 0.023 0.190
实验数据处理:

测量二极管的伏安特性实验报告

测量二极管的伏安特性实验报告
晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有电压大于一定数值时,才有较大电流出现,相应的电压可以称为导通电压。正向导通电压小,反向导通电压相差很大。当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。
实验线路图如下:
注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
2. 在上述实验中,为何要将电压表内接, 若将电流表内接有何不便? 已知电流表内阻约为98 。
答:毫安表外接时应该进行电流修正,内接时应该进行电压修正。由于实验用毫伏表内阻很大(约100~1000多万欧姆),电压表内接,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
2、测定反向特性曲线
把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006……mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。
U/V
0.6500
0.6400
0.6300
0.6200
0.6100

用伏安法测定二极管的特性曲线

用伏安法测定二极管的特性曲线

1§4.4 用伏安法测定二极管的特性曲线目的1.掌握分压器和限流器的使用方法; 2.用伏安法研究非线性元件的特性; 3.学会设计电路并能正确选择测量仪器. 设计要求1.写出设计公式及实验仪器; 2.画出测量线路3.测量二极管的正向伏安特性曲线;4.用线性回归的方法求二极管电流的经验公式)1(-=d aV e D e I I ; 5.掌握内接法和外接法的适用条件.设计提示电流表内接法和外接法适用条件假设待测电阻两端的电压为V ,流过它的电流为I ,并且都已经测量到了,则其电阻值R x 可由下式计算若使用的电流表的内阻R A 很小,而电压表的内阻R V 非常大,则上式计算的结果是正确的,否则必须考虑R A 或R V 对测量结果的影响.图4.4-1为测量未知电阻R x 的电路.当开关K 接“1”时,电流表和R x 都接在电压表的测试端之内,称为电流表的内接法.因此,有关系式)(X A R R I V +=成立,或写成如果用IV表示待测电阻值,则产生的系统误差为由于电压表的读数大于电阻两端的电压值而产生正的系统误差,由(4.4-1)式计算出来的阻值比实际的R X 大.若R A 值已值,就可以计算E 1的大小.当开关K 和“2”接通时,电流表接在电压表的测试端之外,称为电流表的外接法,因此有关系式)14.4(-=IV R xR AR X图4.4-1A X R IVR -=)24.4(1-=-=XAX XR RR R I VE )1(VX X X V R R R V R V R V I +=+=2或写成)1(VX X R R I V R +=.如果用I V作为待测电阻值,则产生的系统误差为由于通过电流表的电流比通过R X 的电流大而产生负的系统误差.所以,测量值比实际电阻值小,若R V 值已知,则可以计算E 2的大小.对于给定的未知电阻,到底是采用内接法还是外接法,这要取决于测量精确度的要求和E 1、E 2的大小.如果E 1和E 2都比较小,但1E >2E ,则可采取外接法,反之采用内接法. 将(4.4-2)和(4.4-3)式比较可的出内接法与是外接法的使用条件.当1E <2E 时,采用内接法,即可化成02>--V A X A X R R R R R ,解关于R X 的一元二次不等式可以得到内接法的使用条件,即如果电压表的内阻远大于电流表的内阻(即R V >>R A ),则(4.4-4)式表明,待测电阻值大于电流表内阻与电压表内阻的几何中项时,采用内接法所产生的系统误差较小,若R X 与V A R R 接近时,两种方法都可以,否则采用外接法.思考题1.怎样用伏安法测定电流表或电压表的内阻?)34.4(112-+-=-=XVXXR R R R I VE XV XAR R R R +≤11)4(212V A A A X R R R R R ++>)44.4()2(21-=+>V A V A A X R R R R R R。

二极管伏安特性曲线的测试

二极管伏安特性曲线的测试

二极管伏安特性曲线的测试
(一)原理图:
(二)原理分析:
二极管伏安特性是指二极管两端电压与通过二极管电流之间的关系,测试电
路如图所示。

利用遂点测量法,调节电位器R
P,改变输入电压u
1
,分别测出二
极管V两端电压u
D 和通过二极管的电流i
P
,即可在坐标纸上描绘出它的伏安特
性曲线i
D =f(u
D
)
(三)各元件作用分析:
电阻:分压作用
电位器R

:调节电压,使输入的电压由0变为5V
电压源:提供输入电压
(四)实验过程:在面包板上连接电路,经检查无误后,接通5V直流电源。


节电位器R
P,使输入电压u
1
按表所示从零逐渐增大至5V。

用万用表分
别测出电阻R两端电压uR和二极管两端电压u
D , 并根据iD=u
R
/R算出通
过二极管的电流i
D
,记于表中。

用同样方法进行两次测量,然后取其平均值,即可得到二极管的正向特性。

二极管的正向特性
二极管的反向特性
总结:1、二极管的功能单向导电性、稳压2、正向导通,反向截止
特性曲线图:。

二极管伏安特性曲线测量实验报告

二极管伏安特性曲线测量实验报告

二极管伏安特性曲线测量实验报告一、实验题目:二极管伏安特性曲线测量二、实验目的:1、先搭接一个调压电路,实现电压1-5V连续可调2、在面包板上搭接一个测量二极管伏安特性曲线的电路3、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。

4、用excel或matlab画二极管的伏安特性曲线三、实验摘要:1、在面包板上搭接一个测量二极管伏安特性曲线的电路2、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好四、实验仪器:1、示波器2、函数发生器3、数字万用表4、面包板,稳压二极管,100欧电阻,电位器,导线,可调直流电压源五、实验原理:示波器是可以直接观察电信号的波形的一种用途广泛的电子测量仪器,可以测电压的大小、信号的周期、相位差等。

一切可以转化为电压的电学量和非电学量,都可以用示波器来观察和测量。

设计一个测量二极管两端电压和电流的电路。

通过万用表测量出数据,画出伏安特性曲线并验证。

用函数信号发生器产生一个信号,测量二极管两端的信号。

原理图:六、实验步骤及数据为防止电流过高烧毁电路,使用了一个100欧姆的保护电阻。

用万用表测量不同阻值下二极管两端的电压和通过二极管的电流值,观察并记录数据。

为保证精确度,多测量几组数据用数字万用表测出的二极管两端得电压以及对应流过的电流:绘制的二极管伏安特性曲线:用函数信号发生器产生一个信号,加在保护电阻和二极管两端,在示波器的CH1通道显示输入信号的波形。

原理图:波形图:七、实验总结:刚开始接的时候不知道是原件问题还是线路问题还是什么,用万用表测电压时一直没有示数,在面包板上拆了又装了好久都还是不行,这里就浪费了好多时间,最后换了面包板又换了原件换了电源才终于测了出来。

所以在装电路的时候一定要细心还有要弄清原理图的工作原理才能真正做好一个实验。

还有本实验在测电流时记得先将电阻断开再用万用表测,以免烧表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二极管伏安特性曲线
测量方法
电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三
极管、光敏和热敏元件等。

人们常需要了解它们的伏安特性,以便正确
的选用它们。

通常以电压为横坐标,电流为纵坐标作出元件的电压一电
流关系曲线,叫做该元件的伏安特性曲线。

如果元件的伏安特性曲线是
一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件
为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则
称其为非线性元件(例如晶体二极管、三极管)。

本实验通过测量二极
管的伏安特性曲线,了解二极管的单向导电性的实质。

1实验原理
晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。

当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,
且随正向偏置电压的增大而增大。

开始
电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二
极管为0.2左右,硅二极管为0.7左右时),电流明显变化。

在导通
后,电压变化少许,电流就会急剧变化。

当加反向偏置电压时,二极管处于截止状态,但不是完全没有电
流,而是有很小的反向电流。

该反向电流随反向偏置电压增加得很
慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二
极管PN结被反
向击穿。

2、实验方法
2.1伏安法
IN4007
Re
电流表外接法:如图2.1.1所示(开关K打向2位置)⑴,此时电压表的读数等于二极管两端电压U D ;电流表的读数I是流过二极管和电压表的电流之和(比实际值大),即I = |D +lv。

匸V/Rv+V/ R D(1.1)由欧姆定律可得:
用V、I所作伏安特性曲线电流是电压表和二极管的电流之和,显然不是二极管的伏安特性曲线, 所用此方法测量存在理论误差。

在测量低电压时,二极管内阻较大,误差较大,随着测量点电压升高,二极管内阻变小,误差也相对减小;在测量二极管正向伏安曲线时,由于二极管正向内阻相对较小,用此方法误差相对较小。

2.1.1
电流表内接法:如图2.1.1所示(开关K打向1位置),这时电流表的读数I为通过二极管D的电流,电压表读数是电流表和二极管电压之和,U = U D + U A o
由欧姆定律可得:U =I ( R D+ R A)
此方法作曲线所用电压值是二极管和电流表电压之和,存在理论误差,在测量过程中随着电压
U提高,二极管的等效内阻R D减小,电流表作用更大,相对误差增加;小量程电流表内阻R A较大, 引起误差较大。

但此方法在测量二极管反向伏安特性曲线时,由于二极管反向内阻特别大,故误差较小。

2.1.2
表2.1.3
此次测量在上图作标纸中绘出伏安曲线
采用伏安法测量时由于电压或电流总有其一不能准确测得,结果总存在理论误差,测量结果较粗略,但此方法电路简单,操作方便。

2.2补偿法
补偿法测量基本原理如图 2.2.1 所示[2]o
匸V/Rv+V/ R D (1.1)
图2.2.1补偿法测二极管伏安特性曲线电路图
工作原理:当两直流电源的同极端相连接,而且其电动势大小恰好相等时(
U BC = U BA ),回路
中无电流通过检流计 G ,其指示为0,此时电流表 A 的读数是通过二极管的电流,电压表的读数是 二极管两端的电压,这样在表上读取的电压和电流的数值,作
V-I 曲线就不存在理论误差。

测量步骤:(1 )调C 点到最左端,调 R 到最大;(2)合上K i ;断开K o 、K 2;( 3)调节C 点到选定电压 V ;( 4)合上K 2、K o ;调节R ,使G 指示为0;( 5)闭合再断开 K o 观察G 有无 变化,若有变化则进一步调节 R ,直到K 0
断开、闭合G 无变化为止,记录 V 和A 的读数;(6)重 复2〜5步骤,测量出一组 V-I 值,作V-I 曲线。

补偿法在测量中理论误差为零,实验中误差主要来源于仪器的精确度及测量中的随机误差和视 力引起的误差还有过失误差等。

此方法测量精确度较高,但电路较为复杂,操作比较麻烦。

电压 U/v
0.10
0.20
0.30
0.40
0.50
0.55
0.60
0.65
0.68
0.70
电流 1/mA
此次测量用作标纸绘图绘出伏安曲线 2.3等效法
等效法测量电路如图
2.3.1所示
[3]。

Ko
(V)Rv
R D
」_IN4007
Ki
CH1
CH?
图2.3.1等效法测二极管伏安特性曲线电路图
测量原理:保持P 点不变,调节R 0使无论K 2在位置还是2位置,电压表上度数不变,这时有:
此方法避免了测量二极管支路电流时由于接入电表引起的理论误差。

测量步骤:(1)P 点调节到最下端,R o 调到最大,合上 K i ; ( 2) K 2合到位置1,调节P 点 使V 达到测量电压值;(3)保持P 点不动,K 2合到2位置,调节R o 使电压表数值为 V ,记录下 V ,1A 值;(4)重复2〜3步,测出一组 V-I A 值,作V-I 曲线
[4]。

此方法没有理论误差,线路较简单,相对易操作,测量精确度较高(与补偿法相当)。

2.3.1
电压 U/v
0.1
0.2
0.3
0.4
0.5
0.55
0.60
0.65
0.68
0.7
电流 1/mA
1.4示波器法
示波器法测量电路如图
1.4.1所示。

R A
Ri
Rv
D IN4007
R D 匸
R D = R A + R o 故 I=Ia 。

E
Us
图2.4.1示波器法测二极管伏安特性曲线电路图
测量步骤:
利用示波器的双踪显示,将CH1、CH 2的输入耦合打到GND,将CH 1、CH 2的扫描基线调出来且都与正中水平标尺重合,将旋纽旋到X-Y处,进入“ X-Y ”工作方式,使扫描基线变为一点,调节水平移动旋纽,使这点与标尺坐标原点重合,然后将CH i、CH 2的输入耦合打开[5]。

打开交流函数信号发生器,使用正泫波或方波,将输入电压适当调大,再把函数频率适应调大些, 即可观察到示屏上出现一条曲线,此曲线即是二极管的伏安特性曲线,如图142。

I /mA
2比较分析
从测量方法方面比较:利用伏安法测量电路最简单,操作方便,但结果误差比较大;利用补偿法和等效法测量结果精确度较高,但电路相对复杂,二者相比使用等效法稍易操作;示波器法在测量时非常直观,适合用于演示教学。

在普通测量时要求精度高推荐使用补偿法和等效法;在观察曲线时推荐利用示波器法。

3结论
利用伏安法的电流表外接法测量曲线观察不出导通电压的存在,这是电压表上电流所引起的,电流值都偏大,曲线偏上;电流表内接法曲线观察得二极管导通电压最大,这是二极管导通电压和电流表上所分电压叠加所致;利用补偿法和等效法测量所得曲线基本相同,并且在没有理论误差情况下测得,相对标准冋。

思考题
1.伏安特性曲线的斜率的物理意义是什么?
2.用伏安法测二极管特性曲线产生的误差属什么性质的误差?为何会产生这种误差?能否消除或
作修正?方法如何?
3.在测定二极管反向特性时,有同学发现所加电压还不到1伏,微安表指示已超量程。

你认为原
因是什么?
4.若要用量程为2.5V,内阻20KW/V的电压表和量程为250mA,内阻400W的电流表测定阻值约为400W、4KW和40KW
的三只电阻,试确定其电表的连接方式,并画出电路图。

相关文档
最新文档