高二下学期期中数学试卷(理科)第25套真题

合集下载

黑龙江省七台河市勃利县重点中学2022-2023学年高二下学期期中数学试题及参考答案

黑龙江省七台河市勃利县重点中学2022-2023学年高二下学期期中数学试题及参考答案

2022-2023学年度第二学期期中考试高二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分(时间:120分钟满分:150分)第Ⅰ卷(选择题,共60分)一.单选题:(共8小题,每题5分,共计40分,在每题给出的四个选项中,只有一个是正确的)1.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则不同的选择方式有( )A.24种B.10种C.9种D.14种2.从5名候选人中选派出3人参加A,B,C活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方案有( ) A.36种 B.48种 C.56种 D.64种3.1-2C n1+4C n2-8C n3+…+(-2)n C n n=( )A.1 B.-1C.(-1)n D.3n4.如图展现给我们的是唐代著名诗人杜牧写的《清明》,这首诗不仅意境极好,而且还准确地描述出了清明时节的天气状况,那就是“雨纷纷”,即天气多阴雨.某地区气象监测资料表明,清明节当天下雨的概率是0.9,连续两天下雨的概率是0.63,若该地某年清明节当天下雨,则随后一天也下雨的概率是( )A.0.7B.0.9C.0.63D.0.5675.受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有( )A.240种B.120种C.188种D.156种6.复学后,某学校贯彻“科学防疫”,实行“戴口罩,间隔(不相邻)坐”.一排8个位置仅安排小华、小明等4名同学就座,且小华要坐在小明左侧,则不同的安排方法种数为( )A .60B .160C .120D .307.某卡车为乡村小学运送书籍,共装有10个纸箱,其中5箱英语书、2箱数学书、3箱语文书.到目的地时发现丢失一箱,但不知丢失哪一箱,现从剩下的9箱中任意打开两箱,结果都是英语书的概率为( ) A.518 B.59 C.29D.13188.已知某动点在平面直角坐标系第一象限的整点上运动(含x,y 正半轴上的整点),其运动规律为(m,n)→(m+1,n+1)或(m,n)→(m+1,n-1).若该动点从原点出发,经过6步运动到点(6,2),则不同的运动轨迹有( ) A.15种B.14种C.103种D.9种二、多选题:(共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.)9.已知首项为正数的数列{a n }为等差数列,且(a 5+a 6+a 7+a 8)(a 6+a 7+a 8)<0,则( ) A .S 12>0 B. a 6>0 C .S 13>0D. a 6+a 7>010.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周,则( ) A .课程“射”“御”排在前两周,共有24种排法 B .某学生从中选5门,共有6种选法C .课程“礼”“书”“数”排在后三周,共有36种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法 11.若二项式(2+3x )n的展开式共有9项,则( ) A .n =8B .n =9C .第5项为2 520x 4D .展开式中常数项是1612.已知函数f (x )=kx 2-ln x ,使f (x )>0在定义域内恒成立的充分不必要条件是( )A.⎝ ⎛⎭⎪⎫12e ,+∞B.⎝ ⎛⎭⎪⎫12e ,e C.⎝ ⎛⎭⎪⎫-∞,12e D..⎝ ⎛⎭⎪⎫1e ,e第Ⅱ卷(共90分)三、填空题:(本大题共4小题,每题5分,共计20分)13.已知随机变量X,Y 满足:X ~B(2,p),Y=2X+1,且P(X ≥1)=,则D(Y)=_______14.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S 3a 3=________.15.盒中有6个小球,其中4个白球,2个黑球,从中任取2个球,在取出的球中,黑球放回,白球则涂黑后再放回,此时盒中黑球的个数为X,则P(X=3)=________,E(X)=________.16.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sinx ,设a =f(1),b =f(2),c =f(3),则a ,b ,c 的大小关系是________.四、解答题:(本大题共6小题,共计70分,解答时应写出文字说明、证明过程或演算步骤.)17.(10分)(1)设(1+x +x 2)n=a 0+a 1x +a 2x 2+…+a 2n x 2n,求a 0+a 2+a 4+…+a 2n 是多少; (2)设(1+2x )n=a 0+a 1x +a 2x 2+…+a n x n (n ∈N *),若a 1+a 2+…+a n =728,求展开式中二项式系数最大的项是多少.18.(12分)2020年10月16日是第40个世界粮食日.中国工程院院士袁隆平海水稻团队迎来了海水稻的测产收割,其中宁夏石嘴山海水稻示范种植基地YC801测产,亩产超过648.5公斤,通过推广种植海水稻,实现亿亩荒滩变粮仓,大大提高了当地居民收入.某企业引进一条先进食品生产线,以海水稻为原料进行深加工,研发了一种新产品,若该产品的质量指标值为质量指标值m [70,75) [75,80) [80,85) [85,90) [90,100] 质量指标等级 良好 优秀 良好 合格 废品机抽取了1 000件,将其质量指标值m 的数据作为样本,绘制如图所示的频率分布直方图:(1)若将频率作为概率,从该产品中随机抽取3件产品,记“抽出的产品中至少有1件不是废品”为事件A,求事件A发生的概率;(2)若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品,然后从这7件产品中任取3件产品,求质量指标值m∈[90,95)的件数X的分布列及数学期望;(3)质量指标值m [70,75)[75,80)[80,85)[85,90)[90,100]利润y(元)6t 8t 4t 2t -5 3 e t19.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.20.(12分)在①a 3=5,a 2+a 5=6b 2;②b 2=2,a 3+a 4=3b 3;③S 3=9,a 4+a 5=8b 2,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,____________.(1)求数列{a n },{b n }的通项公式;(2)记c n =a nb n,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)2020年春节期间,湖北武汉暴发了新型冠状病毒肺炎疫情,国家卫健委高级别专家组组长钟南山建议大家出门时佩戴口罩,一时间各种品牌的口罩蜂拥而出,为了保障人民群众生命安全和身体健康,C 市某质检部门从药店随机抽取了100包某种品牌的口罩,检测其质量指标.质量指标 [0,10) [10,20) [20,30) [30,40) [40,50] 频数1020302515(1)求所抽取的100包口罩质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①已知口罩的质量指标值Z 服从正态分布,利用该正态分布N(μ,σ2),求Z 落在(26.5,50.4)内的概率;②将频率视为概率,若某人从某药店购买了3包这种品牌的口罩,记这3包口罩中质量指标值位于(30,50)内的包数为X,求X 的分布列和方差.附:①计算得所抽查的这100包口罩的质量指标的标准差为σ=≈11.95;②若Z ~N(μ,σ2),则P(μ-σ≤Z ≤μ+σ)=0.682 7, P(μ-2σ≤Z ≤μ+2σ)=0.954 5.22(12分).已知函数()ln 1af x x x=+-,a R ∈. (Ⅰ)若曲线()y f x =在点()()1,1f 处的切线与直线10x y -+=垂直,求函数()f x 的极值;(Ⅱ)设函数()1g x x x=+.当1a =-时,若区间[1, e ]上存在0x ,使得()()001g x m f x <+⎡⎤⎣⎦,求实数m 的取值范围.(e 为自然对数底数)2022-2023学年度第二学期期中考试高二数学答案一、单选1.D2.B3.C4.A5.B6.A7.C8.D二、多选9. ABD 10.BCD 11. ACD 12.BD三、填空13. 14. 7 15. 16. c<a<b四、解答题17. (1)在(1+x+x2)n=a0+a1x+a2x2+…+a2n x2n中,令x=1,得3n=a0+a1+a2+a3+…+a2n,令x=-1,得1=a0-a1+a2-a3+…+a2n,所以3n+1=(a0+a1+a2+a3+…+a2n)+(a0-a1+a2-a3+…+a2n).所以3n+1=2(a0+a2+a4+…+a2n).所以a0+a2+a4+…+a2n=3n+12.(2)由题可知,(1+2x)n=a0+a1x+a2x2+…+a n x n,当x=1时,a0+a1+a2+…+a n=3n,(1+2x)n的展开式中,通项公式为T r+1=C n r2r x r,则常数项对应的系数为a0,即r=0,得a0=C n0·20=1,所以a1+a2+…+a n=3n-1=728,解得n=6.则(1+2x)6的展开式中二项式系数最大为C63,则二项式系数最大的项为C63·23x3=160x3.18.(1)由频率分布直方图可得,1件产品为废品的概率为P=(0.04+0.02)×5=0.3,则P(A)=1-C33(0.3)3=1-0.027=0.973.(2)由频率分布直方图可知,质量指标值大于或等于85的产品中,m∈[85,90)的频率为0.08×5=0.4;m∈[90,95)的频率为0.04×5=0.2;m∈[95,100]的频率为0.02×5=0.1.故利用分层抽样抽取的7件产品中,m∈[85,90)的有4件,m∈[90,95)的有2件,m∈[95,100]的有1件.从这7件产品中任取3件产品,质量指标值m∈[90,95)的件数X的所有可能取值为0,1,2,P (X =0)=C 53C 73=27,P (X =1)=C 21C 52C 73=47,P (X =2)=C 22C 51C 73=17,所以X 的分布列为:所以E (X )=0×27+1×47+2×7=7.(3)由频率分布直方图可得该产品的质量指标值m 与每件产品的利润y (元)的关系如下表所示(1<t <4):19.解 (1)f ′(x )=6x 2+6ax +3b , 因为函数f (x )在x =1及x =2时取得极值, 所以f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0,解得⎩⎪⎨⎪⎧a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,2)时,f ′(x )<0; 当x ∈(2,3)时,f ′(x )>0.所以,当x =1时,f (x )取极大值f (1)=5+8c , 又f (0)=8c ,f (3)=9+8c . 所以当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c .因为对于任意的x ∈[0,3],都有f (x )<c 2恒成立, 所以9+8c <c 2, 解得c <-1或c >9.因此c 的取值范围为(-∞,-1)∪(9,+∞).20.解 方案一:选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2,∴a n =a 1+(n -1)d =2n -1,n ∈N *,b n =b 1q n -1=2n -1,n ∈N *.(2)∵c n =a nb n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1, ∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,①∴12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n,② ①-②得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n=3-(2n +3)×⎝ ⎛⎭⎪⎫12n,∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1,n ∈N *.方案二:选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =3a 1d 2,∴⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =6d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧ a 1=-1,d =-2(舍去),∴⎩⎪⎨⎪⎧b 1=1,q =2,∴a n =a 1+(n -1)d =2n -1,n ∈N *,b n =b 1q n -1=2n -1 ,n ∈N *.(2)∵c n =a n b n, ∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1 , ∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,①∴12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n,② ①-②得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n=3-(2n +3)×⎝ ⎛⎭⎪⎫12n,∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1,n ∈N *.方案三:选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎪⎨⎪⎧ b 1=1,q =2,∴a n =a 1+(n -1)d =2n -1,n ∈N *,b n =b 1q n -1=2n -1,n ∈N *.(2)∵c n =a n b n , ∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1, ∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,① ∴12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n ,② ①-②得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n =1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n , ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1,n ∈N *. 21.(1)所抽取的100包口罩质量指标值的样本平均数为=(5×10+15×20+25×30+35×25+45×15)=26.5.(2)①因为Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,P(26.5<Z<50.4)=P(26.5<Z<26.5+2×11.95)=×0.954 5=0.477 25,所以Z 落在(26.5,50.4)内的概率是0.477 25.②根据题意得X ~B ,P(X=0)==,P(X=1)=··=, P(X=2)=··=, P(X=3)==.所以X 的分布列为:X 0 1 2 3PD(X)=3··=.22.解:(Ⅰ)()()2210a x a f x x x x x-'=-=>, 因为曲线()y f x =在点()()1,1f 处的切线与直线10x y -+=的垂直,所以()11f '=,即11a -=-,解得2a =.所以()22x f x x -'=. ∴当()0,2x ∈时,()0f x '<,()f x 在()0,2上单调递减;当()2,x ∈+∞时,()0f x '>,()f x 在()2,+∞上单调递增;∴当2x =时,()f x 取得极小值()22ln 21ln 22f =+-=, ∴()f x 极小值为ln 2.(Ⅱ)令()()11h x x m f x x =+-+=⎡⎤⎣⎦1ln m x m x x x +-+, 则()()()211x m x h x x -++⎡⎤⎣⎦'=,欲使在区间上[]1,e 上存在0x ,使得()()00g x mf x <, 只需在区间[]1,e 上()h x 的最小值小于零.令()0h x '=得,1x m =+或1x =-.当1m e +≥,即1m e ≥-时,()h x 在[]1,e 上单调递减,则()h x 的最小值为()h e ,∴()10m h e e m e+=+-<,解得211e m e +>-, ∵2111e e e +>--,∴211e m e +>-; 当11m +≤,即0m ≤时,()h x 在[]1,e 上单调递增,则()h x 的最小值为()1h , ∴()1110h m =++<,解得2m <-,∴2m <-;当11m e <+<,即01m e <<-时,()h x 在[]1,1m +上单调递减,在(]1,m e +上单调递增,则()h x 的最小值为()1h m +,∵()0ln 11m <+<,∴()0ln 1m m m <+<.∴()()12ln 12h m m m m +=+-+>,此时()10h m +<不成立.综上所述,实数m 的取值范围为()21,2,1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭.。

天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)

天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)

天津市部分区2023~2024学年度第二学期期中练习高二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试用时100分钟.祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题公共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线1y x x=-在2x =处的切线斜率为( )A . 3-B .34C .54D . 52.用0~6这7个自然数,可以组成没有重复数字的三位数的个数为( )A .60B .90C .180D .2103.函数ln xy x=的单调递增区间为( )A . (),e -∞B . ()0,e C . ()1,+∞D . ()e,+∞4. ()()52x y x y +-的展开式中33x y 项的系数为( )A . 30-B . 10-C . 10D .305.已知函数()y f x =,其导函数()y f x '=的图象如图所示,则对于()y f x =的描述正确的是()A .在区间(),0-∞上单调递减B .当0x =时取得最大值C .在区间()3,+∞上单调递减D .当1x =时取得最小值6.甲乙两位同学从5种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种7.已知函数()32113f x x x ax =+-+在R 上单调递增,则实数a 的取值范围为( )A . (],1-∞-B . (),1-∞-C . ()1,-+∞D . [)1,-+∞8.函数()()sin 1cos f x x x x =-+在区间[]0,2π上的最大值为( )A . 1-B .1C .1π+D .2π+9.若对任意的()12,,x x m ∈+∞,不等式122112ln ln 2x x x x x x ->-恒成立,则实数m 的取值范围是( )A . 31,e e ⎛⎫ ⎪⎝⎭B . 31,e e ⎡⎤⎢⎥⎣⎦C . ()3e ,+∞D . )3e ,⎡+∞⎣第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.10.设函数()21ex f x -=,()f x '为其导函数,则()1f '=______.11.765765A 6A 6A --=______.12.在1,2,3,…,500中,被5除余3的数共有______个.13.在6⎛ ⎝的展开式中,2x 的系数是______.(用数字作答)14.如图,现要用4种不同的颜色对4个区域进行着色,要求有公共边的两个区域不能用同一种颜色,共有______种不同的着色方法.(用数字作答)15.已知函数()()()()22f x x a x a =--∈R ,当2x =时,()f x 有极大值,则a 的取值范围为______.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()312f x x x =-.(1)求()f x 的单调区间;(2)求()f x 的极值.17.(本小题满分12分)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?18.(本小题满分12分)已知函数()()()256ln f x a x x a =-+∈R ,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)求a 的值;(2)求()f x 在区间[]1,3上的最小值.19.(本小题满分12分)已知函数()ln af x x x=+,a ∈R .(1)若()f x 在点()()1,1f 处取得极值.①求a 的值;②证明:()1f x ≥;(2)求()f x 的单调区间.20.(本小题满分12分)已知函数()e xf x x x a =--,()22g x x x =-,a ∈R .(1)求函数()y f x =-的导数;(2)若对任意的[]11,e x ∈,[]21,2x ∈,使得()()12f x g x ≥成立,求a 的取值范围;(3)设函数()()ln h x f x x =-,若()h x 在区间()0,e 上存在零点,求a 的最小值.天津市部分区2023~2024学年度第二学期期中练习高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案CCBBCBACD二、填空题:本大题共6小题,每小题4分,共24分.10.2e 11.012.10013.192-14.4815.2a >三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)解:(1)函数()f x 的定义域为R ,导函数()2312f x x '=-,令()0f x '=,解得2x =±,则()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2()2,+∞()f x '+0-0+()f x 单调递增取极大值单调递减取极小值单调递增故函数()f x 的单调增区间为(),2-∞-和()2,+∞,单调减区间为()2,2-;(2)由小问1知,当2x =-时,函数()f x 取得极大值16;当2x =时,函数()f x 取得极小值16-.17.(本小题满分12分)解:(1)每个小组从12名同学中选4名同学,选法种数为412C 495=;(2)每个小组从12名同学中选4名同学,选法种数为412C ,再从选出的同学中选定1名作为替补选法种数为14C ,因此还要从选出的同学中指定1名作替补,那么每个小组的选法种数为41124C C 1980=.(3)每个小组从12名同学中选4名同学并分别被指定为第一、二、三、四辩手,选法种数为412A 11880=.18.(本小题满分12分)解:(1)因为()()256ln f x a x x =-+,所以()()625f x a x x'=-+,令1x =,则()116f a =,()168f a '=-.所以曲线()yf x =在点()()1,1f 处的切线方程为()()16681y a a x -=--.由点()0,6在切线上,可得61686a a -=-,解得12a =.(2)由(1)得()()()2156ln 02f x x x x =-+>所以()()()2365x x f x x x x--'=-+=令()0f x '=,解得12x =,23x =.当x 变化时,()f x ',()f x 的变化情况如表所示.x()1,22()2,3()f x '+0-()f x 单调递增单调递减又由于()18f =,()326ln 38f =+>.所以,当1x =时,()f x 取得最小值8.19.(本小题满分12分)解:(1)①()221a x af x x x x-'=-+=,因为()f x 在点()()1,1f 处取得极值,所以()11101af a -'==-=;所以1a =.②中①得,()1ln f x x x =+,()21x f x x-'=令()0f x '=,解得1x =,当x 变化时,()f x ',()f x 的变化情况如表所示.x()0,11()1,+∞()f x '-0+()f x 单调递减1单调递增所以,当1x =时,()f x 取得最小值.所以()()11f x f ≥=,即()1f x ≥.(2)函数()f x 的定义域为()0,+∞,()221a x a f x x x x-'=-+=,当0a ≤时,()0f x '>恒成立,所以()f x 的单调递增区将为()0,+∞,无单调递减区间;当0a >时,令()0f x '=解得x a =,()0f x '>的解集为{}x x a >,()0f x '<的解集为{}0x x a <<,所以()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a 综上所述:当0a ≤时,()f x 的单调递增区间为()0,+∞,无单调递减区间;当0a >时,()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a .20.(本小题满分12分)解:(1) ()e x y f x x x a -=-=-+-,所以e e 1x x y x --'=-++(2)因为()()1e 1x f x x '=+-,[]11,e x ∈,所以()0f x '≥,故()f x 在[]1,e 上单调递增,所以()e 1e 1,ee f x a a +⎡⎤∈----⎣⎦,又()()22211g x x x x =-=--,所以()g x 在[]1,2上也是单调递增,所以()[]1,0g x ∈-,因为对任意的[]11,e x ∈,[]21,2x ∈,使()()12f x g x ≥成立,等价于()()12min max f x g x ⎡⎤⎡⎤≥⎣⎦⎣⎦,即e 10a --≥,所以e 1a ≤-.故实数a 的范围是(],e 1-∞-.(3)由()e ln 0x h x x x x a =---=,即e ln x x x x a --=,令()e ln x p x x x x =--,()0,e x ∈,而()()()()1e 111e e 11e xx x xx x x p x x x x x x+-+'=+--=+-=,令()e 1x q x x =-,()0,e x ∈,则()ee 0xx q x x '=+>,即函数()q x 在()0,e 上单调递增,因为()010q =-<,()1e 10q =->,即()()010q q ⋅<,所以存在唯一的()00,1x ∈,使得()00q x =,即00e 10xx -=,即01ex x =,00ln x x =-,所以当00x x <<时,()0q x <,()0p x '<,函数()p x 单调递减;当0e x x <<时,()0q x >,()0p x '>,函数()p x 单调递增,所以()()0000000min e ln 11x p x p x x x x x x ==--=-+=,又0x +→时,()p x →+∞,所以要使()h x 在()0,e 存在零点,则1a ≥,所以a 的最小值为1.。

山东省青岛第二中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

山东省青岛第二中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)

青岛第二中学2023-2024学年高二下学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则( )A. B. C. D.2. 若关于的不等式成立的充分条件是,则实数的取值范围是( )A B. C. D.3. 下列有关一元线性回归分析的命题正确的是( )A. 若两个变量的线性相关程度越强,则样本相关系数就越接近于1B. 经验回归直线是经过散点图中样本数据点最多的那条直线C. 在经验回归方程中,若解释变量增加1个单位,则预测值平均减少0.5个单位D. 若甲、乙两个模型的决定系数分别为0.87和0.78,则模型乙的拟合效果更好4. 已知,则下列命题为真命题的是( )A. 若,则 B. 若,则C. 若,则 D. 若,则5. 7名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排3名,乙场馆安排2名,丙场馆安排2名,则不同的安排方法共有( )A. 210种B. 420种C. 1260种D. 630种6. 已知一组样本数据的方差为9,且,则样本数据的方差为( )A. 9.2B. 8.2C. 9.8D. 97. 若不等式的解集为,则不等式解集为( )A B. ..{1,2,3,4,5},{1,3,5},{1,2,5}U T S ===()U S T = ð{2}{1,2}{2,4}{1,2,4}x |1|x a +<04x <<a 1a ≤-5a >1a <-5a ≥r ˆ20.5yx =-x ˆy 2R ,,R a b c ∈a b >ac bc>0a b >>0.40.4a b -->a b >1122a cb c++⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭0,0a b c >>>b b c a a c+>+125,,,x x x 1324x x x x +=+123451,1,1,1,x x x x x -+-+20ax bx c ++≥[]1,30ax ccx b+≥+(]4,3,3∞∞⎡⎫--⋃+⎪⎢⎣⎭(]4,3,3∞∞⎛⎫--⋃+⎪⎝⎭C. D. 8. 某人在次射击中击中目标的次数为,其中,击中偶数次为事件A ,则( )A. 若,则取最大值时B. 当时,取得最小值C. 当时,随着的增大而减小 D. 当的,随着的增大而减小二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在的展开式中,下列说法正确的是( )A. 各二项式系数的和为64 B. 常数项是第3项C. 有理项有3项D. 各项系数的绝对值的和为72910. 已知位于第一象限的点在曲线上,则( )A. B. C. D.11. 二次函数是常数,且的自变量与函数值的部分对应值如下表:…-1012……22…且当时,对应的函数值.下列说法正确的有( )A. B. C. 关于的方程一定有一正、一负两个实数根,且负实数根在和0之间D. 和在该二次函数的图象上,则当实数时,三、填空题:本题共3小题,每小题5分,共15分.12. 函数定义域是______.13. 已知集合,,若中恰有一个整数,的43,3⎡⎤-⎢⎥⎣⎦43,3⎡⎫-⎪⎢⎣⎭n ,~(,)X X B n p N*,01n p ∈<<10,0.8n p ==()P X k =9k =12p =()D X 112p <<()P A n 102p <<()P A n 61x ⎛- ⎝(,)a b 111x y+=(1)(1)1a b --=-228a b +≥23a b +≥+221223a b +≥2,(,y ax bx c a b c =++0)a ≠x y x ym n32x =0y <0abc >1009mn >x 20ax bx c ++=12-()112,P t y +()222,P t y -12t <12y y >()ln(21)f x x =+-{}2|60M x x x =+->{}2|230,0N x x ax a =-+≤>M N ⋂则的最小值为_________.14. 已知函数,若对于恒成立,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15. 2024年4月25日,神舟十八号载人飞船发射升空,并于北京时间2024年4月26日3时32分,成功对接于空间站天和核心舱径向端口,整个自主交会对接过程历时约6.5小时!奔赴星辰大海,中国人探索浪漫宇宙脚步驰而不息,逐梦太空的科学探索也不断向前。

2021-2022学年高二下学期期中考试数学试题含答案

2021-2022学年高二下学期期中考试数学试题含答案

数学试题一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.已知i 为虚数单位,复数21iz =-,则复数z 的模为 A B .1 C .2 D .122.一辆汽车做直线运动,位移s 与时间t 的关系为21s at =+,若汽车在t =2时的瞬时速度为12,则a = A .12B .13C .2D .33.已知复数z 满足:21z -=,则1i z -+的最大值为 A .2 B 1C 1D .34.3只猫把4只老鼠捉光,不同的捉法种数有 A .34B .43C .34C D .34A5.函数()sin cos 1f x x x =⋅+在点(0,(0)f )处的切线方程为 A .10x y +-=B .10x y -+=C .220x y -+=D .220x y +-= 6.若函数32()f x x ax bx =++在2x =-和4x =处取得极值,则常数a ﹣b 的值为A .21B .﹣21C .27D .﹣277.100件产品中有6件次品,现从中不放回的任取3件产品,在前两次抽到正品的条件下第三次抽到次品的概率为A .349B .198C .197D .3508.设随机变量Y 满足Y~B(4,12),则函数2()44Y f x x x =-+无零点的概率是 A .1116B .516C .3132D .12 9.从不同品牌的4部手机和不同品牌的5台电脑中任意选取3部,其中手机和电脑都有的不同选法共有 A .140种B .84种C .35种D .70种10.设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能是A B C D 第10题11.设5540145(1)(1)(1)x a x a x a x a =+++++++,则024a a a ++=A .﹣32B .0C .16D .﹣1612.对于定义在(1,+∞)上的可导函数()f x ,当x ∈(1,+∞)时,(1)()()0x f x f x '-->恒成立,已知(2)a f =,1(3)2b f =,1)c f =,则a ,b ,c 的大小关系为A .a <b <cB .b <c <aC .c <b <aD .c <a <b二、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上) 13.61)3x的展开式中常数项是. 14.若随机变量X~N(μ,2σ),且P(X >6)=P(X <﹣2)=0.3,则P(2<X ≤6)=.15.有5本不同的书,全部借给3人,每人至少1本,共有种不同的借法.16.函数1, 0()ln , 0x x f x x x +≤⎧⎪=⎨>⎪⎩,若函数()()g x f x tx =-恰有两个不同的零点,则实数t 的取值范围是.三、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知复数22(43)()i z m m m m =-++-,其中i 为虚数单位. (1)若复数z 是纯虚数,求实数m 的值;(2)复数z 在复平面内对应的点在第一象限,求实数m 的取值范围.18.(本小题满分12分)已知函数()ln=-(a∈R).f x x ax(1)当a=2时,求函数()f x的极值;(2)讨论函数()f x的单调性;(3)若对x∀∈(0,+∞),()0f x<恒成立,求a的取值范围.19.(本小题满分10分)在湖北新冠疫情严重期间,我市响应国家号召,召集医务志愿者组成医疗队驰援湖北.某医院有2名女医生,3名男医生,3名女护士,1名男护士报名参加,医院计划从医生和护士中各选2名参加医疗队.(1)求选出的4名志愿全是女性的选派方法数;(2)记X为选出的4名选手中男性的人数,求X的概率分布和数学期望.20.(本小题满分12分)物联网兴起、发展、完善极大的方便了市民生活需求.某市统计局随机地调查了该市某社区的100名市民网上购菜状况,其数据如下:(1)把每周网上买菜次数超过3次的用户称为“网上买菜热爱者”,能否在犯错误概率不超过0.005的前提下,认为是否为“网上买菜热爱者”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“网上买菜达人”,视频率为概率,在我市所有“网上买菜达人”中,随机抽取4名用户求既有男“网上买菜达人”又有女”网上买菜达人”的概率.附公式及表如下:22()=()()()()n ad bc a b c d a c b d χ-++++21.(本小题满分12分)已知数列{}n a 的首项为1,记01122123(, )(1)(1)(1n n n n n F x n a C x a C x x a C x -=-+-+-21111)(1)n n n n nn n n n x a C x x a C x ---+++-+.(1)若数列{}n a 是公比为3的等比数列,求(1, 2020)F -的值; (2)若数列{}n a 是公差为2的等差数列,求证:(, 2020)F x 是关于x 的一次多项式.22.(本小题满分14分)已知函数2()2x a f x e x ax =--,其中a >0.(1)当a =1时,求不等式2()4f x e >-在(0,+∞)上的解; (2)设()()g x f x '=,()y g x =关于直线x =lna 对称的函数为()y h x =,求证:当x <lna 时,()()g x h x <;(3)若函数()y f x =恰好在1x x =和2x x =两处取得极值,求证:12ln 2x x a +<.参考答案1.A2.D3.B4.B5.B 6.A7.A8.A9.D10.D11.C12.D13.5314.0.2 15.150 16.(1e,1){0} 17.解:(1)∵复数z 是纯虚数,∴224300m m m m ⎧-+=⎪⎨-≠⎪⎩,解得130, 1m m m =⎧⎨≠≠⎩或,故m =3, (2)∵复数z 在复平面内对应的点在第一象限∴224300m m m m ⎧-+>⎪⎨->⎪⎩,解得1301m m m m <>⎧⎨<>⎩或或,故m >3或m <0,∴实数m 的取值范围为(-∞,0)(3,+∞).18.解:(1)。

2023-2024学年四川省成都市高二下学期期中联考数学(理)试题(含解析)

2023-2024学年四川省成都市高二下学期期中联考数学(理)试题(含解析)

2023-2024学年四川省成都市高二下册期中联考数学(理)试题一、单选题1.AB BC BA ++=()A .AC B .BCC .ABD .0【正确答案】B【分析】利用向量加法的运算法则求解即可.【详解】AB BC BA AC BA BC ++=+=,故选:B .2.函数()2sin x f x x =+的导函数为()A .)2cos x f x x '(=-B .)2ln2cos x f x x '(=-C .)2cos x f x x '(=+D .)2ln2cos x f x x'(=+【正确答案】D【分析】根据给定条件,利用求导公式及导数运算法则求解作答.【详解】函数()2sin x f x x =+,求导得)2ln2cos x f x x '(=+.故选:D3.若可导函数()f x 满足()()11lim 3x f x f x∆→+∆-=∆,则()1f '=()A .1B .2C .3D .4【正确答案】C【分析】根据导数定义可直接得到结果.【详解】由导数的定义知.()()()111lim 3x f x f f x∆→+∆-'==∆故选:C.4.已知直线l 的方向向量为1,2,4)m (-= ,平面α的法向量为,1,2)n x =(-,若直线l 与平面α平行,则实数x 的值为()A .12B .12-C .10D .10-【正确答案】C【分析】依题意可得m n ⊥ ,即可得到0m n ⋅=,从而得到方程,解得即可.【详解】因为直线l 的方向向量为1,2,4)m (-= ,平面α的法向量为,1,2)n x =(-,若直线l 与平面α平行,则m n ⊥ ,即0m n ⋅=,即280x --=,解得10x =.故选:C .5.若定义在R 上的函数()f x 的导数()f x '的图象如图所示,则下列说法正确的是()A .函数()f x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增B .函数()f x 在区间(),1-∞上单调递增,在区间()1,+∞上单调递减C .函数()f x 在1x =处取极大值,无极小值D .函数()f x 在0x =处取极大值,无极小值【正确答案】A【分析】根据导函数的正负可确定()f x 单调性,结合极值点定义可确定正确选项.【详解】对于AB ,由()f x '图象可知:当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x ¢>;()f x \在(),0∞-上单调递减,在()0,∞+上单调递增,A 正确,B 错误;对于CD ,由单调性可知:()f x 在0x =处取得极小值,无极大值,CD 错误.故选:A.6.若函数()ln f x x x =在点00(,())x f x 处的切线斜率为1,则0x =()A .e -B .eC .1-D .1【正确答案】D【分析】先求出()f x ',由已知得0()1f x '=列出方程,求解即可.【详解】因为()ln 1f x x '=+,所以()f x 在点00(,())x f x 处的切线斜率为00()ln 11k f x x '==+=,解得01x =,故选:D .7.若关于x 的不等式e 0x x a -->恒成立,则a 的取值范围为()A .()e,+∞B .(),1-∞C .[)1,+∞D .(],0-∞【正确答案】B【分析】令()e xf x x a =--,将问题转化为()min 0f x >,利用导数可求得()f x 单调性,从而得到()min f x ,解不等式即可求得结果.【详解】令()e xf x x a =--,则()0f x >恒成立,()min 0f x ∴>;()e 1x f x '=- ,∴当(),0x ∈-∞时,()0f x '<;当()0,x ∈+∞时,()0f x ¢>;()f x \在(),0∞-上单调递减,在()0,∞+上单调递增,()()min 010f x f a ∴==->,解得:1a <,即a 的取值范围为(),1-∞.故选:B.8.已知正四面体A BCD -的棱长为2,若M 、N 分别是AB 、CD 的中点,则线段MN 的长为()A .2BCD .2【正确答案】B【分析】以AC 、AB、AD 作为一组基底表示出MN ,再根据数量积的运算律求出MN ,即可得解.【详解】111222MN MA AN AB AC AD =+=-++,又AC 、AB、AD 两两的夹角均为π3,且2AB AC AD === ,22111222MN AB AC ⎛⎫∴=-++ ⎪⎝⎭ ()22212224AB AC AD AB AC AB AD AD AC =++-⋅-⋅+⋅2221πππ2cos 2cos 2cos 24333AB AC AD AB AC AB AD AD AC ⎛⎫=++-⋅-⋅+⋅= ⎪⎝⎭,MN ∴.故选:B .9.函数e ()1xf x x =-的图象大致是()A .B .C .D .【正确答案】A【分析】根据图象结合函数定义域、单调性判断B ,C 错误;由函数在0x <时函数值的符号可判断D.【详解】由定义域为{1}x |x ≠,∴排除B ;又2e 2))1)x x f x x (-'(=(-,令)0f x '(>,得2x >,()f x ∴的单增区间为2,)(+∞,∴排除C ;当0x <时,()0f x <,∴排除D ;故选:A .10.若函数()2ln f x x ax x =-+有两个极值点,则a 的取值范围为()A .02a <<B .2222a -<<C .22a <-22a >D .22a >【正确答案】D【分析】函数有两个不同的极值点,则()0f x '=在()0,∞+上有两个不同的实数解,转化为二次方程在()0,∞+有两个不同的实数解,求解即可.【详解】由题意可得()f x 的定义域为()0,x ∈+∞,()21212x ax f x x a x x-+'=-+=,因为函数()f x 有两个极值点,所以2210x ax -+=在()0,∞+上有两个不同的实数解,所以28002a a ⎧->⎪⎨>⎪⎩,解得a >故选:D11.如图,半径为1的球O 是圆柱12O O 的内切球,线段AB 是球O 的一条直径,点P 是圆柱12O O 表面上的动点,则PA PB ⋅的取值范围为()A .[0,1]B.C .[0,2]D .[1,2]【正确答案】A【分析】先把,PA PB 都用PO 表示,再根据PO的模长的范围求出数量积的范围即可.【详解】))PA PB PO OA PO OB ⋅=(+⋅(+,因为线段AB 是球O 的一条直径,,1OA OB OA OB ∴-=== ,222))1PA PB PO OA PO OA PO OA PO ⋅=(+⋅(-=-=- ,又min1PO=,maxPO = [0,1]PA PB ∴⋅∈,故选:A .12.若关于x 的不等式2(2)ln 1k x x x +≤+的解集中恰有2个整数,则k 的取值范围是()A .113k <≤B .ln21183k +<≤C .ln31ln21158k ++<≤D .ln41ln312415k ++<≤【正确答案】C【分析】将不等式变形为ln 1(2)x k x x ++≤,令()f x =ln 1x x+,)2)g x k x (=(+,数形结合,转化为两个函数图象相交情况分析.【详解】0x >,∴不等式2(2)ln 1k x x x +≤+可化为ln 1(2)x k x x++≤,令()f x =ln 1x x+,2ln ()xf x x -∴=',由()0f x '>解得01x <<,由()0f x '<解得1x >,()f x ∴在0,1)(为增函数,()f x 在,)(1+∞为减函数,令)2)g x k x (=(+,则()g x 的图象恒过2,0)(-,若解集恰有2个整数,当0k ≤时,有无数个整数解,不满足题意;当0k >时,如图,2满足不等式且3不满足不等式,即8ln21k ≤+且15ln31k >+,ln31ln21158k ++∴<≤.故选:C .二、填空题13.已知2,1,3)OA =(- ,1,2,4)OB =(- ,则AB =______.【正确答案】3,3,1)(-【分析】利用空间向量的坐标运算求解作答.【详解】因为2,1,3)OA =(- ,1,2,4)OB =(- ,所以3,3,1)AB OB OA =-=(-.故3,3,1)(-14.11)d x x -(2+1=⎰______.【正确答案】2【分析】利用微积分基本定理直接运算求值.【详解】()1211(21)d 2021x x x x -+=+=+=-⎰,故2.15.若函数()cos f x kx x =-在区间()0,π上单调递减,则k 的取值范围是______.【正确答案】(],1-∞-【分析】根据函数的单调性与导函数的关系,利用分离参数法解决恒成立问题,结合三角函数的性质即可求解.【详解】由题意可知,()sin f x k x '=+,因为()f x 在区间()0,π单调递减,所以()sin 0f x k x '=+≤在()0,π上恒成立,等价于()()min sin ,0,πk x x ≤-∈即可,因为()0,πx ∈,所以0sin 1x ≤≤,即1sin 0x -≤-≤,于是有1k ≤-,所以k 的取值范围是(],1-∞-.故(],1-∞-.16.如图,正方体1111ABCD A B C D -的棱长为2,若空间中的动点P 满足1AP AB AD AA λμν=++,[0,1]λμν∈,,,则下列命题正确的是______.(请用正确命题的序号作答)①若12λμν===,则点P 到平面1AB C ②若12λμν===,则二面角P AB C --的平面角为π4;③若12λμν++=,则三棱锥1P BDA -的体积为2;④若12λμν+-=,则点P 的轨迹构成的平面图形的面积为【正确答案】②④【分析】分别以AB ,AD ,0AA 所在直线为x ,y ,z 轴建立空间直角坐标系,对于①:直接应用点到平面距离的向量公式,即可判断;对于②:直接应用面面角的向量公式,即可判断;对于③:先求出点P 到平面1BDA 的距离,即可计算出1P BDA V -,得出判断;对于④:延长1A A 至点0A ,使得102A A AA = ,取AB 中点0B ,AD 中点0D ,连接00A B ,00A D ,作出平面000B D A 与正方体的00022122)0B P D P A P λμλμ++(--=,根据空间向量共面定理得点P 在平面000B D A 上,即可作出判断.【详解】对于①:由空间向量的正交分解及其坐标表示可建立如图空间直角坐标系,所以1,1,1)P (,1(2,0,2)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,2)A ,向量1,1,1)AP =( ,设平面1AB C 的法向量1111,,)n x y z =(,由1(2,0,2)AB =,(2,2,0)AC =uuu r,则11100AB n AC n ⎧⋅=⎪⎨⋅=⎪⎩即1111220220x z x y +=⎧⎨+=⎩,取11x =-则11,1,1)n =(- ,则点P 与平面1AB C的距离为11|AP n |d |n |⋅=,故①错误;对于②:设平面ABP 的法向量2222,,)n x y z =(,又1,1,1)AP =(,1,0,0)AB =(,2200AP n AB n ⎧⋅=⎪∴⎨⋅=⎪⎩即2222=00x y z x ++⎧⎨=⎩,取21y =-,则20,1,1)n =(- ,易得平面ABC 的一个法向量3(0,0,1)n =,设二面角P AB C --的平面角为θ,则3232cos n n |n ||n |θ⋅=⋅ θ 是锐角,∴二面角P AB C --的平面角为π4,故②正确;对于③:1AP AB AD AA λμν=++ ,(2,0,0)AB = ,(0,2,0)AD = ,1(0,0,2)AA =,2,2,2)AP λμν∴=( ,则112,2,22)A P AP AA λμν=-=(-,设平面1BDA 的法向量为4444,,)n x y z =(,由(2,2,0)BD =-,1(2,0,2)BA =- ,则4444220220x y x z -+=⎧⎨-+=⎩,取41x =则41,1,1)n =( ,则点P 到平面1BDA的距离为144A P n d n ⋅== 由12λμν++=得3d易知12BDA S =(=△则三棱锥111233P BDA BDA V S d -=⋅=△,故③错误;对于④:延长1A A 至点0A ,使得102A A AA = ,取AB 中点0B ,AD 中点0D ,连接00A B ,00A D 并延长,交棱1BB ,1DD 于点E ,F ,交11A B ,11A D 延长线于点M ,N ,连接MN ,交棱11B C ,11C D 于点G ,H ,连接EG ,HF ,如图所示,则平面000B D A 与正方体的截面为六边形00B D FHGE,00B D =在平面11ABB A 中,01//AA BB ,点0B 为AB 中点,000B A A B EB ∴∠=∠,00AB BB =,在00AB A 和0BB E 中00000000AA B BEB AB A BB E AB BB∠=∠⎧⎪∠=∠⎨⎪=⎩ ,000()AB A BB E AAS ∴≅ ,01AA BE ∴==,1B E BE ∴=,即点E 为1BB 中点,0B E =,同理可得,0EG GH HF D F ===∴六边形00B D FHGE则其面积26S ==12λμν+-= ,1AP AB AD AA λμν=++,10001)22122)2AP AB AD AA AB AD AA λμλμλμλμ∴=++(+-=++(-- ,整理得00022122)0B P D P A P λμλμ++(--=,∴点P 在平面000B D A 上,∴当12λμν+-=,点P 的轨迹构成的平面图形的面积为故②④.三、解答题17.已知空间向量1,0,1)a =(,2,1,0)b =(- ,4,,)c λλλ=(+- .(1)若(a b )//c +,求λ;(2)若ka b + 与2a b -相互垂直,求k .【正确答案】(1)2λ=(2)12k =【分析】(1)根据空间向量共线公式列式求参即可;(2)根据空间向量垂直数量积为0列式求参即可.【详解】(1)311a b (,,)+=- ,()//a b c+ (a b )c μ∴+= ,R μ∈,即34)μλ=(+,且1μλ-=-,1μλ=,解得2λ=;(2)(2,1,)ka b k k +=+- ,2012a b (,,)-= ,又2210(ka b )(a b )k +⋅-=-= ,解得12k =.18.已知函数3215()2333f x x x x =-++.(1)求曲线()y =f x 在点1,1))f ((处的切线方程;(2)求函数在区间[1,4]-的最大值与最小值.【正确答案】(1)3y =(2)max )3f x (=;min 11)3f x (=-【分析】(1)利用导数求出切线的斜率,并结合切点得到切线方程;(2)先利用导数求得()f x 在区间[1,4]-上的单调区间,进而求得()f x 在区间[1,4]-上的最大值与最小值.【详解】(1)1)3f (= ,∴切点为1,3)(,又2)43f x x x '(=-+ ,1)0f '∴(=,∴切线方程为301)y x -=(-,即3y =,即曲线()y =f x 在点1,1))f ((处的切线方程为3y =;(2)由(1)知2)43f x x x '(=-+,令)0f x '(>,得1x <或3x >,令)0f x '(<,得13x <<,∴函数()f x 在区间[1,1)-,3,4](为增函数,在区间[1,3]为减函数,又1)3f (= ,4)3f (=,max )1)4)3f x f f ∴(=(=(=;又111)3f (-=- ,53)3f (=,min 11)1)3f x f ∴(=(-=-.19.如图,在正三棱柱111ABC A B C -中,1AA ==D 是1BB 的中点.(1)求异面直线1A D 与BC 所成角的余弦值;(2)证明:平面11A DC ⊥平面ADC .【正确答案】77;(2)证明见解析.【分析】(1)分别作AC ,11A C 的中点O ,1O ,连接OB ,1OO ,以O 为坐标原点,分别以OA ,OB ,1OO 所在直线为x y z ,,轴,建立空间直角坐标系,求出直线1A D 与BC 的空间向量,即可利用线线角的公式求解.(2)分别求出平面11A DC 和平面ADC 的法向量,利用法向量数量积为0,即可证明.【详解】(1)如图,分别作AC ,11A C 的中点O ,1O ,连接OB ,1OO ,在正三棱柱111ABC A B C -中,1OO ⊥底面ABC ,且BO AC ⊥,则OA ,OB ,1OO 互相垂直,以O 为坐标原点,分别以OA ,OB ,1OO 所在直线为x y z ,,轴,建立如图空间直角坐标系,已知1323AA ==11,0,23)A (,0,3,3)D (,0,3,0)B (,1,0,0)C (-,设异面直线1A D 与BC 所成角为θ,2]π(0,θ∈,1A D =(-,1,BC =(--,11cos |A D BC ||A D ||BC |θ⋅∴==⋅uuu r uu u r uuu r uu u r (2)由题可知1,0,0)A (,1C (-,112,0,0)A C =(-,AD =(- ,2,0,0)AC =(-,设平面11A DC 的法向量为()111,,m x y z =r ,则1111111020m A D x m A C x ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩ ,令11y =,0,1,1)m ∴=(r ,设平面ADC 的法向量为222,,)n x y z =(r,则2222020n AD x n AC x ⎧⋅=-++=⎪⎨⋅=-=⎪⎩ ,令21y =,0,1,1)n ∴=(-r ,110m n ⋅=-=r r Q ,∴平面11A DC ⊥平面ADC .20.制作一个容积为V 的圆柱体容器(有底有盖,不考虑器壁的厚度),设底面半径为r .(1)把该容器外表面积S 表示为关于底面半径r 的函数;(2)求r 的值,使得外表面积S 最小.【正确答案】(1)()222πV S r r r=+,()0,r ∈+∞(2)r =【分析】(1)根据圆柱体积公式可表示出圆柱的高h ,结合圆柱表面积公式可表示出()S r ;(2)利用导数可求得()S r 的单调性,进而确定最值点.【详解】(1)设圆柱体水杯的高为h ,则2πV h r =,∴表面积()2222π2π2πV S r r rh r r =+=+,即()222πV S r r r=+,()0,r ∈+∞.(2)由(1)得:()224πV S r r r'=-;令()0S r '=,解得:r则当0r <<()0S r '<,()S r单调递减;当r >时,()0S r '>,()S r 单调递增;∴当r ()S r 取得最小值.21.在如图①所示的长方形ABCD 中,3AB =,2AD =,E 是DC 上的点且满足3DC EC =,现将三角形ADE 沿AE 翻折至平面APE ⊥平面ABCD (如图②),设平面PAE 与平面PBC 的交线为l .(1)求二面角B l A --的余弦值;(2)求l 与平面ABCE 所成角的正弦值.【正确答案】(1)6655【分析】(1)建立空间直角坐标系,利用空间向量法求二面角B l A --的余弦值;(2)设直线AE 与BC 相交于点F ,PF 即为l ,PFO ∠是l 与平面ABCE 所成角,计算求解即可.【详解】(1)如图,取AE 的中点O ,连接PO ,2AD DE ==,则PO AE ⊥,又 平面PAE ⊥平面ABCE ,又平面PAE 平面ABCE AE =,又PO ⊂平面PAEPO ∴⊥平面ABCE ,延长DO 交AB 于点G ,由DE AB ∥,O 为AE 的中点,则2AG DE ==,OG AE ⊥,2OG OA ==,分别以OA OG OP ,,所在直线为x y z ,,轴建立空间直角坐标系,如图所示,)2,0,0A ,()2,0G ,()0,2,0D -,()2,0,0E ,(2P ,232B ⎛⎫ ⎪ ⎪⎝⎭,PO ⊥ 平面ABCE ,OG ⊂平面ABCE ,OG OP ∴⊥,又OG AE ⊥ ,AE OP O = ,,AE OP ⊂平面PAE ,所以OG ⊥平面PAE ,∴平面PAE 的法向量为OG ,且2,0)OG =,又(2,2,0)CB DA == ,232(,2)PB = ,设平面PBC 的法向量为(,,)n x y z = ,则0022CB n PB n x y z ⎧⋅=⎪⎨⋅=+=⎪⎩,令1y =,则(1,1,2)n =- ,设二面角B l A --的平面角为θ,cos ,OG n OG n OG n⋅= 由题知π(0,2θ∈,二面角B l A --(2)设直线AE 与BC 相交于点F ,F BC ∈ ,F ∈平面PBC ,同理F ∈平面PAE,由平面公理3可得∈F l ,又P l ∈,PF ∴即为l ,PO ⊥ 平面ABCE ,OF ∴是PF 在平面ABCE 内的投影,PFO ∴∠是l 与平面ABCE 所成角,由PO =,又OF =PF ∴sin PO PFO PF ∠=l ∴与平面ABCE22.已知函数()ln 1)f x x =(+,)e )x g x f x (=(.(1)求函数()g x 的导函数在0,)(+∞上的单调性;(2)证明:0,)a b ∀∈(+∞,,有)))g a b g a g b (+>(+(.【正确答案】(1)()g x '在0,)(+∞上单调递增;(2)证明见解析.【分析】(1)直接对函数求导,利用导数与函数间的关系即可求出结果;(2)构造函数()()()(00)F x g x a g x x a =+->>,,将求证结果转化判断函数值大小,再利用函数的单调性即可求出结果.【详解】(1)因为)e ()e ln(1)x x g x f x x (==+,所以e 1)e ln(1)+=e [ln(1)]11x xx g x x x x x '(=+++++,令))h x g x '(=(,即1)=e [ln(1)]1x h x x x (+++,又因为222121)e [ln(1)]=e [ln(1)]11)1)x x x h x x x x x x +'(=+++++(+(+,又因为0,)x ∈(+∞,所以11,)x +∈(+∞,即有221ln(1)0,0(1)x x x ++>>-,所以()0h x '>,所以)h x (在区间0,)(+∞上单调递增,即()g x '在0,)(+∞上单调递增;(2)由题知(0)0g =,要证)))g a b g a g b (+>(+(,即证)))0)g a b g b g a g (+-(>(-(,令()()()(00)F x g x a g x x a =+->>,,则()()()F b g b a g b =+-,(0)()(0)F g a g =-即证)0)F b F (>(,由(1)知()g x '在区间0,)(+∞上单调递增,又因为x a x +>,所以)))0F x g x a g x '''(=(+-(>,所以))()F x g x a g x (=(+-在区间0,)(+∞上单调递增,因为0b >,所以)0)F b F (>(,故命题得证.。

江苏省南通市2023-2024学年高二下学期期中质量监测数学试题(含简单答案)

江苏省南通市2023-2024学年高二下学期期中质量监测数学试题(含简单答案)

南通市2023-2024学年高二下学期期中质量监测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,若,则( )A. B. C. 4D. 22. 记函数的导函数为.若,则( )A. B. 0C. 1D. 23. 某产品的广告费用(单位:万元)与销售额(单位:万元)之间有如下关系:2456830405060已知与的线性回归方程为,则等于( )A. 68B. 69C. 70D. 714. 已知函数,则的图象大致为( )A. B.(1,,2)a m = (2,4,)b n =- //a bm n +=4-6-()f x ()f x '()sin f x x x =+()0f '=1-x y x yay x 715y x =+a ()ln f x x x =-()f xC. D.5. 在的展开式中,含项的系数为( )A 16B. -16C. 8D. -86. 甲、乙两人投篮命中率分别为和,并且他们投篮互不影响.现每人分别投篮2次,则甲与乙进球数相同的概率为( )A.B.C. D.7. 今年春节,《热辣滚汤》、《飞驰人生2》、《熊出没之逆转时空》、《第二十条》引爆了电影市场,小帅和他的同学一行四人决定去看电影.若小帅要看《飞驰人生2》,其他同学任选一部,则恰有两人看同一部影片的概率为( )A.B.C.D.8. 已知函数,若对任意正数,,都有恒成立,则实数a 的取值范围( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 有3名学生和2名教师排成一排,则下列说法正确的是( )A. 共有120种不同的排法B. 当2名教师相邻时,共有24种不同的排法C. 当2名教师不相邻时,共有72种不同的排法D. 当2名教师不排在两端时,共有48种不同的排法.4(1)(2)x x -+3x 121373611361336173696491619324564()21ln 2f x a x x =+1x ()212x x x ≠()()12121f x f x x x ->-10,4⎛⎤ ⎝⎦10,4⎛⎫⎪⎝⎭1,4⎡⎫+∞⎪⎢⎣⎭1,4⎛⎫+∞⎪⎝⎭10. 已知,则( )A. 展开式各项的二项式系数的和为B. 展开式各项的系数的和为C.D. 11. 如图所示的空间几何体是由高度相等的半个圆柱和直三棱柱组合而成,,,是上的动点.则( )A. 平面平面B. 为的中点时,C. 存在点,使得直线与的距离为D. 存在点,使得直线与平面所成的角为三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量,且,则__________.13. 已知事件相互独立.若,则__________.14. 若函数有绝对值不大于1的零点,则实数的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数.(1)求曲线在处的切线方程;(2)求在上的最值.1002100012100(12)x a a x a x a x -=++++ 10021-024********a a a a a a a a ++++>++++ 123100231000a a a a ++++< ABF DCE -AB AF ⊥4AB AD AF ===G »CDADG ⊥BCGG »CD//BF DG G EFAG G CF BCG 60()22,X N σ:(1)0.7P X >=(23)P X <<=,A B ()()0.6,0.3P A P B A ==()P AB =()334f x x x a =-+a ()()1e xf x x =-()y f x =()()1,1f ()f x []1,2-16. 如图,在直四棱柱中,底面是梯形,,且是的中点.(1)求点到平面的距离;(2)求二面角正弦值.17. “五一”假期期间是旅游的旺季,某旅游景区为了解不同年龄游客对景区的总体满意度,随机抽取了“五一”当天进入景区的青、老年游客各120名进行调查,得到下表:满意不满意青年8040老年10020(1)依据小概率值的独立性检验,能否认为“是否满意”与“游客年龄”有关联;(2)若用频率估计概率,从“五一”当天进入景区的所有游客中任取3人,记其中对景区不满意的人数为,求的分布列与数学期望.附:,其中.0.100.050.0100.0050.0012.7063.8416.6357.87910.82818.已知函数.(1)讨论单调性;的的1111ABCD A B C D -ABCD //AB ,DC DA DC ⊥111,2AD DD CD AB E ====AB C 1BC D 1B C D E --0.005α=X X ()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++()20P x χ≥0x 21()(1)ln ,R 2f x ax a x x a =+--∈()f x(2)当时,证明:;(3)若函数有两个极值点,求的取值范围.19. 现有外表相同,编号依次为的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.随机选择其中一个袋子,并从中依次不放回取出三个球.(1)当时,①假设已知选中恰为2号袋子,求第三次取出的是白球的概率;②求在第三次取出的是白球的条件下,恰好选的是3号袋子的概率;(2)记第三次取到白球的概率为,证明:.的0a >3()22f x a≥-2()()F x ax x f x =--11222,()3x x x x <<12()()F x F x -()1,2,3,,3n n ≥ n ()1,2,3,,k k n = k n k -4n =p 2p 1<南通市2023-2024学年高二下学期期中质量监测数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】AC【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】##【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2),.【16题答案】【答案】(1(2).【17题答案】【答案】(1)能认有关 (2)分布列略,【18题答案】【答案】(1)答案略; (2)证明略; (3).【19题答案】【答案】(1)①;② (2)证明略为0.2150.1232511,44⎡⎤-⎢⎥⎣⎦e e 0x y --=2max ()(2)e f x f ==min ()(0)1f x f ==-13()34E X =3(0,ln 2)4-1216。

福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案

福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案

2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。

2021-2022学年湖南省邵阳市第二中学高二下学期期中数学试题(解析版)

2021-2022学年湖南省邵阳市第二中学高二下学期期中数学试题(解析版)

2021-2022学年湖南省邵阳市第二中学高二下学期期中数学试题一、单选题1.已知集合{}{}21,,3A x x n n Z B ==+∈=,则A B =( ) A .{1,3} B .{1,3,5,7,9}C .{3,5,7}D .{1,3,5,7}【答案】B【分析】先求出集合[)1,10B =,再根据集合的交集运算求得答案.【详解】由题意得[){3}1,10B x ==,其中奇数有1,3,5,7,9 又{}21,Z A x x n n ==+∈,则{}1,3,5,7,9A B ⋂=, 故选:B .2.设复数z 满足12i 3i,z +-=-+,则z =( )A .6B .C .D .5【答案】D【分析】先求得z ,然后求得z .【详解】因为4i 3z =-+,所以5z =. 故选:D3.已知a =(1,2),b =(2,-2),c =(λ,-1),()//2c a b +,则λ等于( ) A .-2 B .-1 C .-12D .12【答案】A【分析】利用两个向量11,ax y 与22,bx y 平行的坐标公式:12210x y x y -=求解.【详解】∵a =(1,2),b =(2,-2),∴2a b +=(4,2), 又c =(λ,-1),()//2c a b +,∴2λ+4=0,解得λ=-2, 故选:A 4.函数1(1)1y x x x =+>-+的最小值为( ) A .3 B .2C .1D .0【答案】C【分析】根据基本的不等式,构造定值,即可求解.【详解】解:111111y x x =++-≥=+(当且仅当111x x +=+时,即0x =时取“=”),所以最小值为1, 故选:C.5.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为( ) A .23B .12C .14D .13【答案】A【详解】分析:先求出基本事件总数n=33A =6,再求出2本数学书相邻包含的基本事件个数m=22A 22A =4,由此能求出2本数学书相邻的概率.详解:将2本不同的数学书和1本语文书在书架上随机排成一行,基本事件总数n=33A =6,2本数学书相邻包含的基本事件个数m=22A 22A =4,∴2本数学书相邻的概率为p=4263=. 故选A点睛:本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.6.若6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为-20,则a =( )A .2B .-2C .1D .-1【答案】D【分析】由题意利用二项展开式的通项公式,求的展开式的常数项.【详解】已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的通项公式为:6621r r r r T C a x -+=⋅⋅,令620r -=,求得:3r =,可得展开式的常数项为:63320C a ⋅-=,解得:1a =-.故选:D.7.函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .【答案】D【详解】因为11()()cos ()cos ()f x x x x x f x x x -=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.【解析】1.函数的基本性质;2.函数的图象.8.已知21()ln (0)2f x a x x a =+>若对于任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A .(]0,1B .[)1,+∞C .(]3,3-D .[)1,2e【答案】B 【分析】根据条件()()12122f x f x x x ->-可变形为112212()2[()]20f x x f x x x x --->-,构造函数()21()2ln ()202g x f x x a x a x x =-=+>-,利用其为增函数即可求解. 【详解】根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>- 由112212()2[()]20f x x f x x x x --->-知()g x 为增函数, 所以()()200,0ag x x x a x'=+-≥>>恒成立, 分离参数得()2a x x ≥-,而当0x >时,()2x x -在1x =时有最大值为1,故1a ≥. 故选:B【点睛】关键点点睛:本题由条件()()12122f x f x x x ->-恒成立,转化为112212()2[()]20f x x f x x x x --->-恒成立是解题的关键,再根据此式知函数()21()2ln ()202g x f x x a x a x x =-=+>-为增函数,考查了推理分析能力,属于中档题. 二、多选题9.下列命题正确的有( )A .若命题:p x ∃∈R ,210x x ++<,则:p x ⌝∀∈R ,210x x ++≥B .不等式2450x x -+>的解集为RC .1x >是()()120x x -+>的充分不必要条件D .“p q ∧为真”是“p q ∨为真”的必要不充分条件 【答案】ABC【分析】由题意,选项A ,命题p 为特称命题,而p ⌝是该命题的否定;选项B ,求出不等式2450x x -+>即可;选项C ,求出不等式()()120x x -+>,然后判断条件和结论之间的关系即可;选项D ,分别写出“p q ∧为真”和“p q ∨为真”时,p q 需要满足的情况,即可做出判断.【详解】选项A ,命题p 为特称命题,而p ⌝是该命题的否定,满足题意,故该选项正确;选项B ,2245(1)10x x x -+=-+>,故其解集为R ,该选项正确;选项C ,()()120x x -+>,所以1x >或2x -<,而1x >是1x >或2x -<的充分不必要条件,故该选项正确;选项D ,“p q ∧为真”则p 真,q 真,“p q ∨为真”则,p q 至少有一个为真,所以“p q ∧为真”是“p q ∨为真”的充分不必要条件,故该选项错误. 故选:ABC.10.已知函数()sin()f x x π=-223,则( )A .函数()f x 的周期为πB .函数()f x 的图象关于原点对称C .()f x 的最大值为2D .函数()f x 在区间(0,)2π上单调递增【答案】AC【分析】根据正弦函数的性质求解判断. 【详解】由三角函数周期得其周期为22T ππ==,A 正确;(0)2sin()03f π=-=≠,B 错;由正弦函数性质知max ()2f x =,C 正确;(0,)2x π∈时,22(,)333x πππ-∈-,易知232x ππ-=,即512x π=时,()f x 取得最大值2,因此()f x 在(0,)2π上不是单调函数,D 错.故选:AC .11.已知抛物线2:2(0)C y px p =>的焦点F 到准线l 的距离为2,则( ) A .焦点F 的坐标为(1,0)B .过点(1,0)A -恰有2条直线与抛物线C 有且只有一个公共点 C .直线10x y +-=与抛物线C 相交所得弦长为8D .抛物线C 与圆225x y +=交于,M N 两点,则4MN = 【答案】ACD【分析】先求出抛物线方程,对选项逐一判断即可. 【详解】由题可知抛物线方程为24y x = 对于A ,焦点F 的坐标为(1,0),故A 正确对于B ,过点(1,0)A -有抛物线的2条切线,还有0y =,共3条直线与抛物线有且只有一个交点,故B 错误对于C ,22104404x y y y y x +-=⎧⇒+-=⎨=⎩,弦长为128y -===,故C 正确对于D ,222254504x y x x y x ⎧+=⇒+-=⎨=⎩,解得1x =(5x =-舍去),交点为(1,2)±,有4MN =,故D 正确故选:ACD12.在棱长为1的正方体1111ABCD A B C D -中,M 为底面ABCD 的中心,111,(0,1)DQ D A λλ=∈,N 为线段AQ 的中点,则( )A .CN 与QM 共面B .三棱锥A DMN -的体积跟λ的取值无关C .13λ=时,过A ,Q ,M 42213+D .14AM QM λ=⊥时,【答案】ABC【分析】由,M N 为,AC AQ 的中点,得到//MN CQ ,可判定A 正确;由N 到平面ABCD的距离为定值12,且ADM ∆的面积为定值14,根据A DMN N ADM V V --=,可得判定B 正确,由13λ=时,得到,,A Q M 三点的正方体的截面ACEQ 是等腰梯形,可判定C 正确;当14λ=时,根据222AM AQ QM +>,可判定D 不正确.【详解】在ACQ 中,因为,M N 为,AC AQ 的中点,所以//MN CQ , 所以CN 与QM 共面,所以A 正确;由A DMN N ADM V V --=,因为N 到平面ABCD 的距离为定值12,且ADM ∆的面积为定值14, 所以三棱锥A DMN -的体积跟λ的取值无关,所以B 正确; 当13λ=时,过,,A Q M 三点的正方体的截面ACEQ 是等腰梯形,所以平面截正方体所得截面的周长为24422132219l +++, 所以C 正确; 当14λ=时,可得2222219251121,1,()()216162416AM AQ QM ==+==+=,则222AM AQ QM +>,所以AM QM ⊥不成,所以D 不正确. 故选:ABC三、填空题13.某天,甲、乙两地下雨的概率分别为12和13,且两地同时下雨的概率为15,则这一天,在乙地下雨的条件下,甲地也下雨的概率为___________.【答案】35【分析】设乙地下雨为事件A ,甲地下雨为事件B ,可得11(),()35P A P AB ==,根据条件概率的计算公式,即可求解.【详解】设乙地下雨为事件A ,甲地下雨为事件B ,可得11(),()35P A P AB ==,所以在乙地下雨的条件下,甲地也下雨的概率为()3(|)()5P AB P B A P A ==. 故答案为:35.14.函数212()log (9)f x x =-的单调递增区间为__________.【答案】(,3)-∞-【分析】先求得()f x 的定义域,根据复合函数单调性的求法,即可得答案. 【详解】由题意得290x ->,解得3x >或3x <-, 设29u x =-,则12()log f x u=,根据复合函数的单调性的求法可得,求()f x 增区间,即求29u x =-的减区间, 因为29u x =-为开口向上的抛物线,对称轴为0x =, 所以29u x =-的减区间为(,0)-∞,所以212()log (9)f x x =-的增区间为(,3)-∞-. 故答案为:(,3)-∞-15.给图中A ,B ,C ,D ,E ,F 六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.【答案】96【分析】通过分析题目给出的图形,可知要完成给图中A 、B 、C 、D 、E 、F 六个区域进行染色,最少需要3种颜色,即AF 同色,BD 同色,CE 同色,由排列知识可得该类染色方法的种数;也可以4种颜色全部用上,即AF ,BD ,CE 三组中有一组不同色,同样利用排列组合知识求解该种染法的方法种数,最后利用分类加法求和.【详解】解:要完成给图中A 、B 、C 、D 、E 、F 六个区域进行染色,染色方法可分两类,第一类是仅用三种颜色染色,即AF 同色,BD 同色,CE 同色,则从四种颜色中取三种颜色有344C =种取法,三种颜色染三个区域有336A =种染法,共4624⨯=种染法;第二类是用四种颜色染色,即AF ,BD ,CE 中有一组不同色,则有3种方案(AF 不同色或BD 不同色或CE 不同色),先从四种颜色中取两种染同色区有2412A =种染法,剩余两种染在不同色区有2种染法,共有312272⨯⨯=种染法. ∴由分类加法原理得总的染色种数为247296+=种.故答案为:96.【点睛】本题考查了排列、组合、及简单的计数问题,解答的关键是正确分类,明确相邻的两区域不能染相同的颜色,属于中档题.16.若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________. 【答案】(4,5)【分析】由已知得()'240f x x ax =-+=在(1,4)上存在变号零点,参变分离后利用导数讨论新函数的单调性后可得实数a 的取值范围.【详解】解:函数()324132x a f x x x =-++,'2()4f x x ax ∴=-+,若函数()f x 在区间(1,4)上不单调,则()'240f x x ax =-+=在(1,4)上存在变号零点,由240x ax -+=得4a x x=+, 令4()g x x x =+,(1,4)x ∈,'2(2)(2)()x x g x x +-=,()g x ∴在()1,2递减,在()2,4递增,而()422+42g ==,()411+51g ==,()444+54g ==, 所以45a <<.故答案为:()45,. 四、解答题17.在①(sin sin )()(sin sin )A B a b C B c +-=-,②sin cos()6a B b A π=-,③sinsin 2B Cb a B +=这三个条件中任选一个,补充到下面的问题中并作答.问题:在ABC 中,内角A ,B ,C 的对边分别为,,a b c(1)求角A(2)若b c +=a =ABC 的面积. 【答案】(1)条件选择见解析,3A π=【分析】(1)若选①,由正弦定理边角互化,由余弦定理得出角A ;若选②,由正弦定理边角互化,利用两角和与差公式化简得出角A ;若选③,由正弦定理结合诱导公式和二倍角公式得出角A .(2)根据(1)的结论,由余弦定理得出bc ,进而可得三角形的面积; 【详解】(1)若选①,由正弦定理,得(a b)()(c b)a b c +-=-, 即222b c a bc +-=,所以2221cos 222b c a bc A bc bc +-===, 因为(0,)A π∈,所以3A π=.若选②,由正弦定理,得sin sin sin cos()6A B B A π=-.因为0B π<<,所以sin 0B ≠,所以cos()s 6in A A π=-,化简得1sin sin 2A A A +,所以cos()06A π+=.因为0A π<<,所以3A π=.若选③,由正弦定理,得sin sin sin sin 2B CB A B +=. 因为0B π<<, 所以sin 0B ≠,所以sin sin 2B CA +=. 因为222B C A π+=-,所以cos 2sin cos 222A A A=.因为0A π<<,022A π<<, 所以cos02A ≠,所以1sin 22A =,所以3A π=.(2)因为2222()3a b c bc b c bc =+-=+-,a =b c +=2bc =,所以11sin 2sin 223ABCSbc A π==⨯⨯=18.已知正项等差数列{}n a 的前n 项和为3,9n S S =,若1231,1,3a a a +++构成等比数列. (1)求数列{}n a 的通项公式.(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:13n T ≥【答案】(1)21n a n =-;(2)证明见解析.【分析】(1)由等差数列和等比数列的定义,即可求出通项公式.(2)利用裂项相消法即可求出数列的和,进而利用不等式放缩即可证明结果. 【详解】(1)由{}n a 为等差数列,39,S = 得239a =,则23,a =又1231,1,3a a a +++构成等比数列, 所以()2132()(11)3a a a ++=+, 即()461,)6(d d -+= 解得2d =或4d =-(舍), 所以21n a n =-; (2)因为()()1111121212)21211(n n a a n n n n +=--+-+=, 所以12231111n n n T a a a a a a +=+++… 111111123352121n n ⎛⎫=-+-+⋅⋅⋅+- ⎪-+⎝⎭11111213221n n n ==≥=+++19.如图,在四棱锥P ﹣ABCD 中,O 是边长为4的正方形ABCD 的中心,PO ⊥平面ABCD ,E 为BC 的中点.(1)求证:平面P AC⊥平面PBD;(2)若PE=3,求二面角D﹣PE﹣B的余弦值.【答案】(1)证明见解析;(2)32929 -【分析】(1)先证AC⊥平面PBD,即可用线面垂直即可推证面面垂直;(2)以AC中点O为坐标原点,建立空间直角坐标系,求得两个平面的法向量,即可用向量法求得二面角的余弦值.【详解】(1)证明:由正方形ABCD可得:AC⊥BD.由PO⊥平面ABCD,AC⊂平面ABCD,∴PO⊥AC.又PO∩BD=O,,BD PO⊂平面PBD,∴AC⊥平面PBD,AC⊂平面P AC,∴平面P AC⊥平面PBD;(2)取AB的中点O,连接OM,OE.建立如图所示的空间直角坐标系.OP225PE OE-(0,0,0),(2,2,0),(0,2,0),(2,2,0),(0,0,5)O B E D P --(2,4,0),(2,2,5)DE DP ==,设平面DPE 的法向量为n =(x ,y ,z ), 则00n DE n DP ⎧⋅=⎨⋅=⎩,即2402250x y x y z +=⎧⎪⎨++=⎪⎩,取(25,5,2)n =-.同理可得平面PEB 的法向量(0,5,2)m =.9329cos ,29299m n m n m n ⨯<>===⨯⋅.由图可知:二面角D ﹣PE ﹣B 的平面角为钝角. ∴二面角D ﹣PE ﹣B 的余弦值为32929-. 【点睛】本题考查由线面垂直推证面面垂直,以及用向量法求二面角的余弦值,属综合中档题.20.在平面直角坐标系中,已知椭圆()2222:10x y a b a bΓ+=>>的左、右顶点分別为A 、B ,右焦点F ,且椭圆Γ过点()0,5、2,3⎛⎫⎪⎝⎭5,过点F 的直线l 与椭圆Γ交于P 、Q 两点(点P 在x 轴的上方).(1)求椭圆Γ的标准方程;(2)设直线AP 、BQ 的斜率分別为1k 、2k ,是否存在常数λ,使得120k k λ+=?若存在,请求出λ的值;若不存在,请说明理由. 【答案】(1)22195x y += (2)存在,15λ=-【分析】(1)由题意将点(5、2,3⎛⎫⎪⎝⎭5的坐标代入椭圆方程可求出,a b 的值,从而可求得椭圆方程,(2)由题意设直线l 的方程为2x my =+,点()11,P x y ,()22,Q x y ,将直线方程代入椭圆方程中消去x ,整理后利用根与系数的关系,()()11211222123333y y x k x y k y x x λ-+-===+-,由于,P Q在椭圆上,所以可得()22225339x y x y +=--,代入上式结合前面的式子化简可得结果 【详解】(1)因为椭圆Γ过点(、2,3⎛⎫⎪⎝⎭5,则有2242519b ab⎧=⎪⎨+=⎪⎩,解得3a b =⎧⎪⎨=⎪⎩所以椭圆Γ的标准方程为22195x y +=.(2)设存在常数λ,使得120k k λ+=.由题意可设直线l 的方程为2x my =+,点()11,P x y ,()22,Q x y ,则222,1,95x my x y =+⎧⎪⎨+=⎪⎩又由得()225920250m y my ++-=,()290010m ∆=+>,且1222059my y m +=-+,1222559y y m =-+ ()()11211222123333y y x k x y k y x x λ-+-===+-. 又因为2222195x y +=,即2222599y x =--,即()22225339x y x y +=--, 所以()()()()1212121299533555y y y y x x my my λ---==++++即()122121295525y y m y y m y y λ--=⎡⎤+++⎣⎦222222252599159592255252055525595959m m m m m m m m λ⎛⎫⎛⎫---- ⎪ ⎪++⎝⎭⎝⎭-===⎡⎤⎛⎫⎛⎫⨯-+-+ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦,即15λ=-,所以存在常数使得120k k λ+=21.某超市每月从一厂家购进一批牛奶,每箱进价为30元,零售价为50元.若进货不足,则该超市以每箱34元的价格进行补货;若销售有剩余,则牛奶厂以26元回收.为此收集并整理了前20个月该超市这种牛奶的销售记录,得到了如下数据:以频率代替概率,记X 为这家超市每月销售该牛奶的箱数,n 表示超市每月共需购进该牛奶的箱数.(1)求X 的分布列和均值;(2)以销售该牛奶所得的利润的期望为决策依据,在75n =和80n =之中选一个,应选用哪个?【答案】(1)分布列见解析;期望为63 (2)应选n =75【分析】(1)列出X 所有可能的取值,计算X 取每个值的概率,写出分布列(2)分别计算75n =和80n =时超市销售该牛奶所得利润的期望,并进行比较,最后作决策. 【详解】(1)X 的所有可能取值为:50,60,70,80()4500.220P X ===;()8600.420P X ===; ()6700.320P X ===;()2800.120P X ===; 所以分布列为:()500.2600.4700.3800.163E X =⨯+⨯+⨯+⨯=.(2)①当75n =时,设1Y 为“超市销售该牛奶所得的利润”,则当50X =时,12050254900Y =⨯-⨯=;当60X =时,120601541140Y =⨯-⨯=; 当70X =时,12070541380Y =⨯-⨯=;当80X =时,120755161580Y =⨯+⨯=; 所以1Y 的分布列为:()19000.211400.413800.315800.11208E Y =⨯+⨯+⨯+⨯=, ②当80n =时,设2Y 为“超市销售该牛奶所得的利润”,则当50X =时,22050304880Y =⨯-⨯=; 当60X =时,220602041120Y =⨯-⨯=; 当70X =时,220701041360Y =⨯-⨯=; 当80X =时,220801600Y =⨯=; 所以2Y 的分布列为:()28800.211200.413600.316000.11192E Y =⨯+⨯+⨯+⨯=,()()12E Y E Y >,故应选75n =. 22.设()ln af x x x x=+,32()3g x x x =--. (1)当1a =时,求()f x 在点()1,1处的切线方程;(2)如果对任意的s ,1[,2]2t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.【答案】(1)1y = (2)1a ≥【分析】(1)由1a =得到1()ln f x x x x =+,求导21()ln 1,(0,)f x x x x'=+-∈+∞,求得(1)f ',写出切线方程;(2)利用导数法求得函数32()3,[0,2]g x x x x =--∈的最大值1,将问题转化为1,22x ⎡∈⎤⎢⎥⎣⎦时,()ln 1af x x x x=+≥恒成立,进而转化为2ln a x x x ≥-恒成立求解. 【详解】(1)解:当1a =时,1()ln f x x x x=+, 则21()ln 1,(0,)f x x x x'=+-∈+∞. 函数()f x 在(1,1)处的切线的斜率(1)0k f '==, 又切点为()1,1,所以()f x 在(1,1)处的切线方程为1y =; (2)对于函数32()3,[0,2]g x x x x =--∈,22()3233g x x x x x ⎛⎫'=-=- ⎪⎝⎭,令()0g x '=,得0x =或23x =, 当x 变化时,()g x ',()g x 变化情况如下表:由上表可知:min 285()327g x g ⎛⎫==- ⎪⎝⎭,max ()(2)1g x g ==,所以在区间1,22⎡⎤⎢⎥⎣⎦上,()g x 的最大值为(2)1g =.因此,原问题等价于当1,22x ⎡∈⎤⎢⎥⎣⎦时,()ln 1a f x x x x =+≥恒成立等价于2ln a x x x ≥-恒成立,记2()ln h x x x x =-,()12ln h x x x x '=--,(1)0h '=,记()12ln m x x x x =--,()32ln m x x '=--,由于1,22x ⎡∈⎤⎢⎥⎣⎦,()32ln 0m x x '=--<,所以()()12ln m x h x x x x '==--在1,22⎡⎤⎢⎥⎣⎦上递减,,当1,12x ⎡⎫∈⎪⎢⎣⎭时,()0h x '>,(1,2]x ∈时,()0h x '<,即函数2()ln h x x x x =-在区间1,12⎡⎫⎪⎢⎣⎭上递增,在区间(1,2]上递减,所以max ()(1)1h x h ==, 所以1a ≥.【点睛】方法点睛:双变量存在与恒成立问题:若1122,x D x D ∀∈∀∈, ()()12f x g x >成立,则 ()()min max f x g x >; 若1122,x D x D ∃∈∃∈, ()()12f x g x >成立,则 ()()max min f x g x >; 若1122,x D x D ∃∈∀∈, ()()12f x g x >成立,则 ()()max max f x g x >; 若1122,x D x D ∀∈∃∈, ()()12f x g x >成立,则 ()()min min f x g x >;若1122,x D x D ∀∈∃∈, ()()12f x g x =成立,则 ()f x 的值域是()g x 的子集.。

2023-2024学年天津市高二(下)期中数学试卷(含解析)

2023-2024学年天津市高二(下)期中数学试卷(含解析)

2023-2024学年天津市高二(下)期中数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知函数321()23f x x x =-,则()f x 的单调减区间是()A .(4,)+∞B .(0,2)C .(0,4)D .(,0)-∞2.(5分)某厂家生产的新能源汽车的紧急刹车装置在遇到特别情况时需在2s 内完成刹车,其位移h (单位:)m 关于时间t (单位:)s 的函数关系式为340()23h t t t =--+,则h '(1)的实际意义是()A .汽车刹车后1s 内的位移B .汽车刹车后1s 内的平均速度C .汽车刹车后1s 时的瞬时速度D .汽车刹车后1s 时的瞬时加速度3.(5分)已知函数()f x 的图象如图所示,()f x '为()f x 的导函数,根据图象判断下列叙述正确的是()A .12()()f x f x '<'B .12()()f x f x '>'C .12()()0f x f x <'<D .12()()0f x f x '>>4.(5分)已知2x =是2()23f x lnx ax x =+-的极值点则()f x 在1[3,3]上的最大值是()A .9232ln -B .52-C .17238ln --D .224ln -5.(5分)用1,2,3,4,5,6组成没有重复数字的五位数,要求偶数不能相邻,则这样的五位数有()个.A .120B .216C .222D .2526.(5分)若53(2x x-的展开式中的二项式系数和为A ,各项系数和为B ,则(A B -=)A .33B .31C .33-D .31-7.(5分)已知()f x 为定义在(-∞,0)(0⋃,)+∞上的偶函数,()f x '是()f x 的导函数,若当0x >时,()()0f x f x lnx x'+<,则不等式(1)()0x f x -<的解集是()A .(1,)+∞B .(0,1)C .(-∞,0)(1⋃,)+∞D .(,0)-∞8.(5分)已知函数122()x f x e -=,()2g x lnx =+,若()()f m g n =,则m n -的最大值是()A .212ln +-B .14e-C .12ln +D .223ln +二、填空题:本大题共6小题,每小题4分,共24分。

高二数学下学期期中考试试卷含答案

高二数学下学期期中考试试卷含答案

高二数学下学期期中考试试卷含答案高二下学期数学期中考试试卷(含答案)时量:120分钟满分:150分一、选择题(共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.已知全集 $U=R$,集合 $M=\{x|x<1\}$,$N=\{y|y=2x,x\in R\}$,则集合 $\complement_U (M\cup N)$ =()A。

$(-\infty。

-1]\cup [2,+\infty)$B。

$(-1,+\infty)$C。

$(-\infty,1]$D。

$(-\infty,2)$2.曲线 $f(x)=2x-x^2+1$ 在 $x=1$ 处的切线方程为()A。

$5x-y-3=0$B。

$5x-y+3=0$C。

$3x-y-1=0$D。

$3x-y+1=0$3.已知函数 $f(x)=\sin(\omegax+\frac{\pi}{3})(\omega>0,0<\frac{\pi}{3}<\omega<\frac{\pi}{2 })$ 的图象与直线 $y=1$ 的交点中相邻两点之间的距离为$2\pi$,且函数 $f(x)$ 的图象经过点 $(\frac{\pi}{6},0)$,则函数 $f(x)$ 的图象的一条对称轴方程可以为()A。

$x=\frac{\pi}{6}$B。

$x=\frac{\pi}{4}$C。

$x=\frac{\pi}{3}$D。

$x=\frac{\pi}{2}$4.函数 $f(x)=\frac{e^x-1}{x(x-3)}$ 的图象大致是()A.图略]B.图略]C.图略]D.图略]5.在 $\triangle ABC$ 中,角 $A,B,C$ 的对边分别为$a,b,c$,$C=120^\circ$,若 $b(1-\cos A)=a(1-\cos B)$,则$A=$()A。

$90^\circ$B。

$60^\circ$C。

$45^\circ$D。

2023-2024学年山东省聊城高二下学期期中数学质量检测试题(含解析)

2023-2024学年山东省聊城高二下学期期中数学质量检测试题(含解析)

2023-2024学年山东省聊城高二下册期中考试数学质量检测试题第Ⅰ卷(60分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.已知函数()y f x =在0x x =处的导数()01f x '=-,则()()0002lim x f x x f x x∆→+∆-=∆().A .1-B .1C .12D .2-2.学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,假设每种菜足量,则不同的选法共有().A .53种B .35种C .35A 种D .35C 种3.设某芯片制造厂有甲、乙两条生产线均生产5nm 规格的芯片,现有20块该规格的芯片,其中甲、乙生产的芯片分别为12块,8块,且乙生产该芯片的次品率为120,现从这20块芯片中任取一块芯片,若取得芯片的次品率为0.08,则甲厂生产该芯片的次品率为().A .15B .110C .115D .1204.若22nx ⎫⎪⎭的展开式中,只有第6项的二项式系数最大,则该项式的展开式中常数项为().A .90B .90-C .180D .180-5.函数()2x xe ef x x --=的图像大致为()A .B .C.D .6.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有().A .120种B .156种C .188种D .240种7.在()()()()2391111x x x x ++++++++L 的展开式中,3x 的系数为().A .120B .84C .210D .1268.已知()f x 的定义域为()0,x ∈+∞,()f x '为()f x 的导函数,且满足()()f x xf x '<-,则不等式()()()2111f x x x f +>--的解集是().A .()0,1B .()2,+∞C .()1,2D .()1,+∞二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()35,02ln ,0x x x f x x x ⎧-≤=⎨>⎩,若函数()()2g x f x x a =+-有3个零点,则实数a 可能的取值有().A .3B .2C .1D .010.现有来自两个社区的核酸检验报告表,分装2袋,第一袋有5名男士和5名女士的报告表,第二袋有6名男士和4名女士的报告表.随机选一袋,然后从中随机抽取2份,则().A .在选第一袋的条件下,两份报告表都是男士的概率为13B .两份报告表都是男士的概率为518C .在选第二袋的条件下,两份报告表恰好男士和女士各1份的概率为815D .两份报告表恰好男士和女士各1份的概率为81511.设()72670126721x a a x a x a x a x -=+++++L ,则下列结论正确的是().A .25588a a +=B .1271a a a +++=L C .71357132a a a a ++++=D .712731a a a +++=-L 12.已知函数()y f x =是奇函数,对于任意的π0,2x ⎛⎤∈ ⎥⎝⎦满足()()sin cos 0f x x f x x '->(其中()f x '是函数()f x 的导函数),则下列不等式成立的是().A ππ63f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭B .ππ36f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C .ππ46f ⎛⎫⎛⎫>-⎪ ⎪⎝⎭⎝⎭D ππ42f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭第Ⅱ卷(90分)三、填空题:本题共4小题,每小题5分,共20分.(15题第一个空3分,第二个空2分)13.若函数()f x 满足()()4ln 2x f f x x '=-,则()2f '=__________.14.党的十九大报告提出“乡村振兴战略”,要“推动城乡义务教育一体化发展,高度重视农村义务教育”.为了响应报告精神,某师范大学5名毕业生主动申请到某贫困山区的乡村小学工作、若将这5名毕业生分配到该山区的3所乡村小学,每所学校至少分配1人,则分配方案的总数为__________.15.已知()()()20121111nn n bx a a x a x a x +=+-+-++-L 对任意x ∈R 恒成立,且19a =,236a =,则b =__________;122n a a na +++=L __________.16.下列说法不正确的有__________.(1)曲线ln xy x x=+在点()1,1处的切线方程为21y x =-.(2)函数()219ln 2f x x x =-在[]1,1a a -+上存在极值点,则a 的取值范围是()2,4.(3)已知函数()322f x x ax bx a =+++在1x =处有极值10,则15a b -=或6-.(4)已知函数()()()221,184,1x a x x f x a x x ⎧-+-≤⎪=⎨-+>⎪⎩在R 上单调递增,则实数a 的取值范围是()2,5.四、解答题:本题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(8分)在下列三个条件中任选一个条件,补充在问题中的横线上,并解答.条件①:展开式中前三项的二项式系数之和为22;条件②:展开式中所有项的二项式系数之和减去展开式中所有项的系数之和等于64;条件③:展开式中常数项为第三项.问题:已知二项式1nx ⎫-⎪⎭,若__________,求:(1)展开式中二项式系数最大的项;(2)展开式中所有的有理项.18.(8分)一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列.19.(8分)某学习小组有3个男生和4个女生共7人:(1)将此7人排成一排,男女彼此相间的排法有多少种?(2)将此7人排成一排,男生甲不站最左边,男生乙不站最右边的排法有多少种?(3)现有7个座位连成一排,仅安排4个女生就座,恰有两个空位相邻的不同坐法共有多少种?20.(10分)已知函数()2ln x x f xx -=-.(1)求()f x 的单调区间;(2)求()f x 在区间[]1,e 上的最值.21.(12分)某校从学生文艺部7名成员(4男3女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.22.(12分)已知函数()ln af x x x=+,a ∈R .(1)讨论函数()f x 的单调性;(2)当0a >时,证明:()21f x a a-≥.23.(12分)已知函数()()2xf x e x =-.(1)求曲线()y f x =在点()()2,2f 处的切线方程;(2)设()()ln 2g x f x x x =+-+,记函数()y g x =在1,12⎛⎫⎪⎝⎭上的最大值为()g a ,证明:()1g a <-.试题答案一、单选题:1.D 2.B 3.B 4.C 5.B 6.A 7.C 8.B二、多选题:9.CD 10.BC 11.ACD12.BC三、填空题:13.114.15015.①1②.(3)(4)四、解答题17.解:选①,由01222n n n C C C ++=,得6n =(负值舍去).(3分)选②,令1x =,可得展开式中所有项的系数之和为0.由010264nnn n n C C C +++-==L ,得6n =.(3分)选③,设第1r +项为常数项,()3211n rrrr n T C x-+=-,由2302r n r =⎧⎪⎨-=⎪⎩,得6n =.(3分)由6n =得展开式的二项式系数最大为36C ,则展开式中二项式系数最大的项为()33223346120T C xx --=-=-.(4分)(2)解:设第1r +项为有理项,()632161rr rr T C x-+=-,(5分)因为06r ≤≤,r ∈N ,632r-∈Z ,所以0r =,2,4,6,则有理项为03316T C x x ==,23615T C x ==,4335615T C x x --==,66676T C x x --==.(8分)(错1个减1分,最多减3分)18.解:(1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则()210210719xC P A C -=-=,得到5x =.故白球有5个.(4分)(2)()355310k kC C P X k C -==,0k =,1,2,3.于是可得其分布列为X 0123P112512512112(8分)(对1个给1分)19.解:(1)根据题意,分2步进行分析:①将3个男生全排列,有33A 种排法,排好后有4个空位,②将4名女生全排列,安排到4个空位中,有44A 种排法,则一共有3434144A A =种排法.(2分)(2)根据题意,分2种情况讨论:①男生甲在最右边,有66720A =,②男生甲不站最左边也不在最右边,有1155553000A A A =,则有72030003720+=种排法.(5分)(3)根据题意,7个座位连成一排,仅安排4个女生就座,还有3个空座位,分2步进行分析:①将4名女生全排列,有44A 种情况,排好后有5个空位,②将3个空座位分成2、1的2组,在5个空位中任选2个,安排2组空座位,有25A 种情况,则有4245480A A =种排法.(8分)20.解:(1)由题意知:()()220x f x x x-'=>.令()0f x '=,解得2x =.(2分)2x =把()f x 定义域划分成两个区间,()f x '在各区间上的正负,以及()f x 的单调性如下表所示.x()0,22()2,+∞()f x '-0+()f x 单调递减单调递增(4分)所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞.(5分)(2)结合(1)的结论,列表如下:x1()0,22()2,+∞e()f x '-0+()f x 1单调递减ln 2单调递增2e所以()f x 在区间[]1,e 上的最小值是ln 2,最大值是1.(10分)21.解:(1)从7名成员中挑选2名成员,共有2721C =种情况,记“男生甲被选中”为事件A ,事件A 所包含的基本事件数为16C 种,故()62217P A ==.(4分)(2)记“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,由(1),则()121P AB =,且由(1)知()27P A =,故()()()1121267P AB P B P A A ===.(8分)(3)记“挑选的2人一男一女”为事件C ,事件C 所包含的基本事件数为114312C C ⨯=种,由(1),则()124217P C ==,“女生乙被选中”为事件B ,则()1442121C P BC ==,故()()()4121437P BC P B C P C ===.(12分)22.(1)解:函数()ln af x x x=+的定义域为()0,+∞,(1分)()221a x af x x x x-'=-=.(2分)①当0a ≤时,对任意的0x >,()0f x '>,此时,函数()y f x =在()0,+∞上单调递增;(4分)②当0a >时,令()0f x '<,可得0x a <<;令()0f x '>,可得x a >.此时,函数()y f x =的单调递减区间为()0,a ,单调递增区间为(),a +∞.(6分)综上所述,当0a ≤时,函数()y f x =的单调递增区间为()0,+∞,无单调递减区间;当0a >时,函数()y f x =的单调递减区间为()0,a ,单调递增区间为(),a +∞.(6分)(2)证明:由(1)可知,当0a >时,()()min ln 1f x f a a ==+,要证()21a f x a -≥,只需证21ln 1a a a -+≥,即证1ln 10a a+-≥.(8分)构造函数()1ln 1g a a a=+-,其中0a >,则()22111a g a a a a-'=-=.(10分)当01a <<时,()0g a '<,此时函数()y g a =单调递减;当1a >时,()0g a '>,此时函数()y g a =单调递增,所以,()()min 10g a g ==,所以1ln 10a a+-≥恒成立,因此,()21f x a a-≥.(12分)23.(1)解:由题意可得()()1xf x x e '=-,所以()()22221f e e '=-=,(1分)又知()20f =,(2分)所以曲线()y f x =在点()()2,2f 处的切线方程为()202y e x -=-,即2220e x y e --=.(4分)(2)证明:由题意()()()2ln 22ln 2f x f x x x x e x x =+-+=--++,则()()()()11121111x x x x f x e x e x e x e x x x ⎛⎫'=+--+=--+=-- ⎪⎝⎭,当112x <<时,10x -<,令()1x h x e x =-,则()210x h x e x '=+>,所以()h x 在1,12⎛⎫⎪⎝⎭上单调递增,(6分)因为121202h e ⎛⎫=-<⎪⎝⎭,()110h e =->,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即001x e x =,即00ln x x =-,(8分)故当01,2x x ⎛⎫∈⎪⎝⎭时,()0h x <,又10x -<,故此时()0g x '>;当()0,1x x ∈时,()0h x >,又10x -<,故此时()0g x '<,即()g x 在01,2x ⎛⎫⎪⎝⎭单调递增,在()0,1x 上单调递减,则()()()()00000max 2ln 2xg x g a g x x e x x ===--++()000000122232x x x x x x =-⋅--+=--,(10分)令()232G x x x =--,1,12x ⎛⎫∈ ⎪⎝⎭,则()()22221220x G x x x -'=-=>,所以()G x 在1,12⎛⎫⎪⎝⎭上单调递增,则()()11G x G <=-,所以()1g a <-.(12分)。

吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案

吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案

四平市2023-2024学年度第二学期期中质量监测高二数学试题(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第二册第五章,选择性必修第三册第六章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()23cos f x x x=+的导函数是()A.()6sin f x x x '=+B.()6sin f x x x '=-C.()3sin f x x x'=- D.()3sin f x x x'=+【答案】B 【解析】【分析】利用导数的运算法则即可求解.【详解】()()()23cos 6sin f x x x x x '''=+=-.故选:B.2.5(2)x -的展开式中3x 的系数为()A.40-B.20- C.20D.40【答案】D 【解析】【分析】写出展开式的通项,即可计算可得.【详解】因为5(2)x -展开式的通项为()515C 2rr rr T x -+=-(05r ≤≤且N r ∈),所以5(2)x -的展开式中3x 的系数为225C (2)40⨯-=.故选:D3.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有()A.108种B.90种C.72种D.36种【答案】A 【解析】【分析】先确定第一天和第二天播放的节目,然后再确定节目的播放顺序,利用分步乘法计数原理可得结果.【详解】第一步,从无限制条件的3个节目中选取1个,同学习经验介绍和新闻报道两个节目在第一天播出,共有1333C A 18=种;第二步,某谈话节目和其他剩余的2个节目在第二天播出,有33A 6=种播出方案,综上所述,由分步乘法计数原理可知,共有186108⨯=种不同的播出方案.故选:A4.已知*0,x n ≠∈N ,则“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】计算二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可.【详解】若8n =,则8312x x ⎛⎫+ ⎪⎝⎭的常数项为()626381C 2112x x ⎛⎫⋅= ⎪⎝⎭;若312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项,设二项式的通项为()33411=C22C rn rrn r r n r r nn T x x x ---+⎛⎫⋅=⋅⋅ ⎪⎝⎭,且存在常数项,则340n r -=,34nr =,r 为整数,所以n 能被4整除.所以“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的充分不必要条件.故选:A.5.已知曲线2ln y x x =-在点A 处的切线与直线20x y +-=垂直,则点A 的横坐标为()A.2-B.1-C.2D.1【答案】D 【解析】【分析】设点()00,A x y ,根据题意可得()01f x '=,从而求得0x .【详解】设()2ln f x x x =-,点()00,A x y ,则()12f x x x='-,由在点A 处的切线与直线20x y +-=垂直可得()01f x '=,即00121x x -=,又00x >,01x ∴=.故选:D6.已知函数()()22e xf x x ax a =++,若()f x 在2x =-处取得极小值,则a 的取值范围是()A.()4,+∞ B.[)4,+∞ C.[)2,+∞ D.()2,+∞【答案】A 【解析】【分析】利用求导得到导函数的零点2a-和2-,就参数a 分类讨论,判断函数()f x 的单调性,即可分析判断,确定参数a 的范围.【详解】由题意得,()()()()()()222e 4e 242e 22e x x x xf x x ax a x a x a x a x a x ⎡⎤=++++=+++=++⎣⎦',由()0f x '=可得,2ax =-或2x =-,①若22a -=-,即4a =时,()()222e 0x f x x =+≥',显然不合题意;②若22a -<-,即4a >时,当2ax <-或2x >-时,()0f x '>,即()f x 在(,2a -∞-和(2,)-+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(,2)2a--上单调递减,故()f x 在2x =-处取得极小值,符合题意;③若22a ->-,即4a <时,当<2x -或2x a >-时,()0f x '>,即()f x 在(,2)-∞-和(,)2a -+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(2,)2a--上单调递减,故()f x 在2x =-处取得极大值,不符题意.综上所述,当4a >时,()f x 在2x =-处取得极小值,故a 的取值范围是()4,∞+.故选:A.7.若()()()()23416321241811N x x x x =+-+-+-+-,则N =()A.()41x - B.()41+x C.()43x - D.()43x +【答案】B 【解析】【分析】利用二项式定理可得答案.【详解】()()()()23416321241811N x x x x =+-+-+-+-413222334444(1)C (1)2C (1)2C (1)22x x x x =-+-⋅+-⋅+-⋅+4(12)x =-+4(1)x =+.故选:B8.若函数()21ln 32f x x ax =++在区间()1,4内存在单调减区间,则实数a 的取值范围是()A.1,16⎛⎫-∞- ⎪⎝⎭B.()1,1,16⎛⎫-∞-+∞ ⎪⎝⎭C.(),1-∞- D.()0,1【答案】A 【解析】【分析】对()f x 求导,分0a ≥和a<0两种情况,结合()f x 在区间()1,4内存在单调减区间,求出a 的取值范围即可.【详解】()21ln 32f x x ax =++,()211ax f x ax x x+'=+=,当0a ≥时,()0f x ¢>,不符合题意;当0a <时,令()0f x '<,解得x >()f x 在区间()1,4内存在单调减区间,∴4<,解得116a <-.∴实数a 的取值范围是1,16⎛⎫-∞-⎪⎝⎭.故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是()A.若A ,B 不相邻,有72种排法B.若A ,B 不相邻,有48种排法C.若A ,B 相邻,有48种排法D.若A ,B 相邻,有24种排法【答案】AC 【解析】【分析】求得A ,B 不相邻时的排法总数判断选项AB ;求得A ,B 相邻时的排法总数判断选项CD.【详解】A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 不相邻,则先让C ,D ,E 自由排列,再让A ,B 去插空即可,则方法总数为3234A A 72=(种).则选项A 判断正确;选项B 判断错误;A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 相邻,则将A ,B “捆绑”在一起,视为一个整体,与C ,D ,E 自由排列即可,则方法总数为2424A A 48=(种).则选项C 判断正确;选项D 判断错误.故选:AC10.在62x⎛⎝的展开式中,下列命题正确的是()A.偶数项的二项式系数之和为32B.第3项的二项式系数最大C.常数项为60D.有理项的个数为3【答案】AC 【解析】【分析】根据题意,由二项式展开式的通项公式以及二项式系数的性质,代入计算,对选项逐一判断,即【详解】偶数项的二项式系数之和为152232n -==,故A 正确;根据二项式,当3r =时36C 的值最大,即第4项的二项式系数最大,故B 错误()()36662166C 21C 2r r rr rr r r T x x---+⎛==-⋅⋅⋅ ⎝,令3602r -=,4r =,∴4256C 260T =⋅=,故C 正确;362r -为整数时,0,2,4,6r =,故有理项的个数为4,故D 错误.故选:AC .11.已知函数()ln xxf x e =,则下列说法正确的是()A.()f x 有且仅有一个极值点B.()f x 有且仅有两个极值点C.当01x <<时,()f x 的图象位于x 轴下方D.存在0x ,使得()01f x e=【答案】AC 【解析】【分析】利用导数与极值、最值的关系求解即可.【详解】由题意知,()1ln xxx f x e -'=,令()1ln h x x x =-,()211h x x x '=--,易得()h x 在()0,∞+上单调递减,又()110h =>,()12ln 202h =-<,所以()01,2x ∃∈,使得()00h x =,所以当00x x <<时,()0f x '>,当0x x >时,()0f x '<,故()f x 在()00,x 上单调递增,在()0,x ∞+上单调递减,所以()f x 有且仅有一个极值点.故A 正确,B 错误;当01x <<时,ln 0x <,e 0x >,所以()0f x <,故C 正确;所以()()0000max 0ln 11ex x x f x f x e x e ===<,故D 错误.三、填空题:本题共3小题,每小题5分,共15分.12.三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有___________种.【答案】8【解析】【分析】利用分步加法计数原理计算即得.【详解】依题意,可由三名学生依次选修课程,故分三步完成,由分步乘法计数原理知,不同的选法有322228⨯⨯==(种).故答案为:8.13.函数()ln f x x x =-的单调减区间为___________.【答案】(]0,1【解析】【分析】首先求出函数的定义域为()0,∞+,再求出()f x ',令()0f x '≤,解不等式即可求解.【详解】函数()ln f x x x =-的定义域为()0,∞+,且()111x f x x x-'=-=,令()0f x '≤,即10x x-≤,解不等式可得01x <≤,所以函数的单调递减区间为(]0,1.故答案为:(]0,1【点睛】本题考查了利用导数研究函数的单调性,解题的关键是求出导函数,属于基础题.14.已知函数()f x 的导函数()f x '满足()()f x f x '>在R 上恒成立,则不等式()()23e 21e 10x f x f x --->的解集是______.【答案】2,3⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据已知关系式可构造函数()()xf xg x =e,可知()g x 在R 上单调递增,将所求不等式转化为()()211g x g x ->-,利用单调性可解不等式求得结果.【详解】令()()x f x g x =e ,则()()()0ex f x f x g x '-'=>,所以()g x 在R 上单调递增,由()()23e 21e 10xf x f x --->,得()()211>1e21ex xf x f x ----,即()()211g x g x ->-,又()g x 在R 上单调递增,所以211x x ->-,解得23x >.所以不等式()()23e 21e 10xf x f x --->的解集是2,3⎛⎫+∞⎪⎝⎭.故答案为:2,3⎛⎫+∞⎪⎝⎭.【点睛】关键点点睛:此类问题要结合代数式的特点,选择适当的函数,通过导函数研究出函数的单调性,从而解不等式即可.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(1)求值:2222310C C C +++ ;(2)解方程:32213A 2A 6A x x x +=+.【答案】(1)165;(2)5x =【解析】【分析】(1)利用组合数性质计算可得原式等于311C 165=;(2)由排列数计算公式可得(32)(5)0x x --=,可得5x =.【详解】(1)因为11C C C m m m n nn -+=+,所以11C C C m m m n n n -+-=,原式()()()()333333333345410911103C C C C C C C C C ++++-+=--- 31111109C 165123⨯⨯===⨯⨯;(2)因为32213A 2A 6A x x x +=+,所以!(1)!!326(3)!(1)!(2)!x x x x x x +⨯=⨯+⨯---,化简可得(32)(5)0x x --=,同时3x ≥,解得5x =.16.已知二项式nx⎛- ⎝的展开式中,所有项的二项式系数之和为a ,各项的系数之和为b ,32a b +=(1)求n 的值;(2)求其展开式中所有的有理项.【答案】(1)4(2)42135,54,81T x T x T x-===【解析】【分析】(1)先利用题给条件列出关于n 的方程,解之即可求得n 的值;(2)利用二项展开式的通项公式即可求得其展开式中所有的有理项.【小问1详解】因为2,(2)n n a b ==-,所以2(2)32n n +-=,当n 为奇数时,此方程无解,当n 为偶数时,方程可化为2232n ⨯=,解得4n =;【小问2详解】由通项公式3442144C (3)C rrr r r r r T x x--+=⋅=-⋅,当342r -为整数时,1r T +是有理项,则0,2,4r =,所以有理项为0442214422143454(3)C ,(3)C 54,(3)C 81T x x T x x T xx --=-==-==-=.17.为庆祝3.8妇女节,某中学准备举行教职工排球比赛,赛制要求每个年级派出十名老师分为两支队伍,每支队伍五人,并要求每支队伍至少有两名女老师,现高二年级共有4名男老师,6名女老师报名参加比赛.(1)高二年级一共有多少不同的分组方案?(2)若甲,乙两位男老师和丙,丁,戊三位女老师组成的队伍顺利夺得冠军,在领奖合影时从左到右站成一排,丙不宜站最右端,丁和戊要站在相邻的位置,则一共有多少种排列方式?【答案】(1)120种;(2)36种.【解析】【分析】(1)利用分类加法计数原理,结合平均分组问题列式计算.(2)按相邻问题及有位置限制问题,利用分步乘法计数原理列式计算即得.【小问1详解】两组都是3女2男的情况有326422C C 60 A ⋅=(种):一组是1男4女,另一组是3男2女的情况有1446C C 60⋅=(种),所以总情况数为6060120+=(种),故一共有120种不同的分组方案.【小问2详解】视丁和戊为一个整体,与甲、乙任取1个站最右端,有13C 种,再排余下两个及丙,有33A 种,而丁和戊的排列有22A 种,所以不同排列方式的种数是132332C A A 36=.18.已知函数()()2212ln 2f x a x x ax a =-++∈R .(1)当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性;【答案】(1)32y =(2)答案见解析【解析】【分析】(1)代入1a =,求出'(1),(1)f f 即可求得切线方程;(2)函数求导'(2)()()x a x a f x x+-=,对a 分类讨论,进而求得单调性.【小问1详解】当1a =时,()212ln 2f x x x x =-++,'2()1f x x x =-++,所以'3(1)2110,(1)2f f =-++==,曲线()y f x =在()()1,1f 处的切线方程为32y =.【小问2详解】22'2(2)()()x ax a x a x a f x x x+-+-==,①当0a =时,'()0f x x =>,所以函数在(0,)+∞上单调递增;②当0a >时,令'()0f x =,则12x a =-(舍)或2x a =,'()0,0f x x a <<<,当(0,)x a ∈时,函数()f x 单调递减;'()0,f x x a >>,当(,)x a ∈+∞时,函数()f x 单调递增.③当0a <时,令'()0f x =,则12x a =-或2x a =(舍),'()0,02f x x a <<<-,当(0,2)x a ∈-时,函数()f x 单调递减;'()0,2f x x a >>-,当(2,)x a ∈-+∞时,函数()f x 单调递增.综上所述:当0a =时,函数在(0,+∞)上单调递增;当0a >时,当(0,)x a ∈时,函数()f x 单调递减当(,)x a ∈+∞时,函数()f x 单调递增;当0a <时,当(0,2)x a ∈-时,函数()f x 单调递减;当(2,)x a ∈-+∞时,函数()f x 单调递增19.已知函数()ln 32a f x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()10xf x +≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)[)2,+∞.【解析】【分析】(1)利用导数,讨论a 的符号判断函数单调性;(2)问题转化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭恒成立,取1x =,有310a -+≥,可得2a ≥,构造函数利用导数求最小值证明1ln 02x x ->,则12ln 30x x x --+≥恒成立,通过构造函数利用导数求最小值证明.【小问1详解】函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x -'=-=,①当0a >时,()0f x '<解得102x <<,()0f x ¢>解得12x >,此时函数()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,②当0a <时,()0f x ¢>解得102x <<,()0f x '<解得12x >,此时函数()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭;【小问2详解】不等式()10xf x +≥可化为2ln 3102a ax x x x --+≥,由2ln 3102a ax x x x --+≥恒成立,取1x =,有310a -+≥,可得2a ≥,又由2ln 3102a ax x x x --+≥可化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭,令()1ln 2g x x x =-,有()121122x g x x x -'=-=,令()0g x '<解得102x <<,()0g x '>解得12x >此时函数()g x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,有()111111ln ln 20222222g x g ⎛⎫≥=-=+> ⎪⎝⎭,可得1ln 02x x ->,可得211ln 2ln 2ln 22ax x x x x x x x x ⎛⎫⎛⎫-≥-=- ⎪ ⎪⎝⎭⎝⎭,下面证明22ln 310x x x x --+≥,即证明12ln 30x x x --+≥,令()12ln 3h x x x x =--+,有()()()222221111212x x x x h x x x x x+---'=--==,令()0h x '<解得01x <<,()0h x '>解得1x >,可得函数()h x 的减区间为()0,1,增区间为()1,+∞,有()()120310h x h ≥=--+=,可得不等式22ln 310x x x x --+≥成立,所以若()10xf x +≥恒成立,则实数a 的取值范围为[)2,+∞.。

河南省郑州多所中学2023-2024学年高二下学期期中学业水平测试数学试题

河南省郑州多所中学2023-2024学年高二下学期期中学业水平测试数学试题

河南省郑州多所中学2023-2024学年高二下学期期中学业水平测试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现有3幅不同的油画,4幅不同的国画,5幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有( )A .36种B .20种C .12种D .10种2.若2525C A n =,则n =( )A .6B .8C .9D .103.函数()331f x x x =-+在点(1,1)P -处切线的斜率为( )A .1-B .3-C .1D .04.将9个志愿者的名额分配给4个班,每班至少一个名额,则不同的分配方法的种数为()A .504B .126C .112D .565.若函数()2ln 1f x x a x =-+在[)1,+¥上单调递增,则实数a 的最大值为( )A .1-B .0C .1D .26.甲辰龙年春节哈尔滨火爆出圈,成为春节假期旅游城市中的“顶流”.甲、乙等6名网红主播在哈尔滨的中央大街、冰雪大世界、圣索菲亚教堂、音乐长廊4个景点中选择一个打卡游玩,若每个景点至少有一个主播去打卡游玩,每位主播都会选择一个景点打卡游玩,且甲、乙各单独1人去某一个景点打卡游玩,则不同游玩方法有( )A .96种B .132种C .168种D .204种7.已知定义在R 上的函数()f x ,其导函数为()f x ¢,且()()f x f x <¢,则( )A .()()20242023f f >B .()()2024e 2023f f >C .()()e 20242023f f <D .()()22024e 2023f f <8.“中国剩余定理”又称“孙子定理”,此定理讲的是关于同余的问题.用m x ∣表示整数x 被m 整除,设*,,a b m ÎÎZ N 且1m >,若()m a b -∣,则称a 与b 对模m 同余,记为()mod a b m º.已知0161151421516161616C 5C 5C 5C 5a =´-´++´-´L ,则( )A .()2030mod7a ºB .()2031mod7a ºC .()2032mod7a ºD .()2033mod7a º074。

2023-2024学年山东省枣庄市滕州市高二下册期中数学试题(含解析)

2023-2024学年山东省枣庄市滕州市高二下册期中数学试题(含解析)

2023-2024学年山东省枣庄市滕州市高二下册期中数学试题一、单选题1.函数2y x =在区间[]2,3上的平均变化率为()A .2B .3C .5D .4【正确答案】C【分析】根据平均变化率的知识求得正确答案.【详解】当2x =时,4y =;当3x =时,9y =.所以函数2y x =在区间[]2,3上的平均变化率为94532-=-.故选:C2.某小组有8名男生,6名女生,要求从中选1名当组长,不同的选法共有()A .12种B .14种C .24种D .48种【正确答案】B【分析】根据组合性质即可求解.【详解】依题意,小组有8名男生,6名女生,要求从中选1名当组长,则有114C 14=种选法.故选:B.3.下列求导运算正确的是()A .(ln )x x '=B .211()1x x x'-=+C .(cos )sin x x '=D .()e e x xx '=【正确答案】B【分析】根据导数的计算逐一判断即可.【详解】对于A ,()1ln x x'=,故A 不正确;对于B ,2111+x x x '⎛⎫-= ⎪⎝⎭,故B 正确;对于C ,()cos sin x x =-',故C 不正确;对于D ,()e e e x x x x x '=+,故D 不正确.故选:B4.已知函数f (x )在x =x 0处的导数为12,则000()()lim3x f x x f x x∆→-∆-=∆()A .-4B .4C .-36D .36【正确答案】A【分析】根据题意,由极限的性质可得则000000()()()()1lim=lim 33x x f x x f x f x f x x x x ∆→∆→-∆---∆-∆∆,结合导数的定义计算可得答案.【详解】根据题意,函数()f x 在0x x =处的导数为12,则000000()()()()112lim=lim 4333x x f x x f x f x f x x x x ∆→∆→-∆---∆-=-=-∆∆;故选:A .本题考查极限的计算以及导数的定义,属于容易题.5.已知函数()2sin f x x x =-,则下列选项正确的是()A .()()()e π 2.7f f f <<B .()()()πe 2.7f f f <<C .()()()e 2.7πf f f <<D .()()()2.7e πf f f <<【正确答案】D【分析】求导得到()2cos 0f x x '=->,函数单调递增,得到大小关系.【详解】()2sin f x x x =-,故()2cos 0f x x '=->,所以()f x 在()0,∞+上递增,2.7e π<<,所以()()()2.7e πf f f <<,故选:D6.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有A .12种B .18种C .36种D .54种【正确答案】B【详解】试题分析:由题意知,完成这一件事可分为两步:先将标号1,2的卡片放入同一封信有种方法;再将其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.排列与组合7.定义在R 上的函数()f x 的导函数为()f x ',且()()30f x f x '+<,()ln 21f =,则不等式()38e xf x ->的解集为()A .(),2-∞B .(),ln 2-∞C .()ln 2,+∞D .()2,+∞【正确答案】B【分析】根据题意分析可得()3e 8x f x >,构建()()3=e xg x f x ,求导,结合函数单调性解不等式.【详解】∵()38e x f x ->,且3e 0x >,可得()3e 8xf x >,故原不等式等价于()3e 8xf x >,构建()()3=e x g x f x ,则()()()()()333=e 3e 3e x x xg x f x f x f x f x ''+=+⎡⎤⎣⎦',∵()()330,e 0x f x f x '+<>,则()()()330e x f x f x g x '=+<⎡⎤⎣⎦'恒成立,∴()g x 在定义域内单调递减,且()()33ln 2ln 2=ln 2e 28g f ==,则对于()3e 8xf x >,解得ln 2x <,故不等式()38e xf x ->的解集为(),ln 2-∞.故选:B.8.设()2ln sin 0.1cos 0.1a =+,0.2b =, 1.2ln1.2c =,则().A .a b c <<B .c b a<<C .c a b<<D .a c b<<【正确答案】A【分析】根据数字特征、对数的运算性质、同角的三角函数关系式、二倍角正弦公式,通过构造函数,利用导数判断函数的单调性,利用单调性进行判断即可.【详解】构造函数()()()()ln 11,2f x x x x x =--∈,所以有()ln f x x '=,因为()1,2x ∈,所以()ln 0f x x '=>,所以此时函数单调递增,故有()()10f x f >=,显然()1.21,2∈,所以有()1.20f >,即()1.2ln1.2 1.210 1.2ln1.20.2c b -->⇒>⇒>;()()22ln sin 0.1cos 0.1ln sin 0.1cos 0.1ln(1sin 0.2)a =+=+=+,0.20.2ln e b ==,构造函数()()()()e 1sin 0,1xg x x x =-+∈,则有()e cos xg x x '=-,因为()0,1x ∈,所以e 1,cos 1x x ><,因此()e cos 0x g x x '=->,所以函数()()()()e 1sin 0,1xg x x x =-+∈是增函数,于是有()()00g x g >=,而()0.20,1∈,所以()()0.20.20.2e 1sin 0.20e 1sin 0.2g =-+>⇒>+,即()0.2ln eln 1sin 0.2b a +⇒>>,于是有a b c <<,故选:A关键点睛:根据代数式的特征构造函数,利用导数判断函数的单调性,利用单调性进行判断是解题的关键.二、多选题9.如图是函数()y f x =的导函数的图象,对于下列四个判断,其中正确的是()A .()f x 在()2,1--上是增函数B .()f x 在()2,4上是减函数C .当=1x -时,()f x 取得极小值D .当1x =时,()f x 取得极大值【正确答案】BC【分析】根据导数与原函数关系解决.【详解】从导函数图像可以看出函数()f x 在()()2,1,2,4--上为单调减函数;()f x 在()()1,2,4,5-上为增函数,故A 错B 对,C 对D 错.故选:BC10.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则()A .若不选择政治,选法总数为25C 种B .若物理和化学至少选一门,选法总数为1225C C 种C .若物理和历史不能同时选,选法总数为3164C C -种D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为12种【正确答案】ACD【分析】对于A :原题意等价于六门课程中选三门不作选修科目,结合组合数运算求解;对于B 、C 、D :根据题意利用间接法,结合组合数运算求解.【详解】对于A :原题意等价于六门课程中选三门不作选修科目,已知不选择政治,则再从剩余的五门课程中选择两门不作为选修科目,可得选法总数为25C 种,故A 正确;对于B :六门课程中选三门,选法总数为36C 20=种,若物理和化学均不选,选法总数为34C 4=种,若物理和化学至少选一门,选法总数为20416-=种,但1225C C 2016=≠,故B 错误;对于C :若物理和历史同时选,选法总数为14C 种,若物理和历史不能同时选,选法总数为3164C C -种,故C 正确;对D :在物理和历史不同时选的前提下,排除物理和化学均不选,结合选项B 、C 可知:选法总数为3164C C 4204412--=--=种,故D 正确;故选:ACD.11.下列等式中,正确的是()A .11A A A m m mn n n m -++=B .1C C -=r r n nr nC .111111C C C C m m m m n n n n +--+--=++D .11C C mm n nm n m++=-【正确答案】AD【分析】A.利用排列数公式求解判断; B.利用组合数公式求解判断; C.利用组合数性质求解判断;D.利用组合数公式求解判断.【详解】A.()()1!!A A !1!-+=+--+m m n n n n m mn m n m ()()()()()()()11!1!1!!1!1!1!1!+-+⋅+⋅+⋅=+==-+-+-+-+m n n m n n n n m n A n m n m n m n m ,故正确;B.因为()()()!!C !!1!!==---rn n n r rr n r r n r ()()1!C 1!1!-=--+r n n n n r n r ,所以1C C -≠r r n n r n ,故错误;C.11111111C C C C C C C ---+--++++=+=≠m m m m m m m n n n n n n n ,故错误;D.()()111!C 1!1!+++=⋅--+--m nm m n n m n m m n m ()()()()()1!1!C 1!1!!!+⋅+=⋅==-+----m n m n m n n m m m n m n m m n m ,故正确;故选:AD12.已知0ab ≠,函数()2e axf x x bx =++,则()A .对任意a ,b ,()f x 存在唯一极值点B .对任意a ,b ,曲线()y f x =过原点的切线有两条C .当2a b +=-时,()f x 存在零点D .当0a b +>时,()f x 的最小值为1【正确答案】ABD【分析】对于A ,求出函数导数,数形结合,判断导数正负,从而判断函数单调性,确定函数极值点;对于B ,设切点为2e (,),am m n n bm m =++,利用导数的几何意义可得方程,结合方程的根的个数,判断切线的条数;对于C ,利用导数判断函数单调性,求函数最值,根据最值情况判断函数的零点情况;对于D ,由于()f x 为偶函数,故先判断0x >时函数的单调性,结合偶函数性质,即可判断0x <的单调性,进而求得函数最值.【详解】对于A ,由已知0ab ≠,函数()2e ax f x x bx =++,可得()e 2axf x a x b '=++,令()()2e 2,e 20ax axg x a x b g x a '=++∴=+>,则()g x 即()e 2axf x a x b '=++在R 上单调递增,令()e 20axf x a x b '=++=,则e 2ax a x b =--,当0a >时,作出函数e ,2ax y a y x b ==--的大致图象如图:当a<0时,作出函数e ,2ax y a y x b ==--的大致图象如图:可知e ,2ax y a y x b ==--的图象总有一个交点,即()e 20axf x a x b '=++=总有一个根0x ,当0x x <时,()0f x '<;当0x x >时,()0f x ¢>,此时()f x 存在唯一极小值点,A 正确;对于B ,由于()01f =,故原点不在曲线()2e ax f x x bx =++上,且()e 2axf x a x b '=++,设切点为2e(,),amm n n bm m =++,则()2e e2am amn m bmf m a m b m m++'=++==,即e e amama m m+=,即2e (1)0am am m -+=,令2()e (1)am h m am m =-+,2()e (1)e 2(e 2)am am am h m a am a m m a '=-++=+,当0m <时,()0h m '<,()h m 在(,0)-∞上单调递减,当0m >时,()0h m '>,()h m 在(0,)+∞上单调递增,故min ()(0)1h m h ==-,当m →-∞时,e (1)am am -的值趋近于0,2m 趋近于无穷大,故()h m 趋近于正无穷大,当m →+∞时,e (1)am am -的值趋近于正无穷大,2m 趋近于无穷大,故()h m 趋近于正无穷大,故()h m 在(,0)-∞和(0,)+∞上各有一个零点,即2e (1)0am am m -+=有两个解,故对任意a ,b ,曲线()y f x =过原点的切线有两条,B 正确;对于C ,当2a b +=-时,2=--b a ,()2e (2)axf x x a x =+-+,故()e 22axf x a x a '=+--,该函数为R 上单调增函数,()()020,1e (e 1)0a a f f a a a ''=-<=-=->,故(0,1)s ∃∈,使得()0f s '=,即22e 1ass a a=-++,结合A 的分析可知,()f x 的极小值也即最小值为2222e (2)1(2())asf s a s s s a s a as +-+=-+++-+=,令2221)2)((s s a s a a m s -+++-+=,则()22(2)m s s a a'=-++,且为增函数,当a<0时,2(2)2)0(0a am -++≥-=>',当且仅当a =故当0s >时,()()00m s m ''>>,则()f s 在(0,1)上单调递增,故2()(0)1f s f a >=+,令3a =-,则21(0)10,()(0)03f f s f a =+=>∴>>,此时()f x 的最小值为()0f s >,()f x 无零点,C 错误;对于D ,当0a b +>时,()f x 为偶函数,考虑0x >视情况;此时()2e ,)(()0axf x f x x bx x ++>==,e ()2ax x a b f x +=+',结合A 的分析可知e ()2ax x a b f x +=+'在R 上单调递增,)0(0b f a '=+>,故0x >时,()(0)0f x f ''>>,则()f x 在(0,)+∞上单调递增,故()f x 在(,0)-∞上单调递减,()f x 为偶函数,故()min (0)1f x f ==,D 正确,故选:ABD难点点睛:本题综合新较强,综合考查了导数的几何意义以及极值点、零点、最值问题,计算量较大;难点在于利用导数解决函数的零点问题时,要能构造恰当的函数,结合零点存在定理判断导数值的情况,从而判断函数的单调性,求得最值,解决零点问题.三、填空题13.已知函数()f x 的导函数为()f x ',且满足()()121f x xf x'=+,则()1f '=________.【正确答案】1【分析】根据题意,求导可得()f x ',然后令1x =,即可得到结果.【详解】因为()()121f x xf x '=+,则()()2121f x f x''=-,令1x =,可得()()1211f f ''=-,解得()11f '=.故答案为:114.从A ,B 等5名学生中随机选3名参加数学竞赛,则A 和B 至多有一个入选的方法有______种.【正确答案】7【分析】间接法:求出任选3人的方法数,以及A 和B 都入选的方法数,相减即可得出答案.【详解】从5名学生中任选3名参加数学竞赛,方法有35C 10=种,A 和B 都入选的方法有13C 3=种,所以,A 和B 至多有一个入选的方法有1037-=种.故7.15.已知函数()(1)x f x e a x =-+,若()f x 有两个零点,则实数a 的取值范围是________.【正确答案】(1,)+∞先对()f x 求导,根据a 的范围研究()f x '的符号,判断()f x 的单调性,结合()f x 有两个零点,求出a 的取值范围.【详解】解:由题知:()x f x e a '=-,x R ∈.①当0a时,()0f x '>,()f x 单调递增,至多有一个零点,不合题意;②当0a >时,令()0f x x lna '=⇒=,易知()f x 在(,)lna -∞单调递减,在(,)lna +∞单调递增,故()f x 的最小值为()(1)f lna a a lna alna =-+=-.()f x 有两个零点,当x →±∞时,()f x →+∞,()00f lna lna ∴<⇒>,解得1a >故(1,)+∞.本题考查利用导数研究函数的零点,属于基础题.16.直线y k =与两条曲线()e xf x x=和()ln x g x x =共有三个不同的交点,并且从左到右三个交点的横坐标依次是123,,x x x ,则123,,x x x 满足的一个等式为__________.【正确答案】2132x x x ⋅=【分析】令()()f x g x =,则2ln e x x x =,令()2(0)ex x h x x =>,求导得到单调性从而画出(),ln h x y x =的图象,判断曲线()e xf x x=和曲线()ln x g x x =只有一个交点.再分别对()e xf x x=,()ln x g x x =求导得到单调性后画出图象,从而确定当直线y k =经过曲线曲线()e xf x x=和曲线()ln x g x x =的唯一公共点时,直线与两条曲线恰好有三个不同的交点,进而得到12301e ,x x x <<<<<,且12233122e e ,ln ln x x x x x x x x ===利用同构化为12123223e e ,ln e ln e ln ln x x x x x x x x ===再借助()ln x g x x=的单调性得到12e x x =,23e xx =,借助2222e ln e ln x x x x =,最终可得2132x x x ⋅=.【详解】令()()f x g x =,即e ln x x x x =,则2ln e x x x =,令()2(0)ex x h x x =>,则(2)(),e xx x h x '-=所以当02x <<时,()0,()h x h x >'单调递增;当2x >时,()0,()h x h x <'单调递减,()()2max 42eh x h ∴==,又(0)0h =,所以(),ln h x y x =的图象如图所示:由图可知,(),ln h x y x =的图象只有一个交点,因此曲线()e x f x x=和曲线()ln x g x x =只有一个交点.对()e x f x x=求导,可得()()21e x x f x x -'=所以当01x <<时,()()0,f x f x '<单调递减;当1x >时,()()0,f x f x '>单调递增,所以()()min 1e f x f ==.对()ln x g x x=求导,可得()()2ln 1ln x g x x -'=所以当0e x <<时,()()0,g x g x '<单调递减;当e x >时,()()0,g x g x '>单调递增,所以()()min e e g x g ==,所以()(),f x g x图象如图所示:由图知,当直线y k =经过曲线曲线()e x f x x=和曲线()ln x g x x =的唯一公共点时,直线与两条曲线恰好有三个不同的交点,则有12301e ,x x x <<<<<,且12233122e e ,ln ln x x x x x x x x ===则12123223e e ,ln e ln e ln ln x x x x x x x x ===120e ,e x x << 且()ln x g x x =在()0,e 上单调递减,1212e ,ln x x x x ∴==,又23e ,e,x x > 且()ln x g x x=在()e +∞,上单调递增,23e x x ∴=,2132ln e ,x x x x ∴⋅=⋅而2222e ,ln x x x x =即,2222ln e x x x ⋅=,所以2132x x x ⋅=.故2132x x x ⋅=关键点点睛:先判断曲线()e xf x x=和曲线()ln x g x x =只有一个交点,可以令()()f x g x =,即e ln x x x x =,则2ln e x x x =,构造函数()2(0)ex x h x x =>,求导得到单调性画出图象判断.四、解答题17.有2名男生和3名女生,按下列要求各有多少种排法,依题意列式作答:(1)若2名男同学不相邻,共有多少种不同的排法;(2)若2名男同学中间必须有1人,共有多少种不同的排法.【正确答案】(1)72(2)36【分析】(1)先排女同学,再将男同学插空,得到答案;(2)先将两名男生进行排列,再选出1名女生放在男同学中间,利用捆绑法进行求解.【详解】(1)先将3名女生进行排列,有33A 6=种情况,再将2名男生插空,有24A 12=种情况,故2名男同学不相邻,共有61272⨯=种排法;(2)先将两名男生进行排列,有22A 2=种情况,再选出1名女生放在男同学中间,有13A 3=种选择,将两名男同学和这名女同学看成一个整体和剩余的2名女同学进行全排列,共有33A 6=种选择,故若2名男同学中间必须有1人,共有23636⨯⨯=种排法.18.(1)若33210n n A A =,求正整数n ;(2)已知56711710n n n C C C -=,求8n C .【正确答案】(1)8(2)28【分析】(1)利用排列数公式可得()()()()221221012n n n n n n --=--,即求;(2)利用组合数公式可得223420n n -+=,即求.【详解】(1)由33210n n A A =得,()()()()221221012n n n n n n --=--,又*3,N n n ≥∈,∴()()22152n n -=-,即8n =,∴正整数n 为8.(2)由56711710n n n C C C -=得,()()()!5!!6!7!7!5!6!107!n n n n n n --⨯--=⨯,∴()()6761660n n n ----=即223420n n -+=,解得2n =或21n =,又05n ≤≤,∴2n =,∴88228n C C ==.19.已知A ,B 两地的距离是130km .根据交通法规,A ,B 两地之间的公路车速v (单位:/km h )应满足[]50,100v ∈.假设油价是7元/L ,以/xkm h 的速度行驶时,汽车的耗油率为33/x L h k ⎛⎫+ ⎪⎝⎭,当车速为80/km h 时,汽车每小时耗油13L ,司机每小时的工资是91元.(1)求k 的值;(2)如果不考虑其他费用,当车速是多少时,这次行车的总费用最低?【正确答案】(1)51200;(2)100.【分析】(1)根据题中给出的车速和油耗之间的关系式,结合已知条件,待定系数即可;(2)根据题意求得以/xkm h 行驶所用时间,构造费用关于x 的函数,利用导数研究其单调性和最值,即可求得结果.【详解】(1)因为汽车以/xkm h 的速度行驶时,汽车的耗油率为33/x L h k ⎛⎫+ ⎪⎝⎭,又当80x =时,33x k+13=,解得51200k =.(2)若汽车的行驶速度为 /x km h ,则从A 地到B 地所需用时130h x,则这次行车的总费用()[]32130130167391910,50,1005120051200x x f x x x x x ⎛⎫⎛⎫=⨯++⨯=+∈ ⎪ ⎪⎝⎭⎝⎭,则'()f x 32409600091025600x x -=⨯,令'()f x 0=,解得160x =,则当[]50,100x ∈,'()f x 0<,()f x 单调递减,即()()100f x f ≥.故100x =时,该次行车总费用最低.20.已知函数()()2e x f x x =-.(1)求函数()f x 的极值;(2)画出函数()f x 的大致图像.【正确答案】(1)极小值为()1e f =-,无极大值.(2)图像见解析【分析】(1)利用导数得出函数单调区间以及极值;(2)由单调性结合极值和零点画出函数()f x 的大致图像.【详解】(1)()()2e x f x x =-,函数定义域为R ,()()()e 2e 1e x x x f x x x '=+-=-,()0f x '<,解得1x <;()0f x ¢>,解得1x >,即函数()f x 在(),1-∞上单调递减,在()1,+∞上单调递增,极小值为()1e f =-,无极大值.(2)当2x <时,()0f x <﹔()02f =-,()1e f =-,()20f =,结合函数单调性,可画出函数()f x 的大致图像,如下图所示︰21.已知函数2()(2)ln f x ax a x x =-++.(1)当2a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)求函数()f x 的单调区间.【正确答案】(1)30x y --=(2)答案见解析【分析】(1)求出导函数,利用导数的几何意义即可求解.(2)求出导函数,分情况求解不等式()0f x '>和()0f x '<即可得解.【详解】(1)当2a =时,2()24ln f x x x x =-+,0x >,()144f x x x'=-+,所以()11f '=,又()1242f =-=-,所以曲线()y f x =在点(1,(1))f 处的切线方程为21y x +=-,即30x y --=.(2)()2221(1)(21)()(0)ax a x ax x f x x x x-++--'==>,当0a ≤,令()0f x '=得12x =,由()0f x '>得102x <<,由()0f x '<得12x >,所以()f x 的单调递增区间为1(0,2,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭当0a >,令()0f x '=得1211,2x x a ==,当02a <<时,由()0f x '>得102x <<或1x a >,由()0f x '<得112x a <<,所以()f x 的单调递增区间为1(0,2和1,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为11,2a ⎛⎫ ⎪⎝⎭;当2a =时,()221()0x f x x '-=≥,所以()f x 的单调增区间为(0,)+∞,无单调减区间;当2a >时,由()0f x '>得10x a<<或12x >,由()0f x '<得112x a <<,所以()f x 的单调增区间为10,a ⎛⎫ ⎪⎝⎭和1(,)2+∞,单调递减区间为11,2a ⎛⎫ ⎪⎝⎭.22.已知函数()e cos 2x f x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.【正确答案】(1)证明见解析(2)(],2-∞【分析】(1)由题意可判断()00f =,然后说明当0x <时无零点;当0x ≥时,利用导数判断函数单调性,进而说明函数零点只有一个;(2)将()sin f x ax x >-变为e sin cos 20x x x ax ++-->,从而构造函数()e sin cos 2x g x x x ax =++--,再利用导数判断函数的单调性,分2a ≤时和2a >时两种情况讨论不等式是否恒成立,结合()00g =,即可求得答案.【详解】(1)证明:由()e cos 2x f x x =+-可得()00e cos020f =+-=,当0x <时,e 1x <,cos 1≤x ,所以e cos 2x x +<,故e cos 20x x +-<,故()f x 在区间(),0∞-上无零点.当0x ≥时,()e sin x f x x '=-,而e 1x ≥,sin 1x -≥-,且等号不会同时取到,所以()e sin 0x f x x =->',所以当0x ≥时,函数()f x 单调递增,所以()()00f x f ≥=,故函数()f x 在区间[)0,∞+上有唯一零点0,综上,函数()f x 在定义域上有唯一零点.(2)由()sin f x ax x >-在区间()0,∞+上恒成立,得e cos 2sin x x ax x +->-,即e sin cos 20x x x ax ++-->在区间()0,∞+上恒成立.设()e sin cos 2x g x x x ax =++--,则()0g x >在区间()0,∞+上恒成立,而()e cos sin x g x x x a =+--',()e cos sin x m x x x a =+--,则()e sin cos x m x x x =-'-.设()e 1x h x x =--,则()e 1x h x '=-,当0x >时,()0h x '>,所以函数()h x 在区间()0,∞+上单调递增,故在区间()0,∞+上,()()00h x h >=,即在区间()0,∞+上e 1x x >+,设函数()()0n ,si ,p x x x x ∞=-∈+,则()1cos 0p x '=-≥,所以函数()p x 在区间()0,∞+上单调递增,故在区间()0,∞+上()()00p x p >=,即在区间()0,∞+上,sin x x >,所以在区间()0,∞+上,e 1sin cos x x x x >+>+,即()e sin cos 0x m x x x =-->',所以在区间()0,∞+上函数()g x '单调递增.当2a ≤时,()020g a '=-≥,故在区间()0,∞+上函数()0g x '>,所以函数()g x 在区间()0,∞+上单调递增.又()00g =,故()0g x >,即函数()sin f x ax x >-在区间()0,∞+上恒成立.当2a >时,()020g a '=-<,()()()ln 22cos ln 2sin ln 2g a a a a a '+=+++-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()π2ln 204a ⎛⎫=-+-> ⎝⎭,故在区间()()0,ln 2a +上函数()g x '存在零点0x ,即()00g x '=,又在区间()0,∞+上函数()g x '单调递增,故在区间()00,x 上函数()()00g x g x ''<=,所以在区间()00,x 上函数()g x 单调递减,又()00g =,所以在区间()00,x 上函数()(0)0g x g <=,与题设矛盾.综上,a 的取值范围为(],2-∞.方法点睛:解答函数不等式恒成立问题的方法:(1)分离参数,即将不等式中所含参数分离出来,然后构造函数,将问题转化为利用导数求函数的最值问题;(2)将不等式变形为不等式一侧为0,直接构造函数,利用导数判断该函数的单调性,利用函数单调性解决恒成立问题;(3)将不等式变形,再利用放缩法转化为较常见形式的不等式,结合导数解决问题.。

安徽省合肥市2023-2024学年高二下学期期中检测数学试题含答案

安徽省合肥市2023-2024学年高二下学期期中检测数学试题含答案

智学大联考·皖中名校联盟合肥2023-2024学年第二学期高二年级期中检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题共58分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确答案涂在答题卡上)1.甲乙两人独立的解答同一道题,甲乙解答正确的概率分别是112p =,213p =,那么只有一人解答对的概率是()A.16B.12C.13D.56【答案】B 【解析】【分析】根据独立事件概率公式,即可求解.【详解】只有1人答对的概率()()1212121111123232P p p p p =-+-=⨯+=.故选:B2.若6x⎛- ⎝的展开式中常数项为15,则=a ()A.2 B.1C.1± D.2±【答案】C 【解析】【分析】利用二项式定理的通项公式和常数项为15,求解出a【详解】6x⎛- ⎝的通项公式()3662166C C rr r r r r r T x a x --+⎛==- ⎝,令3602r -=,则4r =,由展开式中的常数项为15,故()446C =15a -,所以1a =±.故选:C3.已知等差数列{}n a 的前n 项和为n S ,若530S =,84a =,则10S =()A.50 B.63C.72D.135【答案】A 【解析】【分析】思路一:由已知利用等差数列的求和公式和通项公式求解1a 和d ,即可求解10S ;思路二:由530S =得36a =,结合84a =、等差数列求和公式以及等差数列下标和性质即可求解.【详解】方法一:设等差数列{}n a 的公差为d ,由已知可得1154530274d a a d ⨯⎧+=⎪⎨⎪+=⎩,解得134525a d ⎧=⎪⎪⎨⎪=-⎪⎩,所以10110910502dS a ⨯=+=.方法二:()()5152433530S a a a a a a =++++==,所以36a =,从而由等差数列求和公式得()()()()11010110381055564502a a S a a a a +==+=+=⋅+=.故选:A .4.若曲线2ln y x a x =-在点()1,1P 处的切线与直线2y x =-垂直,则实数a 的值为()A.1B.C.2D.3【答案】D 【解析】【分析】求导2ay x x'=-,12x y a ='=-与直线2y x =-垂直,求出a 的值.【详解】由2ln y x a x =-,求导2a y x x'=-,则2ln y x a x =-在点()1,1P 处的切线的斜率为12x y a ='=-,而2ln y x a x =-在点()1,1P 处的切线与直线2y x =-垂直,则21a -=-,故3a =.故选:D5.将分别标有数字1,2,3,4,5的五个小球放入,,A B C 三个盒子,每个小球只能放入一个盒子,每个盒子至少放一个小球.若标有数字1和2的小球放入同一个盒子,则不同放法的总数为()A.2B.24C.36D.18【答案】C 【解析】【分析】将所有情况分为标有数字1和2的小球所放入盒子中无其他小球和共有3个小球两种情况,结合分组分配、平均分组问题的求法,利用分类加法计数原理可求得结果.【详解】若标有数字1和2的小球所放入盒子中无其他小球,则剩余三个小球需放入两个不同的盒子中,将剩余三个小球分为12+的两组,则共有13C 3=种分法;将分组后的小球放入三个盒子中,共有33A 6=种放法,则共有1863=⨯种方法;若标有数字1和2的小球所放入盒子中共有3个小球,则需选择一个小球与标有数字1和2的小球放在一起,有13C 3=种选法;将剩余两个小球平均分为两组,有1222C 1A =种分法;将分组后的小球放入三个中,共有33A 6=种放法,则共有31618⨯⨯=种方法;综上:不同放法的总数为181836+=.故选:C.6.已知12e a -=,3ln 2b =,12c =,则()A.a b c >>B.c b a>> C.c a b>> D.a c b>>【答案】D 【解析】【分析】利用指数函数及对数函数的单调性判断即可.2<12>,即a c >,又322lnl 94n ln e=12b ==<,所以12b c <=,所以a c b >>.故选:D.7.随机变量X 的取值为1,2,3,若()115P X ==,()2E X =,则()D X =()A.15B.25C.5D.5【答案】B 【解析】【分析】根据概率之和为1,以及方差公式,即可解得()2P X =和()3P X =,进而利用方差公式直接求解即可.【详解】由题知,()()()423115P X P X P X =+==-==,又()()()()122332E X P X P X P X ==+=+==,所以()()922335P X P X =+==,所以()325P X ==,()135P X ==,所以()()()()22213121222325555D X =-⨯+-⨯+-⨯=.故选:B8.设O 为坐标原点,直线1l 过抛物线C :22y px =(0p >)的焦点F 且与C 交于A B 、两点(点A 在第一象限),min 4AB =,l 为C 的准线,AM l ⊥,垂足为M ,()0,1Q ,则下列说法正确的是()A.4p =B.AM AQ +的最小值为2C.若3MFO π∠=,则5AB = D.x 轴上存在一点N ,使AN BN k k +为定值【答案】D 【解析】【分析】对于A 选项,利用过焦点的弦长最短时是通径的结论即可得到;对于B 选项,利用抛物线上的点的性质进行转化,再结合图象,三点共线时,对应的线段和最小;对于C 选项,得到A 点的坐标,直线方程,联立直线与抛物线的方程求得B 点的坐标进而求得;对于D 选项,设出直线方程,与抛物线方程联立,得到韦达定理,代入AN BN k k +进行化简,要使得为定值,1t =-,从而存在点N .【详解】A 选项,因为1l 过焦点F ,故当且仅当AB 为通径时,AB 最短,即min 24AB p ==,从而2p =,故A 错误;B 选项,由抛物线的定义知AM AF =,所以AM AQ AF AQ +=+,由图知,当且仅当Q A F 、、三点共线时,AF AQ +取得最小值,即()minAM AQ QF +==B 错误;C 选项,由图K 是抛物线的准线l 与准线的交点,所以2FK p ==,在MFK Rt 中,3MFO π∠=,所以KM =,所以A y =,所以(3,A,所以1:l y =-,联立24y y x ⎧=-⎪⎨=⎪⎩得231030x x -+=,得13,3A B x x ==,从而123,33B ⎛⎫- ⎪ ⎪⎝⎭,所以1163233AB =++=,故C 错误;D 选项,设1:1l x my =+,联立241x xy y m =+=⎧⎨⎩得2440y my --=,216160m +>,设()()1122,,,A x y B x y ,则121244y y my y +=⎧⎨⋅=-⎩,设x 轴上存在一点(),0N t ,则1212121211AN BN y y y y k k x t x t my t my t+=+=+--+-+-()()()()()()()()()()()1212222222212122124414111441114my y t y y m m tm t m y y m t y y t m t m t t m t+-+-+--+===+-++--+-+---,故当1t =-时,0AN BN k k +=,即存在()1,0N -使得AN BN k k +为定值0,故D 正确.故选:D .二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,两个选项部分选对得3分;三个选项选对一个得2分,选对两个得4分,选错得0分.请把正确答案涂在答题卡上)9.已知数列{}n a 满足11a =,()*12N nn n a a n ++=∈,则下列结论中正确的是()A.45a = B.{}n a 为等比数列C.221221213a a a -+++=D.231222213a a a -+++=【答案】AC 【解析】【分析】利用递推式可求得234,,a a a 的值,可判断A ,B ,利用并项求和法结合等比数列的求和公式判断C ,D.【详解】数列{}n a 满足11a =,()*12nn n a a n ++=∈N,则122a a+=,234+=a a ,3342a a +=,有21a =,33a =,45a =,A 正确;显然211a a =,323a a =,因此数列{}n a 不是等比数列,B 错误;1221123520214()()()a a a a a a a a a a +++=++++++++ 11112224201(14)412112+2++2===1433⨯---=+- ,C 正确.()()()122212342122a a a a a a a a a +++=++++++ ()1111231321214242222+2++2===1433-⨯--=- ,D 错误;故选:AC 10.已知()14P A =,()13P B A =.若随机事件A ,B 相互独立,则()A.()13P B =B.()112P AB =C.()34P A B =D.()1112P A B +=【答案】ABC 【解析】【分析】根据给定条件,利用相互独立事件的乘法公式,结合条件概率逐项计算即得.【详解】随机事件A ,B 相互独立,()14P A =,()13P B A =,对于A ,()()()()1()()()3P A P B P AB P B P B A P A P A ====,A 正确;对于B ,()111()()4312P AB P A P B ==⨯=,B 正确;对于C ,()()()()3()1()()()4P AB P A P B P A B P A P A P B P B ====-=,C 正确;对于D ,()11113()()()1)43434P A B P A P B P AB +=+-=+---=,D 错误.故选:ABC11.已知函数()2ln x f x x=,下列说法正确的是()A.()f x 在1x =处的切线方程为22y x =-B.()f x 的单调递减区间为()e,+∞C.若()f x a =有三个不同的解,则22e ea -<<D.对任意两个不相等正实数1x ,2x ,若()()12f x f x =,则212ex x ⋅>【答案】AD 【解析】【分析】选项A ,根据条件,利用导数的几何意义,即可求解;选项B ,对()f x 求导,利用导数与函数单调性间的关系,即可求解;选项C ,作出()2ln x f x x =的图象,数形结合即可求解;选项D ,由条件知1212ln ln x x x x =,设120e x x <<<,构造函数ln ()x h x x =,2e ()()()H x h x h x =-,利用2e ()()()H x h x h x =-在区间(0,e)上单调性,得到2121e ()()()h x h x h x =<,再利用ln ()x h x x =的单调性即可求解.【详解】对于选项A ,因为()2ln x f x x=,所以当0x >时,()222ln x f x x -'=,所以()12f '=,又()10f =,所以()f x 在1x =处的切线方程为22y x =-,故选项A 正确,对于选项B ,易知函数定义域为(,0)(0,)-∞+∞ ,因为()222ln x f x x-=',由()0f x '<,得到22ln 2ln e x >=,解得e x <-或e x >,所以()f x 的单调递减区间为(),e ∞--,()e,∞+,所以选项B 错误,对于选项C ,因为()222ln x f x x -=',由()222ln 0x f x x-'=>得到e e x -<<且0x ≠,所以()f x 的增区间为区间()e,0-,()0,e ,由选项B 知,()f x 的减区间为(),e ∞--,()e,∞+,又22(e),(e)e ef f =-=-,当x →-∞时,()0f x <,且()0f x →,当x →+∞时,()0f x >,且()0f x →,当0x <且0x →时,()f x →+∞,当0x >且0x →时,()f x →-∞,其图象如图所示,由图知,()f x a =有三个不同的解,则22e ea -<<且0a ≠,所以选项C 错误,对于选项D ,由题知()1212122ln 2ln ()x x f x f x x x ===,得到1212ln ln x x x x =,由图,不妨设120e x x <<<,设ln ()x h x x =,2e ()()()H x h x h x =-,则222222222e e 1ln 1ln (1ln )(e )()()()e ex x x x H x h x h x x x x ----'''=+=-=,当0e x <<时,1ln 0x ->,22e 0x ->,所以()0H x '>,即2e ()()()H x h x h x =-在区间(0,e)上单调递增,又(e)(e)(e)0H h h =-=,所以2111e ()()()0H x h x h x =-<,得到2121e ()()()h x h x h x =<,又21ln ()x h x x-'=,当e x >时,()0h x '<,即ln ()xh x x =在区间(e,)+∞上单调递减,又221e e,e x x >>,所以221e >x x ,得到212e x x ⋅>,所以选项D 正确,故选:AD.第Ⅱ卷(非选择题共92分)三、填空题(本大题共3小题,每小题5分,共15分.把答案填在答题卡的相应位置.)12.已知数列{}n a 的首项为1,前n 项和为n S ,132n n S S +=+,则5a =____________.【答案】108【解析】【分析】由题设可得122n n a S +=+,利用,n n a S 的关系求出数列通项,进而求出5a 即可.【详解】由题意可知,111,32n n a S S +==+,所以122n n a S +=+,则12)2(2n n a S n -=+≥,所以12n n n a a a +=-,则13(2)n n a a n +=≥,又因为11a =,所以21224a S =+=,所以数列{}n a 从第二项开始成等比数列,因此通项公式为22,143,2n n n a n -=⎧=⎨⋅≥⎩,,所以3543108a =⨯=.故答案为:108.13.设()525012512x a a x a x a x +=+++⋅⋅⋅+,则135a a a ++=____________.【答案】122【解析】【分析】分别令1x =和=1x -,作差即可求得结果.【详解】令1x =,则50123453243a a a a a a +++++==;令=1x -,则()501234511a a a a a a -+-+-=-=-;两式作差得:()()135********a a a ++=--=,135122a a a ∴++=.故答案为:122.14.已知双曲线22221x y a b-=(0a >,0b >)的右焦点为F ,经过点F 作直线l 与双曲线的一条渐近线垂直,垂足为点M ,直线l 与双曲线的另一条渐近线相交于点N ,若3MN MF =,则双曲线的离心率e =____________.【答案】3【解析】【分析】设直线:(0)MN ty x c t =-<,11122(,)(0),(,)M x y y N x y >,由22220x y a b ty x c ⎧-=⎪⎨⎪=-⎩,得到2222222()20b t a y b tcy b c -++=,从而有22212122222222,b tc b c y y y y b t a b t a+=-=--,根据条件有212y y =-,从而得到2229b t a =,再利用bt a=-,即可求出结果.【详解】易知(c,0)F ,如图,由对称性不妨设直线:(0)MN ty x c t =-<,11122(,)(0),(,)M x y y N x y >,由22220x y a b ty x c ⎧-=⎪⎨⎪=-⎩,消x 得到2222222()20b t a y b tcy b c -++=,则22212122222222,b tc b c y y y y b t a b t a+=-=--,因为3MN MF =,所以212111(,)3(,)x x y y c x y --=--,得到2113y y y -=-,即212y y =-,将212y y =-代入22212122222222,b tc b c y y y y b t a b t a +=-=--,整理得到2229b t a =,又易知b t a =-,所以2229(b b a a -=,得到223b a =,即2213b a =,所以双曲线的离心率c e a ===,故答案:3.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知递增的等比数列{}n a 的前n 项和为n S ,且22a =,37S =.(1)求数列{}n a 的通项公式;(2)设n n b na =,求数列{}n b 的前n 项和n T .【答案】(1)12n n a -=(2)()121nn T n =-⋅+【解析】【分析】(1)设等比数列{}n a 公比为q ,根据题意列式求1,a q ,即可得通项公式;(2)由(1)可知:12n n b n -=⋅,利用错位相减法分析求解.【小问1详解】设等比数列{}n a 公比为q ,由题意可得212311127a a q S a a q a q ==⎧⎨=++=⎩,解得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩,又因为等比数列{}n a 为递增数列,可知112a q =⎧⎨=⎩,所以12n n a -=.【小问2详解】由(1)可知:12n n b n -=⋅,则01211222322n n T n -=⨯+⨯+⨯++⨯ ,可得12321222322n n T n =⨯+⨯+⨯++⨯ ,两式相减得()0211222222212112n n nn n n T n n n ---=++++-⨯=-⨯=-⨯-- ,所以()121n n T n =-⋅+.16.某大学为丰富学生课余生活,举办趣味知识竞赛,分为“个人赛”和“对抗赛”,竞赛规则如下:①个人赛规则:每位学生需要从“历史类、数学类、生活类”问题中随机选1道试题作答,其中“历史类”有8道,“数学类”有6道,“生活类”有4道,若答对将获得一份奖品.②对抗赛规则:两位学生进行答题比赛,每轮只有1道题目,比赛时两位参赛者同时回答这一个问题,若一人答对且另一人答错,则答对者获得1分,答错者得1-分;若两人都答对或都答错,则两人均得0分,对抗赛共设3轮,每轮获得1分的学生会获得一份奖品,且两位参赛者答对与否互不影响,每次答题的结果也互不影响.(1)学生甲参加个人赛,若学生甲答对“历史类”“数学类”“生活类”的概率分别为15,25,35,求学生甲答对所选试题的概率;(2)学生乙和学生丙参加对抗赛,若每道题学生乙和学生丙答对的概率分别为13,12,求三轮结束学生乙仅获得一份奖品的概率.【答案】(1)1645;(2)2572.【解析】【分析】(1)根据题意可知分三类求解:选题为历史类并且答对,选题为数学类且答对,选题为生活类且答对,由条件概率和全概率计算即可;(2)可先求出乙同学每轮获得1分的概率,然后由二项分布概率模型计算即可.【小问1详解】设学生甲选1道“历史类”试题为事件A ,选1道“数学类”试题为事件B ,选1道“生活类”试题为事件C ,答对试题为事件D ,则()844689P A ==++,()614683P B ==++,()424689P C ==++,()15P D A =,()25P D B =,()35P D C =,所以:()()()()()()()41122316|||95359545P D P A P D A P B P D B P C P D C =++=⨯+⨯+⨯=,故学生甲答对所选试题的概率为1645.【小问2详解】由题可知每一轮中学生乙得1分的概率为1111326⎛⎫⨯-= ⎪⎝⎭,在3轮比赛后,学生乙得1分的概率为21131525C 6672P ⎛⎫=⨯⨯= ⎪⎝⎭,故三轮结束学生乙仅获得一份奖品的概率为:2572.17.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,上顶点为A ,且120AF AF ⋅= ,动直线l 与椭圆交于,P Q 两点;当直线l 过焦点且与x 轴垂直时,2PQ =.(1)求椭圆C 的方程;(2)若直线l 过点()1,0E ,椭圆的左顶点为B ,当BPQ V时,求直线l 的斜率k .【答案】(1)22142x y +=(2)1±【解析】【分析】(1)根据向量数量积坐标运算和通径长可构造方程组求得,a b ,进而得到椭圆方程;(2)设:1l x ty =+,与椭圆方程联立可得韦达定理的结论;根据1212BPQ S EB y y =⋅- ,结合韦达定理可构造方程求得结果.【小问1详解】由题意得:()1,0F c -,()2,0F c ,()0,A b ,()1,AF c b ∴=-- ,()2,AF c b =- ,22120AF AF c b ∴⋅=-+= ,即22b c =,22222a b c b ∴=+=;当直线l 过焦点且与x 轴垂直时,:l x c =±,不妨令:l x c =,由22221x c x y ab =⎧⎪⎨+=⎪⎩得:2b y a =±,222b PQ a ∴==,由222222a b b a⎧=⎪⎨=⎪⎩得:2a b =⎧⎪⎨=⎪⎩∴椭圆C 的方程为:22142x y +=.【小问2详解】由题意知:直线l 斜率不为0,可设:1l x ty =+,由221142x ty x y =+⎧⎪⎨+=⎪⎩得:()222230t y ty ++-=,则()222Δ412216240t t t =++=+>,设()()1122,,,P x y Q x y ,则12222t y y t +=-+,12232y y t =-+,1222462y y t ∴-=+,又()2,0B -,()123EB ∴=--=,12213222BPQ S EB y y t ∴=⋅-=⨯=+ ,解得:1t =±,∴直线l 的斜率11k t==±.18.已知函数()()1ln 1a x x g x x +-=-,(R a ∈).(1)若1a =,求函数()g x 的单调区间;(2)若函数()1y g x x=+有两个零点,求实数a 的取值范围.【答案】(1)()g x 单调递增区间()0,1,()g x 单调递减区间()1,+∞(2)2,e ⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)求导后构造函数()21ln x x x ϕ=--,再求导分析单调性,得到()10ϕ=,进而得到()g x 的单调性即可;(2)问题等价于2ln 0a x x a -+=有两解,构造函数()2ln f x a x x a =-+,求导分析单调性,得到202f ⎛⎫> ⎪ ⎪⎝⎭,再结合对数运算解得2e a >,之后构造函数()8ln 414e g t t t t a ⎛⎫=-+=> ⎪⎝⎭,求导分析单调性和最值,验证即可.【小问1详解】当1a =,()ln x g x x x=-,()221ln ,0x x g x x x--=>,当0x >,令()21ln x x x ϕ=--,则()12,0x x x xϕ=-->',因为()0x ϕ'<恒成立,所以()x ϕ在()0,∞+上为减函数,因为()10ϕ=,所以当()0,1x ∈,()0g x '>,()g x 单调递增;()1,x ∞∈+,()0g x '<,()g x 单调递减.【小问2详解】根据条件()1y g x x=+有两个零点等价于2ln 0a x x a -+=有两解.不妨令()2ln f x a x x a =-+,则()2a f x x x='-(0x >),当0a ≤时,()0f x '<在定义域()0,∞+内恒成立,因此()f x 在()0,∞+递减,最多一个零点,不符.当0a >时,由()0f x '>,解得02x <<;()0f x '<,解得2x >;所以,0a >时,()f x 的单调减区间为,2∞⎛⎫+ ⎪ ⎪⎝⎭,增区间为0,2⎛⎫ ⎪ ⎪⎝⎭;若()f x 有两个零点,则必有2222ln 0222f a a ⎛⎫⎛=-+> ⎪ ⎪ ⎝⎭⎝⎭,化简得ln 102a +>,解得2e a >,又因2110e ef ⎛⎫=-< ⎪⎝⎭,()()24ln 416ln 4161f a a a a a a a a =-+=-+,即()()8114ln 4144e t h t t t t a h t t t -⎛⎫=-+=>⇒=-= ⎪⎝'⎭,当8,e t ∞⎛⎫∈+ ⎪⎝⎭时,()0h t '<恒成立,即()h t 在8,e ∞⎛⎫+ ⎪⎝⎭单调递减,可得()883283232ln 1ln ln e ln 80e e e e e eh t g ⎛⎫≤=-+=-+=-< ⎪⎝⎭,也即得()0h t <在8,et ∞⎛⎫∈+ ⎪⎝⎭恒成立,从而可得()f x 在1,e 2⎛⎫ ⎪ ⎪⎝⎭,,42a ⎛⎫ ⎪ ⎪⎝⎭区间上各有一个零点,综上所述,若()f x 有两个零点实数a 的范围为2,e ∞⎛⎫+ ⎪⎝⎭.【点睛】方法点睛:函数零点问题可理解为方程根的个数问题,求导分析单调性和极值可求解.19.英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处n (*n ∈N )阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++++''' .注:()f x ''表示()f x 的2阶导数,即为()f x '的导数,()()n f x (3n ≥)表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)写出()11f x x =-泰勒展开式(只需写出前4项);(2)根据泰勒公式估算1sin 2的值,精确到小数点后两位;(3)证明:当0x ≥时,2e sin cos 02xx x x ---≥.【答案】(1)()231f x x x x =+++(2)0.48(3)证明见解析【解析】【分析】(1)分别求解()f x 的一阶,二阶,三阶导数,代入公式可得答案;(2)写出sin x 的泰勒公式,代入12可得答案;(3)方法一利用泰勒公式得2e 12xx x ≥++,把不等式进行转化,求最小值可证结论;方法二构造函数,通过两次导数得出函数的最小值,进而可证结论.【小问1详解】()11f x x=-,()()21=1f x x '-,()()32=1f x x ''-,()()()346=1f x x -;()()00=1f f '=,()0=2f '',()()30=6f ;所以()23111f x x x xx ==+++-.【小问2详解】因为()()sin cos ,cos sin x x x x ''==-,由该公式可得357sin 3!5!7!x x x x x =-+-+ ,故111sin 0.482248=-+≈ .【小问3详解】法一:由泰勒展开2345e 12!3!4!5!!nxx x x x x x n =++++++++ ,易知当0x ≥,2e 12xx x ≥++,所以222e sin cos 1sin cos 222xx x x x x x x x ---≥++---1sin cos sin x x x x x =+--≥-,令()sin x x x f -=,则()1cos 0f x x '=-≥,所以()f x 在[)0,∞+上单调递增,故()()00f x f ≥=,即证得2e sin cos 02xx x x ---≥.法二:令()2e sin cos 2xG x x x x =---,()πe 4x x G x x ⎛⎫=-+ ⎪⎝⎭',易知当3π0,4x ⎡⎫∈⎪⎢⎣⎭,e x y x =-,π4y x ⎛⎫=+ ⎪⎝⎭均为增函数,所以()πe 4x x G x x ⎛⎫=--+ ⎪⎝⎭'单调递增,所以()()00G x G '≥=',所以当3π0,4x ⎡⎫∈⎪⎢⎣⎭,()G x 单调递增,所以()()00G x G ≥=,当3π,4x ⎡⎫∈+∞⎪⎢⎣⎭,()22e sin cos e 222x x x x G x x x =---≥--,令()2e 22xF x x =--,则()e 0x x F x =-≥',则()2e 22x F x x =--单调递增,则()()22e 2e 2022xF x F x =--≥=-≥,综上,原不等式得证.【点睛】方法点睛:导数证明不等式的常用方法:1、最值法:移项构造函数,求解新函数的最值,可证不等式;2、放缩法:利用常用不等式对所证不等式进行放缩,利用传递性进行证明.。

山东省德州市2023-2024学年高二下学期期中考试数学试题

山东省德州市2023-2024学年高二下学期期中考试数学试题

山东省德州市2023-2024学年高二下学期期中考试数学试题一、单选题1.设()f x 是可导函数,且()()333lim 33x f x f x∆→-∆-=∆,则()3f '=( )A .3-B .1-C .1D .32.记n S 为等差数列{}n a 的前n 项和,若4624a a +=,12216S =,则数列{}n a 的公差为( ) A .1B .2C .3D .43.设()f x 是定义在[]3,3-上的奇函数,其导函数为()'f x ,当03x ≤≤时,()f x 图象如图所示,且()f x 在1x =处取得极大值,则()()'0f x f x ⋅>的解集为( )A .()()3,10,1--UB .()()3,11,3--⋃C .()()1,00,1-UD .()()1,01,3-U4.等比数列{}n a 的各项均为正实数,其前n 项和为n S ,已知212S =,415S =,则3a =( )A .14B .12C .2D .45.已知定义在R 上的函数()f x 的导函数为()f x ',()01f =,且对任意的x 满足()()f x f x '<,则不等式()e xf x >的解集是( )A .(),1∞-B .(),0∞-C . 0,+∞D . 1,+∞6.已知等差数列 a n , b n 的前n 项和分别为n A ,n B ,且32n n A n B n +=+,则1010a b =( ) A .1312B .2221C .2322D .24237.如图,将一根直径为d 的圆木锯成截面为矩形ABCD 的梁,设BAC α∠=,且梁的抗弯强度()321sin cos 6W d ααα=,则当梁的抗弯强度()W α最大时,cos α的值为( )A .14B .13CD8.已知无穷数列{}n a 满足:如果m n a a =,那么11m n a a ++=,且151a a ==,37a =-,49a =,2a 是1a 与4a 的等比中项.若{}n a 的前n 项和n S 存在最大值S ,则S =( )A .2-B .0C .1D .2二、多选题9.下列结论正确的是( )A .若()2e f x =,则()0f x '=B .若()3f x a =,则()23f x a '=C .若()ln 2f x x =,则()1f x x'=D .若()()cos 23f x x =-,则()()3sin 32f x x '=--10.已知正项数列 a n 满足1,231nn n nn a a a a a +⎧⎪=⎨⎪-⎩当为偶数时,当为奇数时,则下列结论正确的是( )A .若13a =,则52a =B .若28a =,则13a =或116a =C .若110a =,则5n n a a +=D .若164a =,则前100项中,值为1和2的项数相同11.设函数()2,0e ln 2,0x x x f x x x x +⎧≤⎪=⎨⎪+>⎩,函数()()g x f x m =-有三个零点123,,x x x ,且满足123x x x <<,则下列结论正确的是( )A .1230x x x ⋅⋅≥恒成立B .实数m 的取值范围是12,e e ⎛⎫- ⎪⎝⎭C .函数()g x 的单调减区间11,e ⎛⎫- ⎪⎝⎭D .若20x >,则232ex x +>三、填空题12.已知2x =是3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为.13.等比数列{}n a 的公比为q ,其前n 项和记为n S ,202420262025S S S <<,则q 的取值范围为. 14.为提升同学们的科创意识,学校成立社团专门研究密码问题,社团活动室用一把密码锁,密码一周一换,密码均为7N的小数点后前6位数字,设定的规则为: ①周一至周日中最大的日期为x ,如周一为3月28日,周日为4月3日,则取周四的3月31日的31作为x ,即31x =;②若x 为偶数,则在正偶数数列中依次插入数值为3n 的项得到新数列{}n a ,即2,13,4,6,8,23,10,12,14,…;若x 为奇数,则在正奇数数列中依次插入数值为2n 的项得到新数列{}n a ,即1,12,3,22,5,7,32,9,11,13,…;③N 为数列{}n a 的前x 项和,如9x =,则9项分别为1,12,3,22,5,7,32,9,11,故50N =,因为507.14285717≈,所以密码为142857. 若周一为4月22日,则周一到周日的密码为.四、解答题15.已知函数21()ln (1)2f x a x x a x =+-+.(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 为定义域上的单调函数,求a 的值和此时在点()()1,1f 处的切线方程. 16.已知公差不为零的等差数列{}n a ,37a =,1a 和7a 的等比中项与2a 和4a 的等比中项相等. (1)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n T ; (2)若数列{}n c 满足11c =,()()113n n n n a c a c +-=+(*n ∈N ),求数列{}n c 的通项公式.17.某工厂生产某产品的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()31150150p x x x =+;当产量不小于60万箱时,()64002011860p x x x=+-,若每箱产品的售价为200元,通过市场分析,该厂生产的产品可以全部销售完.(1)求销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该厂在生产中所获得利润最大?18.已知函数()3213f x x x =+和数列{}n c ,函数()f x 在点()(),n n c f c 处的切线的斜率记为1n c +,且已知11c =.(1)若数列{}n b 满足:()2log 1n n b c =+,求数列{}n b 的通项公式; (2)在(1)的条件下,若数列{}n a 满足112a =,1212n n n a a b ++=+,是否存在正整数n ,使得1122nii a n ==-∑成立?若存在,求出所有n 的值;若不存在,请说明理由. 19.若函数()f x 在[],a b 上有定义,且对于任意不同的[]12,,x x a b ∈,都有()()1212f x f x x x λ-<-,则称()f x 为[],a b 上的“λ类函数”.(1)若()22x f x x =+,判断()f x 是否为 1,2 上的“2类函数”;(2)若()()21e ln 2xx f x a x x x =---,为 1,2 上的“2类函数”,求实数a 的取值范围.。

2023-2024学年福建省泉州高二下册期中数学试题(含解析)

2023-2024学年福建省泉州高二下册期中数学试题(含解析)

2023-2024学年福建省泉州高二下册期中数学试题一、单选题1.在二项式82x⎫-⎪⎭的展开式中,含x的项的二项式系数为()A.28B.56C.70D.112【正确答案】A【分析】先求出二项式展开式的通项公式,再令x的幂指数等于1,求得r的值,即可求得展开式中含x的项的二项式系数.【详解】∵二项式82x⎫⎪⎭的展开式中,通项公式为34218C(2)rr rrT x-+=⋅-⋅,令3412r-=,求得2r=,可得含x的项的二项式系数为28C28=,故选:A.2.已知随机变量X的分布列如表,若()5E X=,则=a()X3aP 13bA.23B.4C.6D.12【正确答案】C【分析】结合分布列的性质,以及期望公式,即可求解.【详解】由分布列的性质可得:113b+=,解得23b=,∵()12 35 33E X a⨯+⨯==,解得6a=.故选:C.3.甲、乙、丙、丁、戊5名同学排成一排,甲乙相邻,且甲不站中间的方法种数有()A.24B.36C.42D.48【正确答案】B【分析】首先将甲乙之外的3人全排列,再分甲在排头或甲在排尾和乙在中间两种情况,即可得到答案.【详解】根据题意,分两步分析,①将甲乙之外的3人全排列,共有336A =种排法,排好后有4个空位,②甲乙相邻,将甲乙看成一个整体,甲不站中间,则甲乙在排头或甲乙在排尾,共22224A A ⋅=种排法,乙在中间,共2种排法,所以甲不站中间的方法种数共有()64236⨯+=种.故选:B4.函数e 2xy x =-的图像大致为()A .B .C .D .【正确答案】A【分析】分别讨论0x ≥与0x <两种情况,利用导数与函数的关系研究()f x 的图像,从而得解.【详解】因为()e 2,0e 2e 2,0x xx x x y f x x x x ⎧-≥==-=⎨+<⎩,当0x ≥时,()e 2x f x x =-,则()e 2xf x '=-,令()0f x '<,得0ln 2x ≤<;令()0f x ¢>,得ln 2x >;所以()f x 在[)0,ln 2上单调递减,在()ln 2,+∞上单调递增,所以()()()ln 2min ln 2e 2ln 221ln 20f x f ==-=->,从而排除B ;当0x <时,()e 2xf x x =+,则()e 20x f x '=+>,所以()f x 在(),0∞-上单调递增,从而排除D ;又()()111e 2120ef --=+⨯-=-<,从而排除C ;由于排除了选项BCD ,而选项A 又满足上述()f x 的性质,故A 正确.故选:A.5.已知函数()sin cos f x ax x x =++在R 上单调递增,则实数a 的取值范围是()A .(],2-∞-B .(,-∞C .)+∞D .[)2,+∞【正确答案】C【分析】求出函数的导数,问题转化为max (sin cos )a x x ≥-,根据三角函数的性质求出a 的取值范围即可.【详解】∵函数()sin cos f x ax x x =++在R 上单调递增,∴()cos sin 0f x a x x '=+-≥,即sin cos a x x ≥-,故max (sin cos )a x x ≥-,而πsin cos 4x x x ⎛⎫-=-≤ ⎪⎝⎭则实数a ≥故选:C.6.甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.2.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为A .0.36B .0.49C .0.51D .0.75【正确答案】C【分析】乙至少赢甲一局的对立事件为甲两局不输,由此能求出乙至少赢甲一局的概率.【详解】乙至少赢甲—局的概率为10.70.70.51P =-⨯=.故选C本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.7.已知事件A ,B 满足1()2P A =,1()3P B =,下列说法错误的是()A .若()0PB A =,则A ,B 是互斥事件B .若()56P A B +=,则A ,B 是互斥事件C .若()13P A B =,则A ,B 是相互独立事件D .若()16P AB =,则A ,B 是相互独立事件【正确答案】C【分析】利用互斥事件的定义判断AB ;利用相互独立事件的定义判断CD.【详解】事件A ,B 满足1()2P A =,1()3P B =,对于A ,∵()()()0P AB P B A P A ==,∴()0P AB =,∴A ,B 是互斥事件,故A 正确;对于B ,∵()()511()623P A B P A P B +==+=+,∴A ,B 是互斥事件,故B 正确;对于C ,∵()13P A B =,∴()()13P AB P B =,∴1()()()()3P AB P B P A P B =≠,∴A ,B 不是相互独立事件,故C 错误;对于D ,∵()()111()623P AB P A P B ==⨯=,∴A ,B 是相互独立事件,故D 正确.故选:C.8.已知不等式()ln ln e 0ax x a ⎡⎤-+≤⎣⎦成立,则()A .1a ≥B .1a ≤C .e a ≥D .ea ≤【正确答案】B【分析】利用指对互化以及对数函数的单调性,将问题化为()ln e 0x a f x x a -=-+≤恒成立,再利用导数研究单调性、最值求解.【详解】解:()()ln ln e 00ax x a x ⎡⎤-+≤>⎣⎦,原式可化为()ln ln e a x x a ⎡⎤≤-⎣⎦,即ln e (0)x a a x x -+≤>,即ln e 0(0)x a x a x --+≤>,令()ln e (0)x a f x x a x -=-+>,因为当0x →时,ln x →-∞,e 0x a --<,故此时()f x →-∞;当x →+∞时,e x a -→+∞比ln x →+∞快得多,故此时()f x →-∞;令1()()e x a h x f x x -'==-,且21()e 0x a h x x-'=--<恒成立,故()h x 在()0,∞+上单调递减,且当0x +→时,()h x →+∞,当x →+∞时,()h x →-∞,故存在00x >,有001e 0x a x --=,即001e x a x -=,所以00ln x x a -=-,当()00,x x ∈时,()0h x >,()f x 此时单调递增,()0,x x ∈+∞时,()0h x <,()f x 此时单调递减,故()0max 00001()ln e 2x af x f x x a a x x -⎛⎫==-+=-+ ⎪⎝⎭,显然0012x x +≥=,当且仅当01x =时取等号,故0012220a x a x ⎛⎫-+≤-≤ ⎪⎝⎭,解得1a ≤,即1a ≤即为所求.故选:B.二、多选题9.已知1是函数32()1f x x bx x =+++的一个极值点,则()A .2b =-B .()f x 在1,13⎛⎫⎪⎝⎭单调递增C .1是函数()f x 的极大值点D .()f x 的对称中心为22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【正确答案】AD【分析】根据()10f '=,可求得b 的值,再逐项分析判断即可.【详解】解:2()321f x x bx +'=+,则()13210f b '=++=,解得2b =-,∴32()21f x x x x =-++,2()341'=-+f x x x ,令()0f x '<,解得113x <<,令()0f x ¢>,解得13x <或1x >,∴函数()f x 在1,13⎛⎫⎪⎝⎭上单调递减,且在1x =处取得极小值,由三次函数的性质可知,其对称中心为22,33f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,综上,选项AD 正确,选项BC 错误.故选:AD.10.某工厂有甲、乙、丙3个车间生产同一种产品,产量依次占全厂的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.从该工厂的一批产品中随机抽查1件产品()A .该产品是次品的概率为3.5%B .该产品是正品的概率为65%C .若该产品是次品,则该次品由甲车间生产的可能性最大D .若该产品是正品,则该正品由甲车间生产的可能性最大【正确答案】ACD【分析】根据相互独立事件的乘法公式和条件概率公式计算即可.【详解】解:对于A ,该产品是次品的概率为45%4%35%2%20%5% 3.5%⨯+⨯+⨯=,故A 正确;对于B ,该产品是正品的概率为45%(14%)35%(12%)20%(15%)96.5%⨯-+⨯-+⨯-=,故B 错误;对于C ,若该产品是次品,则该次品由甲车间生产的可能性为45%4%183.5%35⨯=;若该产品是次品,则该次品由乙车间生产的可能性为35%2%73.5%35⨯=;若该产品是次品,则该次品由丙车间生产的可能性为20%5%103.5%35⨯=;可知该次品甲车间生产的可能性最大,故C 正确;对于D ,若该产品是正品,则该正品由甲车间生产的可能性为45%(14%)43296.5%965⨯-=;若该产品是正品,则该正品由乙车间生产的可能性为35%(12%)34396.5%965⨯-=;若该产品是正品,则该正品由丙车间生产的可能性为20%(15%)19096.5%965⨯-=;可知该正品甲车间生产的可能性最大,故D 正确.故选:ACD.11.()f x 是定义在R 上的奇函数,当0x >时,有()()20xf x f x '+>恒成立,则()A .()()142f f <B .()()142f f -<-C .()()4293f f <D .()()4293f f -<-【正确答案】AC【分析】令()()2g x x f x =,求出函数的导数,结合函数的单调性判断即可.【详解】令()()2g x x f x =,∵当0x >时,()()20xf x f x '+>,∴当0x >时,[]2()2()()()2()0g x xf x x f x x xf x f x '''=+=+>,∴()()2g x x f x =在()0,∞+上单调递增;又()f x 为定义在R 上的奇函数,2y x =为定义在R 上的偶函数,∴()()2g x x f x =为R 上的奇函数;∴()g x 在R 上单调递增.由()()21g g >,可得()()421f f >,故A 正确;由()()12g g ->-,可得()()142f f ->-,故B 错误;由()()23g g <,可得()()4293f f <,故C 正确;由()()23g g ->-,可得()()4293f f ->-,故D 错误.故选:AC.12.某同学研究得:一个盒子内有5个白球,1个红球,从中任取2球的方法数可以是26C ,也可以是2155C C +,故221655C C C =+.类比可得()A .12335556C C C C ++=B .111C C C m m m n n n ++++=C .2122C 2C C C m m m m nn n n ++++++=D .2221111112C C C C C C C C C C m n r m n m r n r m n r+++++++=【正确答案】BC【分析】由组合数及类比推理的知识逐项进行分析即可.【详解】对于A ,122556C C C +=,233656C C C +≠,故A 错误,对于B ,由类比推理,111C C C m m m n n n ++++=,故B 正确,对于C ,211212112C C C C C C C m m m m m m nn n n n n m n ++++++++++++=+=,故C 正确,对于D ,由于,,m n r 不一定相等,所以无法由类比推理推出,故D 错误.故选:BC.三、填空题13.一渔船出海打渔,出海后,若不下雨,可获得3000元收益;若下雨,将损失1000元.根据预测知某天下雨的概率为0.6,则这天该渔船出海获得收益的期望是______.【正确答案】600【分析】根据已知条件,结合期望公式,即可求解.【详解】解:预测知某天下雨的概率为0.6,则某天不下雨的概率为10.60.4-=,故这天该渔船出海获得收益的期望是30000.4(1000)0.6600⨯+-⨯=.故600.14.某班宣传小组有3名男生和2名女生.现从这5名同学中挑选2人参加小剧场演出,在已知抽取1名男生的条件下,2名都是男生概率是______.【正确答案】12##0.5【分析】根据已知条件,结合条件概率公式,即可求解.【详解】设事件A 表示“抽取1名男生”,事件B 表示“另1名也是男生”,则1315C 3()C 5P A ==,5223C 3()C 10P AB ==,故()()()3110325P AB P B A P A ===.故答案为.1215.已知O 是坐标原点,()1,0P ,Q 在函数()()ln 1f x x =+的图象上,M 为线段PQ 的中点,则OM 斜率的最大值是______.【正确答案】1e【分析】先求出直线OM 的斜率,再利用导数求函数的最值即可.【详解】设(),Q x y ,∵()1,0P ,M 为线段PQ 的中点,∴1,22x y M +⎛⎫⎪⎝⎭,ln(1)11OM y x k x x +==++,设ln(1)()1x g x x +=+,则21ln(1)()(1)x g x x '-+=+,当()0,e 1x ∈-时,则()0g x '>,()g x 单调递增,当()1,e x ∈-+∞时,则()0g x '<,()g x 单调递减,∴当e 1x =-时,()g x 取得最大值为1e ,∴OM 斜率的最大值是1e,故答案为.1e16.杨辉三角是中国古代数学的杰出研究成果之一,它把组合数的一些代数性质直观地体现在数阵中.在杨辉三角的100行数字中,存在两个相邻的数字之比为1:2的共有______行.【正确答案】33【分析】由题意设设第n 行相邻的两个数为1C ,C r rn n -,根据组合数公式化简,再由整除取值即可.【详解】由题意,第n 行各数从左到右均满足C ,N,N,rn r n r n ∈∈≤,设第n 行相邻的两个数为1C ,C r r n n -,则1C :C 1:2r rn n -=,则!!()!1(1)!(1)!!2n r n r r n r n -⨯=--+,化简得112r n r =-+,即31r n =+,0n =,1,2, (100)故33r =,6,…,99,共有33项.故33.四、解答题17.已知()12nx +的展开式的所有项的二项式系数和为512.(1)若2012(12)n n n x a a x a x a x +=+++⋯+,求11234(1)n n a a a a a --+-++- ;(2)求()12nx +展开式中系数最大的项.【正确答案】(1)2(2)675376T x=【分析】(1)由题意,利用二项式系数的性质求得n ,再利用赋值法求得要求式子的值.(2)设第1r +项系数最大,则11991199C .2C .2C .2C .2r r r r r r r r ++--⎧≥⎨≥⎩,求得r 的值,可得()12nx +展开式中系数最大的项.【详解】(1)∵()12nx +的展开式的所有项的二项式系数和为2512n =,∴9n =.∵9290129(12)(12)n x x a a x a x a x +=+=+++⋅⋅⋅+,∴令0x =,可得01a =,∴再令=1x -,可得1234911a a a a a -+-+--=- ,即()1234911a a a a a --+-++=- ,∴123492a a a a a -+-++= .(2)设第1r +项系数最大,则11991199C .2C .2C .2C .2r r r r r r r r ++--⎧≥⎨≥⎩,求得172033r ≤≤,∴6r =,故()12nx +展开式中系数最大的项为666679C 25376T x x =⋅⋅=.18.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了抽样调查,得到该市100位居民的月均用水量(单位:吨),将数据按照[)0,0.5,[)0.5,1,…,[]4,4.5分成9组,制成了如图所示的频率分布直方图.(1)现从这100位居民中月均用水量在[)3,4的人中,随机抽取4人进行电话回访,求至少有2人月均用水量在[)3,3.5的概率;(2)把这100位居民的月均用水量的频率视为该市居民的月均用水量的概率,现从该市随机抽取1位,用X 表示月均用水量不低于2.5吨的人数,求X 的期望和方差.【正确答案】(1)3742(2)数学期望为0.27,方差为0.1971.【分析】(1)由题意首先求得100位居民中月均用水量在[)3,4的人数,然后计算所求的概率即可;(2)首先求得a 的值,然后利用二项分布的期望方差公式计算即可.【详解】(1)由题意,100位居民中月均用水量在[)3,4的人数:()1000.120.080.510⨯+⨯=人;其中[)3,3.5中6人,[3.5,4)中4人,2231464646410C C C C C 37C 42P ++∴==.(2)由题意,(0.080.160.420.500.120.080.04)0.51a a ++++++++⨯=,解得:0.30a =,则用水量不低于2.5吨的人数所占的概率为(0.300.120.080.04)0.50.27p =+++⨯=,据此可得X 服从二项分布:~(1,0.27)X B ,其数学期望为:10.270.27⨯=,方差为10.27(10.27)0.1971⨯⨯-=.19.已知函数()ln 1f x x ax =-+.(1)若()0f x ≤,求a 的取值范围;(2)求证:1111231n ++++>- 2n ≥,N n ∈.【正确答案】(1)[)1,+∞(2)证明见解析【分析】(1)问题转化为ln 1x a x +≥恒成立,令ln 1()x g x x+=,()0,x ∈+∞,根据函数的单调性求出a 的取值范围即可;(2)根据11ln k k k+<,对k 赋值累加即可.【详解】(1)由题可知:()f x 的定义域是()0,∞+若()0f x ≤,则ln 1x a x +≥恒成立,令ln 1()x g x x +=,()0,x ∈+∞,则只需()max a g x ≥,而2ln ()x g x x-'=,令()0g x '>,解得01x <<,令()0g x '<,解得1x >,故()g x 在()0,1递增,在()1,+∞递减,故()()max 11g x g ==,故只需1a ≥,即若()0f x ≤,则实数a 的取值范围是[)1,+∞;(2)证明:由(1)知,1a =时,ln 1≤-x x 在()0,∞+恒成立,当且仅当1x =时“=”成立,令1k x k +=,+N k ∈,则1x >,则11ln k k k +<,故234111ln ln ln ln 11231231n n n ++++<++++-- ,故1111ln 231n n ++++>- ,而2n ≥,则12n n +>,∴2(1)2n n n +>,即n >∴ln n >故1111231n ++++>- 20.在京西购物平台购买手机时,可以选择是否加购“碎屏无忧”的保障服务,“碎屏无忧”服务有两种(两种服务只能购买一种):一为“1年碎屏换屏”,价格100元,在购机后一年内原屏发生碎屏可免费更换一次屏幕;一为“2年碎屏换屏”,价格150元,在购机后两年内原屏发生碎屏可免费更换一次屏幕,若未购买“碎屏无忧”服务,则碎屏后需更换屏幕,更换一次屏幕需要300元.已知在购机后的第一年,第二年,第三年原屏发生碎屏的概率分别是0.4,0.2,0.1.每部手机是否发生碎屏相互独立且每年至多碎屏一次.(1)DD 在京西购物平台购买了一部手机,求这部手机在第二年原屏才发生碎屏的概率;(2)CC 拟在京西购物平台购买一部手机,并决定3年后再换部新手机.请问CC 是否应该购买加购“碎屏无忧”的保障服务?说明理由.【正确答案】(1)0.12;(2)CC 在京西购物平台购买一部手机,应加购“碎屏无忧”的保障服务,理由见解析.【分析】(1)利用独立事件的乘法公式可求概率;(2)设购买“1年碎屏换屏”需花费X 元,购买“2年碎屏换屏”需花费Y 元,不买保险需花费Z 元,则可求各随机事件的概率分布及数学期望,从而可判断是否购买保险.【详解】(1)设该手机第二年原屏才碎裂为事件A ,()()10.40.20.12P A =-⨯=,从而该手机第二年原屏才碎裂的概率为0.12;(2)设购买“1年碎屏换屏”需花费X 元,则X 可取值100,400,700,则(400)0.20.90.80.10.26P X ==⨯+⨯=,(700)0.20.10.02P X ==⨯=,故(100)10.260.020.72P X ==--=,故()1000.724000.267000.02190E X =⨯+⨯+⨯=.设购买“2年碎屏换屏”需花费Y 元,则Y 可取值150,450,750,则(450)0.60.80.10.40.20.90.12P Y ==⨯⨯+⨯⨯=,(750)0.40.20.10.008P Y ==⨯⨯=,(150)10.120.0080.872P Y ==--=,故()1500.8724500.127500.008190.8E Y =⨯+⨯+⨯=,设不买保险需花费Z 元,则Z 可取值0,300,600,900,故(300)0.40.80.90.60.20.90.60.80.10.444P Z ==⨯⨯+⨯⨯+⨯⨯=,(900)0.40.20.10.008P Z ==⨯⨯=,(0)0.60.80.90.432P Z ==⨯⨯=故(600)10.0080.4440.4320.116P Z ==---=,故()3000.4446000.1169000.00800.432210E Z =⨯+⨯+⨯+⨯=,因为()()()E X E Y E Z <<,故CC 在京西购物平台购买一部手机,应加购“碎屏无忧”的保障服务.21.本次数学考试的第9-12题是四道多选题,每题有四个选项,全部选对的得5分,部分选对的得2分,有选错的得0分.若每道多选题的正确答案是两个选项或者三个选项的概率均为12.现甲乙两位同学独立解题.(1)假设每道题甲全部选对的概率为12,部分选对的概率为14,有选错的概率为14;乙全部选对的概率为13,部分选对的概率为13,有选错的概率为13,求这四道多选题中甲比乙多得13分的概率;(2)对于第12题,甲同学只能正确地判断出其中的一个选项是符合题意的,乙同学只能正确地判断出其中的一个选项是不符合题意的,作答时,应选择几个选项才有希望得到更理想的成绩,请你帮助甲或者乙做出决策.【正确答案】(1)281(2)甲应选择1个选项才有希望得到更理想的成绩;乙应选择3个选项才有希望得到更理想的成绩.【分析】(1)先分析包含的事件有哪些种,再求概率即可.(2)分别求出选择1,2,3个选项三个情况下的得分的期望,取期望最大的情况即可.【详解】(1)由题意知:甲比乙多得13分的情况包含:A :甲四道全对;乙一道全对,一道部分选对,两道选错,即甲得20分,乙得7分.B :甲三道全对,一道部分选对;乙两道部分选对,两道选错,即甲得17分,乙得4分.C :甲三道全对,一道选错;乙一道部分选对,三道选错,即甲得15分,乙得2分.()42114311111C C 2333108P A ⎛⎫⎛⎫=⨯⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.()3432441111C C 243108P B ⎛⎫⎛⎫=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.()3431441111C C 243162P C ⎛⎫⎛⎫=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.()()()281P P A P B P C =++=.(2)若为甲出方案.则甲可能的选项个数为:1,2,3.记1A 表示选1个选项的得分,则期望为()12E A =.记2A 表示选2个选项的得分,则得分可能为0,2,5,()212111232320P A =⨯⨯=+=,()21212332P A =⨯==,()21112365P A =⨯==此时期望为()211130252362E A =⨯+⨯+⨯=.记3A 表示选3个选项的得分,则得分可能为0,5,()3112220365P A ⨯==+=,()31123615P A =⨯==此时期望为()351505666E A =⨯+⨯=.∵35226>>.∴甲应选择1个选项才有希望得到更理想的成绩.若为乙出方案.则乙可能的选项个数为:1,2,3.记1B 表示选1个选项的得分,类比甲的情况,则()1111215021232323E B ⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭.记2B 表示选2个选项的得分,则得分可能为0,2,5,此时()212111026152322311E B ⎛⎫=⨯⨯+⨯⨯+⨯⨯= ⎪⎝⎭.记3B 表示选3个选项的得分,则得分可能为0,5,此时()3211505122E B =⨯+⨯⨯=.∵5115263>>.∴乙应选择3个选项才有希望得到更理想的成绩.22.已知函数21()ln 2f x x ax x =-+.(1)讨论函数()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,且()()123ln 24f x f x -≥-,求a 的取值范围.【正确答案】(1)答案见详解(2),2⎡⎫+∞⎪⎢⎪⎣⎭【分析】(1)先对函数求导,然后结合导数与单调性关系对a 进行分类讨论即可求解;(2)结合函数极值与导数零点关系进行转化后,结合题目特点进行合理的构造,然后结合导数与单调性关系即可求解.【详解】(1)因为函数21()ln 2f x x ax x =-+,则211()x ax f x x a x x -+'=-+=,0x >,令()21g x x ax =-+,则24a ∆=-,①当0a ≤或0∆≤,即2a ≤时,()0f x '≥恒成立,所以()f x 在()0,∞+上单调递增,②当0Δ0a >⎧⎨>⎩时,即2a >时,令()0f x ¢>,得02a x <<或2a x >,∴()f x 在0,2a ⎛ ⎪⎝⎭和,2a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,在⎫⎪⎪⎝⎭上单调递减,综上所述,当2a ≤时,()f x 在()0,∞+上单调递增,当2a >时,()f x 在⎛ ⎝⎭和2a a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,在⎫⎪⎪⎝⎭上单调递减;(2)由(1)得,当2a >时,()f x 有两极值点1x ,2x ,由(1)得1x ,2x 为21(0)x g x ax =-+=的两根,所以12x x a +=,121=x x ,不妨设21x x >,因为121=x x ,故1201x x <<<,易知()f x 在()12,x x 单调递减,故()()12f x f x >,所以()()()()22121211122211ln ln 22f x f x f x f x x ax x x ax x -=-=-+-+-()()221122121ln 2x x x a x x x =-+-+,将12x x a +=代入化简可得:()()()222112212222221111ln ln 22x f x f x x x x x x x ⎛⎫-=-+=-+ ⎪⎝⎭,即原不等式等价转化为2222221113ln ln 224x x x ⎛⎫-+≥- ⎪⎝⎭,令()221t x t =>,构造111()ln 2h t t t t⎛⎫=-+ ⎪⎝⎭,()()22102t h t t -'=>,故()h t 在1t >时单调递增,又因为3(2)ln 24h =-,故要使得3()ln 24h t ≥-,仅需2t ≥,即222x ≥,又因为()22222121212222122a x x x x x x x x =+=++=++,故212a t t=++,由上可知2t ≥,故292a ≥,故a的取值范围是⎫+∞⎪⎪⎣⎭.方法点睛:用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域;(2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.。

2023-2024学年天津市武清区高二下学期期中数学试题(含解析)

2023-2024学年天津市武清区高二下学期期中数学试题(含解析)

2023-2024学年天津市武清区高二下册期中数学试题一、单选题1.下列运算正确的是()A .()33ln xx x'=B .2sin cos sin x x x x x x '+⎛⎫=⎪⎝⎭C .()21log ln 2x x '=D .2111x x x '⎛⎫-=- ⎪⎝⎭【正确答案】C【分析】根据基本初等函数的导数公式及导数的四则运算逐个计算即可.【详解】对于A 选项,()33ln 3x x '=,故A 选项错误;对于B 选项,2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭,故B 选项错误;对于C 选项,()21log ln 2x x '=,故C 选项正确;对于D 选项,2111x x x '⎛⎫-=+ ⎪⎝⎭,故D 选项错误;故选:C2.已知函数3()31f x x x m =-+-有三个零点,则实数m 的取值范围是()A .(1,3)-B .(,1)(3,)-∞-⋃+∞C .(2,2)-D .(,2)(2,)-∞-+∞ 【正确答案】A【分析】构造新函数3()31h x x x =-+并利用导数求得其极值,再利用函数()f x 的零点即函数3()31h x x x =-+与直线y m =的图像的交点横坐标,进而求得实数m 的取值范围.【详解】令3()31h x x x =-+,则2()33h x x '=-,由()0h x '>得,1x >或1x <-;由()0h x '<得,11x -<<,则当1x >或1x <-时3()31h x x x =-+单调递增;当11x -<<时3()31h x x x =-+单调递减.则=1x -时()h x 取得极大值(1)3h -=;1x =时()h x 取得极小值(1)1h =-.函数3()31f x x x m =-+-有三个零点,即函数3()31h x x x =-+与直线y m =的图像有3个不同的交点,则实数m 的取值范围是(1,3)-故选:A3.已知函数()f x 的导函数()f x '的图象如图所示,则下列判断正确的是()A .()f x 在区间()1,1-上单调递增B .()f x 在区间()2,0-上单调递增C .1-为()f x 的极小值点D .2为()f x 的极大值点【正确答案】D【分析】由图象可确定()f x '在不同区间内的正负,由此可得()f x 单调性,结合极值点定义依次判断各个选项即可.【详解】对于A ,当()1,0x ∈-时,()0f x '<;当()0,1x ∈时,()0f x ¢>;()f x \在()1,0-上单调递减,在()0,1上单调递增,A 错误;对于B ,当()2,0x ∈-时,()0f x '<,()f x \在()2,0-上单调递减,B 错误;对于C ,()f x 在()2,0-上单调递减,1x ∴=-不是()f x 的极小值点,C 错误;对于D ,当()0,2x ∈时,()0f x ¢>;当()2,3x ∈时,()0f x '<;()f x \在()0,2上单调递增,在()2,3上单调递减,2x ∴=是()f x 的极大值点,D 正确.故选:D.4.若函数()2ln 1af x x x=+-在区间(1,)+∞上是增函数,则实数a 的取值范围为()A .(2,)+∞B .[2,)+∞C .(2,)-+∞D .[2,)-+∞【正确答案】D【分析】先利用导数与函数单调性的关系列出关于实数a 的不等式,解之即可求得实数a 的取值范围.【详解】()2ln 1a f x x x =+-,则2222()a x a f x x x x +'=+=由函数()2ln 1af x x x=+-在区间(1,)+∞上是增函数,可得2222()0a x a f x x x x +'=+=≥在区间(1,)+∞上恒成立,即2a x ≥-在区间(1,)+∞上恒成立,又由(1,)x ∈+∞,可得2(,2)x -∈-∞-,则2a ≥-故选:D5.已知定义在R 上的奇函数()f x 满足(,0)x ∈-∞时,()()0f x xf x '+<成立,且(1)0f =则()0f x >的解集为()A .(,1)(0,1)-∞-⋃B .,1(),)1(-∞-⋃+∞C .(1,0)(0,1)- D .(1,0)(1,)-⋃+∞【正确答案】D【分析】设函数()()g x xf x =,其中x ∈R ,根据()f x 的奇偶性得出()g x 为偶函数和(0)0g =,根据(,0)x ∈-∞时,()()0f x xf x '+<得出()g x 在定义域内的单调性,由(1)0f =得出(1)g 和(1)g -的值,画出简图,分类讨论即可得出()0f x >的解集.【详解】设函数()()g x xf x =,其中x ∈R ,则()()()g x f x xf x +''=,因为()f x 是R 上的奇函数,所以()()()()g x x f x xf x g x -=-⋅-==,且(0)0f =,所以()g x 是R 上的偶函数,(0)0(0)0g f =⨯=,因为当(,0)x ∈-∞时,()()0f x xf x '+<,所以()0g x '<,即()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,因为(1)0f =,所以(1)0f -=,所以(1)1(1)0g f =⨯=,(1)1(1)0g f -=-⨯-=,画出()g x 的简图,如图所示,当0x >,()0f x >时,()()0g x xf x =>,则1x >,当0x <,()0f x >时,()()0g x xf x =<,则10x -<<,当0x =,()0f x =,不合题意,综上所述,()0f x >时,(1,0)(1,)x ∈-⋃+∞,故选:D6.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为()A .B .C .D .【正确答案】A利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象.【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=.当01x <<时,0'<y ,此时函数ln 1y x x =--单调递减;当1x >时,0'>y ,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞ ,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞.所以,函数()y f x =的图象如A 选项中函数的图象.故选:A.思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.7.如果自然数n 是一个三位数,而且十位与个位、百位的差的绝对值均不超过1,我们就把自然数n 叫做“集中数”.那么数字0,1,2,3一共可以组成“集中数”个数有()A .20B .21C .25D .26【正确答案】B【分析】由分类计数加法原理和分布计数乘法原理,分别讨论十位是0,1,2,3,再确定百位和十位的可能情况即可.【详解】当十位是0时,百位可选1,个位可选0和1,共2个,当十位是1时,百位可选1和2,个位可选0,1和2,共236⨯=个,当十位是2时,百位可选1,2和3,个位可选1,2和3,共339⨯=个,当十位是3时,百位可选2和3,个位可选2和3,共224⨯=个,综上所述,共269421+++=个,故选:B .8.已知函数211,0()e ,0xx x f x x -⎧+≥=⎨<⎩,点M 、N 是函数()y f x =图像上不同的两个点,设O 为坐标原点,则tan MON ∠的取值范围是()A .22e 20,2e 1⎛⎫+ -⎝⎭B .22e 20,2e 1⎛⎤+ ⎥-⎝⎦C .22e 20,2e 1⎛⎫+ +⎝⎭D .22e 20,2e 1⎛⎤+ ⎥+⎝⎦【正确答案】B【分析】作出函数()f x 的图形,求出过原点且与函数()f x 的图像相切的直线的方程,结合两直线夹角公式,数形结合可得出tan MON ∠的取值范围.【详解】当0x <时,1()x f x e -=,则1()0x f x e -'=-<,所以()f x 在(,0)-∞上单调递减,且()(0)f x f e >=,当0x ≥时,2()1f x x =+,作出函数()f x 的图像,如图所示,设过原点且与函数()(0)f x x ≥的图像相切的直线的方程为1y k x =,设切点为211(,1)x x +,斜率111()2k f x x '==,所以切线方程为:2111(1)2()y x x x x -+=-,将原点坐标代入切线方程可得,2111(1)2()x x x -+=-,即211x =,解得11x =,所以过原点且与函数()(0)f x x ≥的图像相切的直线的方程为2y x =,设过原点且与函数()(0)f x x <的图像相切的直线的方程为2y k x =,设切点为()212,e xx -,斜率212x k e -=-,所以切线方程为:22112()x x y ee x x ---=--,将原点坐标代入切线方程可得,22112()x x ee x ---=--,即21x =-,所以过原点且与函数()(0)f x x <的图像相切的直线的方程为2e y x =-,设直线2y x =与2e y x =-的夹角为θ,设直线2y x =的倾斜角为α,直线2e y x =-的倾斜角为β,则()2222tan tan e 2e 2tan tan 1tan tan 1(e )22e 1βαθβαβα---+=-===++-⨯-,结合图形可知,22e 20tan 2e 1MON ∠+<≤-,故选:B .二、填空题9.设a 为实数,函数32()(3)f x x a x ax =+-+的导函数为()f x ',若()f x '是偶函数,则=a ___________.【正确答案】3【分析】求出()f x ',根据()f x '是偶函数即可得出a 的值.【详解】因为32()(3)f x x a x x α=+-+,所以2()32(3)f x x a x a '=+-+,又因为()f x '是偶函数,所以()f x '是关于y 轴对称的二次函数,所以2(3)06a --=,解得3a =,故3.10.若函数2()ln 2x f x x =-在区间1,2m m ⎛⎫+ ⎪⎝⎭上不单调,则实数m 的取值范围为___________.【正确答案】1(,1)2【分析】首先求出()f x 的定义域和极值点,由题意得极值点在区间1,2m m ⎛⎫+ ⎝⎭内,且0m >,得出关于m 的不等式组,求解即可.【详解】函数2()ln 2x f x x =-的定义域为(0,)+∞,且2(11)1)1)((x f x x x x xx x -==+-'=-,令()0f x '=,得1x =,因为()f x 在区间1,2m m ⎛⎫+ ⎪⎝⎭上不单调,所以0112m m m >⎧⎪⎨<<+⎪⎩,解得112m <<,故1(,1)2.11.若函数()ln f x x x x =-在区间1,22⎡⎤⎢⎥⎣⎦上最大值为M ,最小值为N ,则实数M N -=__________.【正确答案】2ln 21-【分析】求出函数的导函数,即可得到函数的单调区间,即可求出函数的极小值,再求出区间端点处的函数值,即可求出函数的最值,即可得解.【详解】因为()ln f x x x x =-,所以()ln f x x '=,所以当1,12x ⎡⎫∈⎪⎢⎣⎭时()0f x '<,(]1,2x ∈时()0f x '>,所以()f x 在1,12⎡⎫⎪⎢⎣⎭上单调递减,在(]1,2上单调递增,所以函数在1x =处取得极小值,又111111ln 2222222f ⎛⎫=-=-- ⎪⎝⎭,()22ln 22f =-,()11f =-,因为()311115312ln 22ln 22ln 22ln 2ln 2ln 32ln e2222222⎛⎫----=-++=-=-> ⎝⎭,所以()max 2ln 22f x =-,()()min 11f x f ==-,所以2ln 22M =-,1N =-,则2ln 2212ln 21M N -+=-=-.故2ln 21-12.若函数()ln 2f x x x =--在区间()()*,1N k k k +∈上有零点,则实数k =__________.【正确答案】3【分析】先利用导数分析函数()f x 的单调性与极值,再根据零点存在性定理求出函数()f x 的零点所在区间,进而确定k 的值.【详解】由()()ln 20f x x x x =-->,得()111x f x x x-'=-=,令()0f x ¢>,则1x >;令()0f x '<,则01x <<,所以函数()f x 在()0,1上单调递减,在()1,+∞上单调递增,而函数()f x 的极小值为()110f =-<,又22110e ef ⎛⎫=> ⎪⎝⎭,所以函数()f x 在()0,1上存在唯一零点1x ,此时0k =(舍去);因为()31ln 30f =-<,()42ln 40f =->,所以函数()f x 在()3,4上存在唯一零点2x ,此时3k =.综上所述,3k =.故3.13.已知函数e ()xf x a x=-,当210x x >>时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为____________.【正确答案】(,1]-∞【分析】由当210x x >>时,不等式()()12210f x f x x x -<恒成立,得出()()1122x f x x f x <,设函数()()e x g x xf x ax ==-,则()0g x '≥,其中,()0x ∈+∞,由e x a ≥即可得出实数a 的取值范围.【详解】因为当210x x >>时,()()12210f x f x x x -<恒成立,两边同乘以12x x ,得()()11220x f x x f x -<,即()()1122x f x x f x <,设函数()()e x g x xf x ax ==-,所以()g x 在(0,)+∞上单调递增,因为()x g x e a '=-,其中,()0x ∈+∞,所以()0g x '≥,即e x a ≥,因为,()0x ∈+∞时,e (1,)x ∈+∞,所以1a ≤,故(,1]-∞.14.为美化重庆市忠县忠州中学校银山校区的校园环境,在学校统一组织下,安排了高二某班劳动课在如图所示的花坛中种花,现有4种不同颜色的花可供选择,要求相邻区域颜色不同,则有______种不同方案.【正确答案】72【分析】根据题意,按选出花的颜色的数目分2种情况讨论,利用排列组合及乘法原理求出每种情况下种植方案数目,由加法原理计算可得答案【详解】如图,假设5个区域分别为1,2,3,4,5,分2种情况讨论:①当选用3种颜色的花卉时,2,4同色且3,5同色,共有种植方案3343C A 24⋅=(种),②当4种不同颜色的花卉全选时,即2,4或3,5用同一种颜色,共有种植方案1424C A 48⋅=(种),则不同的种植方案共有244872+=(种).故72三、解答题15.编号为1,2,3,4的四位同学,分别就座于编号为1,2,3,4的四个座位上.(1)每位座位恰好坐一位同学,求恰有两位向学编号和座位编号一致的坐法种数?(2)每位座位恰好坐一位同学,求每位同学编号和座位编号都不一致的坐法种数?(3)每位座位恰好坐一位同学,求编号1,2的两位同学必须相邻坐在一起的坐法种数?【正确答案】(1)6(2)9(3)12【分析】(1)由题意从4人中选出2人,他们的编号和座位编号一致,其余2人不一致,即可得答案;(2)考虑第一位同学先选,再分类考虑余下同学的选法,由分类和分步计数原理可求得答案;(3)考虑编号1,2的两位同学先选座位,再考虑其余两人选座位,由分步计数原理可得答案.【详解】(1)由题意从4人中选出2人,他们的编号和座位编号一致,其余两人的不一致,只有一种坐法,故坐法种数为24C 16⨯=;(2)不妨第一位同学先选座位,有3种选法,如果与他选的座位编号相同编号的同学选和第一位同学编号相同的座位,则其余两人只有1种坐法;如果与他选的座位编号相同编号的同学选其余两编号的座位,有2种选法,其余2人只有1种坐法,故共有的坐法种数为3(12)9⨯+=;(3)编号1,2的两位同学必须相邻,可以坐编号为1,2或2,3或3,4的座位,两人内部全排列,其余两人在余下的位置上随便选座位,有22A 2=种坐法,故共有的坐法种数为22223A A 12=.16.已知函数()e ,R x f x x a a =-⋅∈.(1)若曲线在点(0,(0))f 处切线与直线0x y +=平行,求a 的值;(2)若函数()f x 有两个零点,求实数a 的取值范围.【正确答案】(1)2a =;(2)10ea <<【分析】(1)先求得函数()f x 的导数,列出关于a 的方程,解之即可求得a 的值;(2)先将函数()f x 有两个零点转化为方程e x xa =有二根,再构造函数()xx h x e =,并利用导数求得其单调性和极值,进而求得实数a 的取值范围.【详解】(1)由()e ,R x f x x a a =-⋅∈,可得()1e x f x a '=-⋅,则(0)1f a '=-,则11a -=-,解之得2a =.(2)由函数()e ,R x f x x a a =-⋅∈有两个零点,可得方程e xxa =有二根,令()x x h x e=,则()21()x x xx e xe x h x e e --'==由()0h x '>,可得1x <;由()0h x '<,可得1x >,则当1x <时()h x 单调递增;当1x >时()h x 单调递减,则当1x =时()h x 时,()h x 取得极大值1(1)eh =,又(0)0h =,且当x 趋向于正无穷时,e x y =趋向于正无穷的速率远远大于y x =趋向于正无穷的速率,所以()xxh x e =趋向于0,则由方程e xxa =有二根,可得10e a <<17.已知函数()ln (1),R f x x a x a =+-∈.(1)当12a =时,求函数()f x 在点(2,(2))f 处的切线方程;(2)当1x >时,()0f x >,求实数a 的取值范围.【正确答案】(1)3ln 202x y -+-=(2)[0,)+∞【分析】(1)利用导数运算法则求出()f x ',进而求出(2)f '和(2)f ,再利用导数的几何意义即可求出切线方程;(2)方法一:由当1x >时,()0f x >得出当1x >时,ln 1x a x >--恒成立,设ln ()1xg x x =-,(1,)x ∈+∞,判断出()0g x '<,再根据当x →+∞,()0g x →,即可得出实数a 的取值范围;方法二:先求出()f x ',再分别讨论0a =,0a >和a<0时()f x 的情况,即可得出实数a 的取值范围.【详解】(1)当12a =时,1()ln (1)2f x x x =+-,则11()2f x x '=+,1(2)ln 22f =+,所以11(2)122f '=+=,所以函数()f x 在点(2,(2))f 处的切线方程为:1(ln 2)22y x -+=-,即3ln 202x y -+-=.(2)方法一:参数分离因为当1x >时,()0f x >,所以ln (1)0x a x +->,即1x >时,ln 1xa x >--恒成立,设ln ()1xg x x =-,(1,)x ∈+∞,则2211(1)ln 1ln (1))(1()x x xx x g x x x ----=--'=,设1()1ln h x x x=--,(1,)x ∈+∞,因为当(1,)x ∈+∞时,()0h x '<,所以1()1ln h x x x=--在(1,)+∞上单调递减,所以()(1)0h x h <=,所以()0g x '<,即()g x 在(1,)+∞上单调递减,因为当x →+∞,ln 1)0(xx x g →-=,所以0a -≤,即0a ≥,所以当1x >时,()0f x >,实数a 的取值范围是[0,)+∞.方法二:分类讨论11()ax f x a x x+'=+=,①当0a =时,因为1x >,所以()0f x '>,即()f x 在(1,)+∞单调递增,所以()(1)0f x f >=,符合题意;②当0a >时,因为1x >,所以()0f x '>,即()f x 在(1,)+∞单调递增,所以()(1)0f x f >=,符合题意;③当a<0时,令()0f x '=,得1x a=-,当11a-≤,即1a ≤-时,()0f x '<,即()f x 在(1,)+∞单调递减,所以()(1)0f x f <=,不符合题意,当11a->,即10a -<<时,在1(1,)x a ∈-时,()0f x '>,则()f x 在1(1,)a-单调递增,在1(,)x a∈-+∞时,()0f x '<,则()f x 在1(,)a -+∞单调递减,所以1()()ln()1f x f a a a≤-=----,设()ln()1m a a a =----,(1,0)a ∈-,所以当(1,0)a ∈-时,()0m a '>,则()m a 在(1,0)-上单调递增,所以()(1)0m a m >-=,所以()0f x ≤,不合题意,综上所述,当1x >时,()0f x >,实数a 的取值范围是[0,)+∞.18.已知函数2()1,R ex ax f x a =-∈.(1)讨论函数()f x 的单调性;(2)若()f x 的极大值为5,求a 的值.【正确答案】(1)答案见解析(2)2e -【分析】(1)求出导数得()()2e xax x f x -'=,分0a >、a<0、0a =讨论得出单调性.(2)结合(1)中结论得到函数的极大值点,再代入计算可得.【详解】(1)因为2()1ex ax f x =-,x ∈R ,且()()()2222e e e e x x x x ax x ax ax f x --'=-=.①当0a >时,当(),0x ∈-∞时,()0f x ¢>,()f x 单调递增;当()0,2x ∈时,()0f x '<,()f x 单调递减;当()2,x ∈+∞时,()0f x ¢>,()f x 单调递增.②当a<0时,当(),0x ∈-∞时,()0f x '<,()f x 单调递减;当()0,2x ∈时,()0f x ¢>,()f x 单调递增;当()2,x ∈+∞时,()0f x '<,()f x 单调递减.③当0a =时()0f x '=,()f x 为常数函数,不具有单调性;综上所述:当0a >时,()f x 在(),0∞-,()2,+∞上单调递增,在()0,2上单调递减;当a<0时,()f x 在(),0∞-,()2,+∞上单调递减,在()0,2上单调递增;当0a =时,()f x 为常数函数,不具有单调性.(2)由(1)可得当0a >时()f x 在0x =处取得极大值,但()01f =,不符合题意;当a<0时()f x 在2x =处取得极大值,所以()222215ea f ⨯=-=,解得2e a =-,符合题意,综上可得2e a =-.19.已知函数()()222e (1)x f x x a x =-++.(1)若0a =,(i )求()f x 的极值.(ii )设()()()f m f n m n =≠,证明.3m n +<(2)证明:当e a ≥时,()f x 有唯一的极小值点0x ,且()02332e ef x -<<-.【正确答案】(1)(i )()f x 的极小值为()31e ,2f x -无极大值;(ii )证明见解析(2)证明见解析【分析】(1)(i )求导,结合函数的单调性求得极值;(ii )由题分析得33,222m n <<<,设()()()33,,22g x f x f x x ⎛⎫=--∈ ⎪⎝⎭,结合()g x 的单调性可得()0g x >,进而得()0g n >即()()3f m f n >-,利用()f x 单调性即可证得结论;(2)利用导数可得()f x '在R 单调递增,()2140,15e 02e f a f -'⎛⎫-=-+>-=-< ⎪⎝⎭',则011,2x ⎛⎫∃∈-- ⎪⎝⎭使()00f x '=,从而当()()0,,0x x f x '∈-∞<,()()0,,0x x f x ∈+∞>',可证得当e a ≥时,()f x 有唯一的极小值点0x ,且011,2x ⎛⎫∈-- ⎪⎝⎭;由()00f x '=得()()020023e 12x x a x -+=-,从而得()02200031e 22x f x x x ⎛⎫=--+ ⎪⎝⎭,令()2231e 22t t t t ϕ⎛⎫=--+ ⎝⎭,利用()t ϕ单调性可证得()02332e ef x -<<-.【详解】(1)(i )若()()20,2e x a f x x ==-,则()()223e x f x x -'=,由()0f x '=,得32x =.当3,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当3,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>.()f x \的单调递减区间为3,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为3,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为()331e ,22f f x ⎛⎫=- ⎪⎝⎭无极大值.(ii )由(i )可知,()f x 的极值点为()3,2f x 在3,2⎛⎫-∞ ⎪⎝⎭上单调递减,在3,2⎛⎫+∞ ⎪⎝⎭上单调递增,当32x <时,()0f x <,又()20f =,不妨设m n <,则若()()()f m f n m n =≠,则33,222m n <<<,设()()()()()262332e 1e ,,22x xg x f x f x x x x -⎛⎫=--=---∈ ⎪⎝⎭,则()()()26223e e x x g x x -=--'.设()2623e e ,,22x xh x x -⎛⎫=-∈ ⎪⎝⎭,则()h x 为增函数,则()302h x h ⎛⎫>= ⎪⎝⎭.32,2302x x <<∴-> ,则()g x 在3,22⎛⎫⎪⎝⎭上为增函数,()302g x g ⎛⎫∴>= ⎪⎝⎭,32,()02n g n <<∴> 即()()()()()()330,3f m f n f n f n f m f n --=-->∴>-.33,2,31,22n n ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭ ,又()3,,2m f x ∞⎛⎫∈- ⎪⎝⎭ 在3,2⎛⎫-∞ ⎪⎝⎭上单调递减,3m n ∴<-,即3m n +<.(2)()()()223e 21x f x x a x =-++',记()()p x f x '=,()()244e 2xp x x a =-+',记()()()()2,421e xx p x q x q x '=-'=,当12x =时,()0q x '=,当()()1,,0,2x q x p x ⎛⎫'∈-∞< ⎝'⎪⎭在1,2⎛⎫∈-∞ ⎪⎝⎭x 单调递减,当()()1,,0,2x q x p x ⎛⎫'∈+∞> ⎝'⎪⎭在1,2x ⎛⎫∈+∞ ⎪⎝⎭单调递增,()1e,22e 02a p x p a ⎛≥''⎫≥∴=-≥ ⎪⎝⎭,()p x ∴在R 单调递增,即()f x '在R 单调递增,()12144e 0,15e 02e f a a f --⎛⎫-=-+=-+>-=-''< ⎪⎝⎭,011,2x ⎛⎫∴∃∈-- ⎪⎝⎭使()00f x '=,当()()()0,,0,x x f x f x ∈-∞<'在()0,x x ∈-∞单调递减,当()()()0,,0,x x f x f x ∞'∈+>在()0,x x ∈+∞单调递增,所以当e a ≥时,()f x 有唯一的极小值点0x ,且011,2x ⎛⎫∈-- ⎪⎝⎭()()()()()0202000023e 23e21012xx x f x x a x a x -=-++=∴+=-' ()()()00222200000312e 1e 22x x f x x a x x x ⎛⎫=-++=--+ ⎪⎝⎭ 令()()222231115e ,1,,2e 222416t t t t t t t t ϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=--+∈--∴=---⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦' ,()11,,02t t ϕ⎛⎫∈--∴< '⎪⎝⎭ ()t ϕ∴在11,2⎛⎫-- ⎪⎝⎭单调递减,()()231312e 2e t ϕϕϕ⎛⎫∴-=-<<-=- ⎪⎝⎭即()02332e e f x -<<-.方法点睛:利用导数证明不等式常见解题策略:(1)构造差函数,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将问题逐步转化,或利用放缩、等量代换将多元函数转化为一元函数,再通过导数研究函数的性质进行证明.。

山东省枣庄市2023-2024学年高二下学期期中质量检测数学试题(含简单答案)

山东省枣庄市2023-2024学年高二下学期期中质量检测数学试题(含简单答案)

枣庄市2023-2024学年高二下学期期中质量检测数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知函数,则( )A. 2B. C. 4D. 2. 下列函数求导正确的是( )A B. C D. 3. 从4名男生与3名女生中选两人去参加一场数学竞赛,则男女各一人的不同的选派方法数为( )A. 7B. 12C. 18D. 244. 已知,,则( )A.B.C.D.5. 的展开式中,项的系数为( )A. 10B. C. 60D. 6. 随机变量的概率分布为1240.40.3则等于( )的..()2f x x=-()()22limh f h f h →+-=2-4-211x x'⎛⎫= ⎪⎝⎭()sin cos x x'=-()1ln22x x'=()()e 1e x xx x '=+()13P B A =()25P A =()P AB =5691021513()522x x y +-52x y 30-60-X XPa()54E X +A. 5B. 15C. 45D. 与有关7. 已知函数,是的唯一极小值点,则实数的取值范围为()A. B. C. D. 8. 已知实数分别满足,,且,则( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在定义域上为增函数的有( )A. B. C. D. 10. 下列排列组合数中,正确的是( )A. B. C. D. 11. 已知直线分别与函数和的图象交于点,则下列结论正确的是( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 某班联欢会原定3个节目已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目不相邻,那么不同的插法种数为_____________.13. 若能被64整除,则正整数的最小值为_____________.14 已知实数满足,则_____________...a ()()221()4442xf x e xx k x x =--++2x =-()f x k )2,e ⎡-+∞⎣)3,e ⎡-+∞⎣)2,e ⎡+∞⎣)3,e ⎡+∞⎣,a b e 1.02a =()ln 10.02b +=151c =a b c<<b a c <<b<c<ac<a<b()e xf x x=+()exf x x =()sin f x x x=-()2ln f x x x=-12344444A A A A 84+++=3333434520232024C C C C C ++++= 11A A A mm m n nn m -++=11C C mm n n m n --=2y x =-+e x y =ln y x =()()1122,,,A x y B x y 122x x +=12e e 2e x x +>1221ln ln 0x x x x +>12x x >()2024*381011a a -⨯+∈N a 12x x ,()136122e e ln 3e xx x x =-=,12x x =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在三个地区爆发了流感,这三个地区分别有的人患了流感,假设这三个地区的人口数的比为3:5:2,现从这三个地区中任意选取一个人(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A 地区的概率.16. 一台笔记本电脑共有10台,其中A 品牌3台,B 品牌7台,如果从中随机挑选2台,其中A 品牌台数.(1)求的分布列;(2)求和.17. 已知展开式中,第三项的系数与第四项的系数比为.(1)求的值;(2)求展开式中有理项的系数之和.(用数字作答)18. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值.19. 已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.,,A B C 6%5%4%,,X X ()E X ()X σ2(n x +65n ()23ln f x x x x =+-()y f x =()()1,1f ()f x ()()()2e12e R xx f x a ax a =+--∈()f x ()f x a枣庄市2023-2024学年高二下学期期中质量检测数学简要答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BCD【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】12【13题答案】【答案】55【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)分布列略 (2)【17题答案】【答案】(1)7; (2)702.【18题答案】【答案】(1) (2)极小值为,无极大值【19题答案】【答案】(1)当时,在上单调递增;当时,在上单调递减,在上单调递增. (2)6e 0.051617352y =20a ≤()f x R 0a >()f x (,ln )a -∞(ln ,)a +∞(1,)+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下学期期中数学试卷(理科)
一、选择题
1. 复数=()
A .
B .
C .
D .
2. 函数f(x)=(x+1)2(x﹣1)在x=2处的导数等于()
A . 1
B . 4
C . 9
D . 15
3. 所有金属都能导电,铁是金属,所以铁能导电,属于哪种推理()
A . 归纳推理
B . 类比推理
C . 合情推理
D . 演绎推理
4. 下面是关于复数z= 的四个命题:其中的真命题为(),
p1:|z|=2,
p2:z2=2i,
p3:z的共轭复数为1+i,
p4:z的虚部为﹣1.
A . p2,p3
B . p1,p2
C . p2,p4
D . p3,p4
5. 下列结论中正确的是()
A . 导数为零的点一定是极值点
B . 如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值
C . 如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极小值
D . 如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极大值
6. 用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正
确的是()
A . a、b至少有一个不为0
B . a、b至少有一个为0
C . a、b全不为0
D . a、b中只有一个为0
7. 等于()
A . 1
B . e﹣1
C . e+1
D . e
8. 当<m<1时,复数m(3+i)﹣(2+i)在复平面内对应的点位于()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
9. 用数学归纳法证明“1+ + +…+ <n (n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()
A . 2k﹣1
B . 2k﹣1
C . 2k
D . 2k+1
10. 设f′(x)是函数f(x)的导函数,y=f′(x)的部分图象如图所示,则y=f (x)的图象最有可能是图中的()
A .
B .
C .
D .
11. 在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前100个圈中的●的个数是()
A . 12
B . 13
C . 14
D . 15
12. 已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f’(x)在R上恒有f’(x)<1(x∈R),则不等式f(x)>x+1的解集为()
A . (1,+∞)
B . (﹣∞,﹣1)∪(1,+∞)
C . (﹣1,1)
D . (﹣∞,1)
二、填空题
13. z1=(m2+m+1)+(m2+m﹣4)i,m∈R.z2=3﹣2i.则m=1是z1=z2的________条件.
14. 曲线y= 在点(﹣1,﹣1)处的切线方程________.
15. 观察下列式子:1 ,1 ,1
…,由此可归纳出的一般结论是________.
16. 已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是________.
三、解答题
17. 若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5;
(2)归纳猜想通项公式an .
18. 实数m取什么数值时,复数z=m2﹣1+(m2﹣m﹣2)i分别是:
(1)实数?
(2)虚数?
(3)纯虚数?
(4)表示复数z的点在复平面的第四象限?
19. 如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
求证:
(Ⅰ)直线EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.
20. 计算由直线y=6﹣x,曲线y= 以及x轴所围图形的面积.
21. 已知函数f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)图象上的点(1,﹣)处的切线斜率为﹣4,
(1)求f(x)的表达式.
(2)求y=f(x)在区间[﹣3,6]上的最值.
22. 已知函数f(x)=x3+ax2+bx+c在x=﹣1与x=2处都取得极值.
(Ⅰ)求a,b的值及函数f(x)的单调区间;
(Ⅱ)若对x∈[﹣2,3],不等式f(x)+ c<c2恒成立,求c的取值范围.。

相关文档
最新文档