原子物理学全套精美课件
合集下载
原子物理学的课件
原子物理学的课件
原子物理学是一个基础性学科,它主要研究原子及其组成部分的结
构和性质。
本文旨在为学习原子物理学的学生提供一份详细的课件,
帮助他们更好地理解原子物理学的知识和原理。
一、原子物理学的定义
原子物理学是物理学的一个分支,它主要研究原子的内部结构和性质,以及原子与辐射之间的相互作用。
二、原子的基本结构
原子由电子、质子和中子组成。
电子带有负电荷,质子带有正电荷,中子没有电荷。
电子绕着原子核运动,形成电子云。
三、原子能级
原子能级是指原子中电子的能量状态。
电子在不同的能级上具有不
同的能量。
原子能级分为基态和激发态两种状态。
四、原子光谱
原子光谱是指原子在吸收或发射光线时所产生的谱线。
各种元素都
有其特定的光谱,可以用来识别和分析物质。
五、原子核与放射性
原子核是由质子和中子组成的,质子数决定了元素的特性。
放射性
是一种原子核的性质,一些原子核不稳定,会自发地发射放射线。
六、应用
原子物理学在许多领域都有着广泛的应用,例如核能、半导体、医学等。
七、结论
原子物理学是一门非常重要的学科,它对于现代科技的发展有着重要的影响。
希望通过本课件,学生们可以更好地掌握原子物理学的基本知识和原理,为今后的学习和应用打下坚实的基础。
期末总结 《原子物理学》课堂课件
类氢离子是原子核外边只有一个电子的原子体系,但原子核带
有大于一个单元的正电荷(Z>1),如He+, Li++, Be+++等
1、氢原子及类氢离子的轨道量子化
轨道半径:
n2 rn a1 Z
a1
4 0 2
e2me
0.531010 m
0.53A
氢原子的第一玻尔半径
速度:
vn
v1
。
a Z1Z2e2
4 0 E
为库仑散射因子。
E 1 mv2 入射的粒子的动能
2
7
第一章 小 结
2、有效散射截面(一个靶原子核)
d
2bdb
a 2d
16 sin 4
(1)
dσ
2
d :称为原子核的有效散射截面,具有面积量纲。
dθ对应的空心圆锥体的立体角为: dΩ=ds/r2
d 2 sin d
(光电效应的实质:电子吸收光子的过程)
爱因斯坦光电效应方程:
h
1 2
mvm2
Φ
电子的最大初动能
1 2
mvm2
eV0
脱出功 (逸出功) h 0
V0:反向截止电压(遏止电压)
0:截止频率( 红限频率 ) (与金属种类有关)17
第二章 小 结
四、(掌握)氢原子光谱的实验规律
O
O
O
O
6562.8A 4861.3A 4340.5A 4101.7A
或:~ T (m) T (n)
光谱项:
T (m)
RH m2
T
(n)
RH n2
原子物理学-第一章PPT课件
,但是随着社会生产的发展,如:冶金,内燃机,蒸汽机
等的采用,促进了科学的迅速发展,一方面提出了新的科
学问题,另一方面也为科学工作提供了更好的条件.因此
,物理学在这个时期以后得到了迅速发展.
①.光谱资料的大量积累.
②.许多重大发现产生.
1885年 巴耳末发现光谱线规律。
1887年 赫兹发现光电效应
.
2
.
18
高高等 等学学校校试试用用教教材材
粒子受原子作用后动量发生变化:
pFmaxt
4Ze2
40RV
最大散射角: tg p p40 4 R Z2V eV M 40 4 R Z2 M eV2 ~104
大角散射不可能在汤姆逊模型中发生,散射角大于3°的比1%少 得多;如果考虑多次小角散射合成, 散射角大于90°的概率约为10-3500. 必须重 新寻找原子的结构模型。
α粒子:放射性元素发射出的高速带电粒子,其速度约为光速 的千分之几,带+2e的电荷,质量约为4MH。 散 射 :一个运动粒子受到另一个粒子的作用而改变原来的运动 方向的现象。粒子受到散射 时,它的出射方向与原入射 方向之间的夹角叫做散射角。
( a) 侧视图 (b) 俯视图。 R:放射源;F:散射箔; S:闪烁屏;B:金属匣
§1.1 原子的质量和大小 原子质量 1. 相对质量--原子量
把碳在自然界中最丰富的一种同位素12 C的质量定为 12.0个单位作为原子质量的标准,其它原子的质量同 其相比较,定出质量值,这个数值称为原子量. 例, H:1.0079 O : 15.999 Cu :63.54 原子量可以用化学方法测得.
说是:
(1) 实践理论再实践再理论......,或者说:实
践是检验真理的标准.
原子物理学第四版.ppt
有效的量子态个数:
np 2 的态项:
(1)
(2)
(3)
总自旋
总角动量
LS耦合
5-11. 氦原子基态 2He : 1s 2
在施忒恩盖拉赫实验中,基态氦原子将形成 1 束原 子射线束.
硼原子基态 5B : 1s 22s 22p 1
在施忒恩盖拉赫实验中,基态硼原子将分裂成 2束 原子射线束.
5-12. 磷原子基态 15P : 1s 22s 22p 63s 23p 3 硫原子基态 16S : 1s 22s 22p 63s 23p 4
a
2 d sin
2 0.18 sin 30 0.18nm
d
h 6.63 1034
p 0.18 109
3.68 1024 kg m / s
Ek
p2 2m
3.68 1024 2 2 1.67 1027
h 0
1 3
m0c 2
0.511MeV 3
0.17 MeV
P
max
h
h
0
h
3c
h
c
4h
3c
4m0c 3
3.641022(kg m / s)
px
2r
1.05 1034 2 1014
0.53 1020 kg m/s
取最小动量为: p 0.531020 kg m/s
v
p m
0.53 1020 kg m/s 9.111031 kg
c(3 108 m/s )
所以需要应用相对论的能量动量公式
np 2 的态项:
(1)
(2)
(3)
总自旋
总角动量
LS耦合
5-11. 氦原子基态 2He : 1s 2
在施忒恩盖拉赫实验中,基态氦原子将形成 1 束原 子射线束.
硼原子基态 5B : 1s 22s 22p 1
在施忒恩盖拉赫实验中,基态硼原子将分裂成 2束 原子射线束.
5-12. 磷原子基态 15P : 1s 22s 22p 63s 23p 3 硫原子基态 16S : 1s 22s 22p 63s 23p 4
a
2 d sin
2 0.18 sin 30 0.18nm
d
h 6.63 1034
p 0.18 109
3.68 1024 kg m / s
Ek
p2 2m
3.68 1024 2 2 1.67 1027
h 0
1 3
m0c 2
0.511MeV 3
0.17 MeV
P
max
h
h
0
h
3c
h
c
4h
3c
4m0c 3
3.641022(kg m / s)
px
2r
1.05 1034 2 1014
0.53 1020 kg m/s
取最小动量为: p 0.531020 kg m/s
v
p m
0.53 1020 kg m/s 9.111031 kg
c(3 108 m/s )
所以需要应用相对论的能量动量公式
原子物理学(原子的精细结构电子自旋)
通过调控材料中电子自旋的取向, 可以制备具有特殊磁学性质的自
旋极化材料。
自旋电子学
利用电子自旋的特性,开发新型 自旋电子学器件,如自旋晶体管
和自旋存储器等。
磁性材料研究
通过研究电子自旋的磁学性质, 有助于深入了解磁性材料的微观
结构和物理性质。
05 原子物理学的发展前景与 挑战
原子物理学与其他学科的交叉研究
原子核位于原子的中 心,电子围绕原子核 运动。
原子的电子排布
电子在原子核外的不同能级轨道 上运动,离原子核越远的轨道,
其能量越高。
电子按照一定的规律填充在不同 的能级轨道上,形成电子排布。
电子排布决定了原子的化学性质 和电子状态,是研究原子结构的
重要内容。
原子的能级与光谱
原子的能级是指原子内部电子 运动的能量状态,不同的能级 具有不同的能量。
原子物理学在新能源与技术中的应用
太阳能电池技术
01
原子物理学在太阳能电池技术中的应用,通过优化材料结构和
提高光电转换效率,为可再生能源的发展提供支持。
核聚变能源
02
通过原子物理学对核聚变反应过程的研究,实现可控核聚变能
源的开发,为未来能源供应提供可持续的解决方案。
磁约束核聚变装置
03
利用原子物理学的原理和技术,设计和建造磁约束核聚变装置,
当原子从一个能级跃迁到另一 个能级时,会吸收或释放一定 频率的光子,形成光谱。
光谱分析是研究原子能级结构 和性质的重要手段,可以用于 元素分析和化学分析等。
02 原子核的结构与性质
原子核的组成
01
02
03
质子和中子
原子核由质子和中子组成, 质子带正电荷,中子不带 电。
旋极化材料。
自旋电子学
利用电子自旋的特性,开发新型 自旋电子学器件,如自旋晶体管
和自旋存储器等。
磁性材料研究
通过研究电子自旋的磁学性质, 有助于深入了解磁性材料的微观
结构和物理性质。
05 原子物理学的发展前景与 挑战
原子物理学与其他学科的交叉研究
原子核位于原子的中 心,电子围绕原子核 运动。
原子的电子排布
电子在原子核外的不同能级轨道 上运动,离原子核越远的轨道,
其能量越高。
电子按照一定的规律填充在不同 的能级轨道上,形成电子排布。
电子排布决定了原子的化学性质 和电子状态,是研究原子结构的
重要内容。
原子的能级与光谱
原子的能级是指原子内部电子 运动的能量状态,不同的能级 具有不同的能量。
原子物理学在新能源与技术中的应用
太阳能电池技术
01
原子物理学在太阳能电池技术中的应用,通过优化材料结构和
提高光电转换效率,为可再生能源的发展提供支持。
核聚变能源
02
通过原子物理学对核聚变反应过程的研究,实现可控核聚变能
源的开发,为未来能源供应提供可持续的解决方案。
磁约束核聚变装置
03
利用原子物理学的原理和技术,设计和建造磁约束核聚变装置,
当原子从一个能级跃迁到另一 个能级时,会吸收或释放一定 频率的光子,形成光谱。
光谱分析是研究原子能级结构 和性质的重要手段,可以用于 元素分析和化学分析等。
02 原子核的结构与性质
原子核的组成
01
02
03
质子和中子
原子核由质子和中子组成, 质子带正电荷,中子不带 电。
原子物理学PPT课件
这些谐振子可以发射和吸收辐射能。但是
这些谐振子只可能处于某些分立的状态中,
谐振子的能量并不象经典物理学所允许的
可具有任意值。
黑体内的驻波
Planck假设:振子振动的能量是不连
续的,只能取最小能量ε0 的整数倍 ε0, 2ε0, 3ε0, …, nε0, 即 E =nε=nhv , 其 中
n=1,2,3…称为量子数,式中h为一个
e
e +
能量辐射损失
4
原子稳定性困难(续)
r
核 离心力与库仑力平衡 式
me
v2 r
Ze2
4 0r2
模 角动量 型
L mevr
的 困 难
经典电动力学,单 位时间内辐射能量
P
2 3
1
4 0
e2 c3
a2
2 ( 1 )7
3 4 0
e2 c3
me2
(Ze2 )6 L8
动能耗尽
P
1 2
mev2
电子加速运动辐射电磁波,能量不断损失,电子回转半径
瞬时性问题 按经典理论,电子逸出金属所需的能量,需要有
一定的时间来积累,一直积累到足以使电子逸出金属
表面为止.与实验结果不符 .经典的驰豫时间50min,
光电效应的不超过1ns
27
二 光子 爱因斯坦方程
(1) “光量子”假设 光子的能量为 h
(2) 解释实验
爱因斯坦方程 h 1 mv2 W
2
31
光源
分光器
记录仪
棱镜摄谱仪示意图
32
(三)光谱的类别
光谱分类
线状谱 带状谱
连续谱
原子谱. 如:钠灯 分子谱
固体.如:白炽灯
原子物理学详解演示文稿
质的最小单元。
在十九世纪,人们在大量的实验中认识了一 些定律,如:
定比定律: 元素按一定的物质比相互化合。
原子 电子 关于卢斯福
倍比定律: 若两种元素能生成几种化合物, 则在这些化合物中,与一定质量 的甲元素化合的乙元素的质量, 互成简单整数比。
第四页,共29页。
back
next
目录 结束
在此基础上,1893年道尔顿提出了他的原 子学说,他认为:
原子物理学详解演示文稿
第一页,共29页。
优选原子物理学
第二页,共29页。
1-1 背景知识
1. 原子的发现 2. 电子的发现
3. 电子的电荷和质量 4. 原子的大小
第三页,共29页。
1-1-1 原子的发现
“原子”一词来自希腊文,意思是“不可分 割的”。在公元前4世纪,古希腊哲学家德漠克
利特(Democritus)提出这一概念,并把它看作物
next 目录 结束
第一章:原子的位形:卢斯福模型
实验装置如上图所示。放射源 R 中发出一细束α粒子,直射 到金属箔上以后,由于各α粒子所受金属箔中原子的作用不同 ,所以沿着不同的方向散射。荧光屏S及放大镜M可以沿着以 F为中心的圆弧移动。当S和M对准某一方向上,通过F而在这 个方向散射的α粒子就射到S上而产生闪光,用放大镜M观察闪
第八页,共29页。
1-1-3 电子的电荷和质量
密立根油滴实验 (1)(1910)
–测得电子电量为:e = 1.6×10-19 C (库仑)
电子质量 me = 9.1×10-31 kg –密立根首次发现了电荷的量子化
电荷只能是 e 的整数倍
–若知H+(质子)的荷质比
e
me 1
mp
在十九世纪,人们在大量的实验中认识了一 些定律,如:
定比定律: 元素按一定的物质比相互化合。
原子 电子 关于卢斯福
倍比定律: 若两种元素能生成几种化合物, 则在这些化合物中,与一定质量 的甲元素化合的乙元素的质量, 互成简单整数比。
第四页,共29页。
back
next
目录 结束
在此基础上,1893年道尔顿提出了他的原 子学说,他认为:
原子物理学详解演示文稿
第一页,共29页。
优选原子物理学
第二页,共29页。
1-1 背景知识
1. 原子的发现 2. 电子的发现
3. 电子的电荷和质量 4. 原子的大小
第三页,共29页。
1-1-1 原子的发现
“原子”一词来自希腊文,意思是“不可分 割的”。在公元前4世纪,古希腊哲学家德漠克
利特(Democritus)提出这一概念,并把它看作物
next 目录 结束
第一章:原子的位形:卢斯福模型
实验装置如上图所示。放射源 R 中发出一细束α粒子,直射 到金属箔上以后,由于各α粒子所受金属箔中原子的作用不同 ,所以沿着不同的方向散射。荧光屏S及放大镜M可以沿着以 F为中心的圆弧移动。当S和M对准某一方向上,通过F而在这 个方向散射的α粒子就射到S上而产生闪光,用放大镜M观察闪
第八页,共29页。
1-1-3 电子的电荷和质量
密立根油滴实验 (1)(1910)
–测得电子电量为:e = 1.6×10-19 C (库仑)
电子质量 me = 9.1×10-31 kg –密立根首次发现了电荷的量子化
电荷只能是 e 的整数倍
–若知H+(质子)的荷质比
e
me 1
mp
原子物理学PPT课件
.
18
原子物理学
第九章 分子结构与分子光谱
9.2 分子光谱和分子能级
二、分子内部的运动状态及能级分类
3、分子的转动和转动能级
这是分子的整体转动,对双原子分子要考虑的转动是 转动轴通过分子质量中心并垂直于分子轴(原子核间的联线) 的转动。对多原子分子的转动,如果分子的对称性高,也 可以进行研究。转动能量也是量子化的,但比前二种能量 要小得多,转动能级的间隔只相当于波长是毫米或厘米的 数量级。
以上简单地叙述了原子结成分子的几种方式。
.
15
原子物理学
第九章 分子结构与分子光谱
9.2 分子光谱和分子能级
从分子的光谱可以研究分子的结构,分子光谱比原子 光谱要复杂得多。就波长的范围说,分子光谱可以有如下 三类别。
一、分子光谱的类别
(1)远红外光谱,波长是厘米或毫米的数量级。
(2)近红外光谱,波长是构与分子光谱
9.2 分子光谱和分子能级
二、分子内部的运动状态及能级分类
2、构成分子的诸原子之间的振动和振动能级
这也就是原子核带同周围的电子的振动,在9.1 节已 经提到双原子分子沿着轴线振动。多原子分子的振动就比 较复杂,是多种振动方式的叠加。振动的能量是量子化的, 振动能级的间隔比电子能级的间隔小。如果只有振动能级 的跃迁,而没有电子能级的跃迁,所产生的光谱是在近红 外区,波长是几个微米的数量级。
起着势能作用。这个“势能”随原子核距离的变化如果
出现最低值,分子就能构成,如果没有最低值,分子就
不能构成。
分子中的电子可以处在激发态,这也可以由分离原
子变到联合原子的相应激发态来考虑。同样也只有那些
“势能”随原子核距离的变化具有最低值的才是分子的
原子物理学杨福家ppt课件
如果两个平面的距离是 d asin
n 2d cos 2asin cos asin 2 asin
n a sin ——布拉格公式。
因此由加速电压就可以求得波长。将波长带入布拉 格关系式中,得
n1.226 a sin
Ek
E1 2 k
n 1.226
a sin
nk
所以上式中右端是一个常数的整数倍。式子表示, 当V值逐渐变化,其平方根等于一个常数的整数倍时,接 收器收到的电子数量应增加。这与实验结果符合得很好。
射的图样,并证明了测量准确度范围内 h p 的正确性。
实验原理
衍射图象
1937年,戴维逊和汤姆逊因电子的衍射现象,证实了 电子波而共同获得了诺贝尔物理学奖。
此后,琼森(Jonsson)实验作了大量电子的单缝、双 缝、三缝和四缝衍射实验。
单缝 双缝 三缝 四缝
基本 a 0 .3μ m d 1μ m 数据 V 5 0 kV 5 .0 1 0 3 n m
(2)当不变时,I与V的关系如 右图,当V改变时,I亦变;而 且随着V周期性的变化。
电子在晶体中的散射是射线 的一个特例,这时的散射平面既 是一个镜面,又是一个晶面,这 种面被称为布拉格面,所产生的 衍射又称为布拉格衍射。由两平 面衍射的波应该有相同的位相, 就是说两束波的波程差应该等于 波长的整数倍。
在玻尔理论中,原子中的电子的角动量、能量都只
能取一些值的整数倍,如电子轨道的角动量 L n ,
他认为这种整数现象是波的特征,如波的衍射现象。
在1923年9-10月,德布罗意一连写了三篇论文,提 到所有的物质粒子都具有波粒二象性,认为任何物体伴随 以波,而且不可能将物体的运动和波的传播分开。
给出粒子的动量p与这伴随着的波的波长λ之间的关 系为:
n 2d cos 2asin cos asin 2 asin
n a sin ——布拉格公式。
因此由加速电压就可以求得波长。将波长带入布拉 格关系式中,得
n1.226 a sin
Ek
E1 2 k
n 1.226
a sin
nk
所以上式中右端是一个常数的整数倍。式子表示, 当V值逐渐变化,其平方根等于一个常数的整数倍时,接 收器收到的电子数量应增加。这与实验结果符合得很好。
射的图样,并证明了测量准确度范围内 h p 的正确性。
实验原理
衍射图象
1937年,戴维逊和汤姆逊因电子的衍射现象,证实了 电子波而共同获得了诺贝尔物理学奖。
此后,琼森(Jonsson)实验作了大量电子的单缝、双 缝、三缝和四缝衍射实验。
单缝 双缝 三缝 四缝
基本 a 0 .3μ m d 1μ m 数据 V 5 0 kV 5 .0 1 0 3 n m
(2)当不变时,I与V的关系如 右图,当V改变时,I亦变;而 且随着V周期性的变化。
电子在晶体中的散射是射线 的一个特例,这时的散射平面既 是一个镜面,又是一个晶面,这 种面被称为布拉格面,所产生的 衍射又称为布拉格衍射。由两平 面衍射的波应该有相同的位相, 就是说两束波的波程差应该等于 波长的整数倍。
在玻尔理论中,原子中的电子的角动量、能量都只
能取一些值的整数倍,如电子轨道的角动量 L n ,
他认为这种整数现象是波的特征,如波的衍射现象。
在1923年9-10月,德布罗意一连写了三篇论文,提 到所有的物质粒子都具有波粒二象性,认为任何物体伴随 以波,而且不可能将物体的运动和波的传播分开。
给出粒子的动量p与这伴随着的波的波长λ之间的关 系为:
原子物理学(X射线)ppt课件
– K系列:谱线: K , K , K , … , – L系列:谱线: L , L , L , … , – M系列:谱线: M , M , M , … , – N系列:谱线: N , N , N , … ,
• K谱线频率莫塞莱经验公式
K 0.2461016(ZK)2H z K1
莫塞莱定律提供了精确测量Z的方法 .
• 康普顿散射的实验装置 • 康普顿散射的实验规律 • 经典考虑 • 量子解释 • 几点讨论 • 康普顿散射与基本测量
.
5.3.1.康普顿散射的实验装置
X 射线在石墨上的散射
X 射线管
晶体
光阑
散射波长
0
j
探
测
器
石墨体 (散射物质. )
X 射线谱仪
.... .. .............................................................................
h
0
n0
h
n
m
v
h0 e j
m0
自由电子(静止)
mv
m c2m oc2h(0-)m oc2hc( 1 0- 1)
(m c2 )2 (m o c2 )2 2 m o c 3 h (1-1) (h c )2 (1-1)2
0
0
(mv)2(h0)2(h)22h02 cosj .
5.3.4.量子解释(3)
5.1.4.X射线的衍射(1)
• 电磁波通过狭缝衍射
–要求波长与狭缝的大小同数量级
• X射线波长数量级:0.1nm
– 0.1nm的狭缝难以制造
• 晶体: 原子(格点)有规则排列的结构
– 晶格常数d : 相邻格点的距离 – 晶格常数d的数量级与X射线波长数量级相同
• K谱线频率莫塞莱经验公式
K 0.2461016(ZK)2H z K1
莫塞莱定律提供了精确测量Z的方法 .
• 康普顿散射的实验装置 • 康普顿散射的实验规律 • 经典考虑 • 量子解释 • 几点讨论 • 康普顿散射与基本测量
.
5.3.1.康普顿散射的实验装置
X 射线在石墨上的散射
X 射线管
晶体
光阑
散射波长
0
j
探
测
器
石墨体 (散射物质. )
X 射线谱仪
.... .. .............................................................................
h
0
n0
h
n
m
v
h0 e j
m0
自由电子(静止)
mv
m c2m oc2h(0-)m oc2hc( 1 0- 1)
(m c2 )2 (m o c2 )2 2 m o c 3 h (1-1) (h c )2 (1-1)2
0
0
(mv)2(h0)2(h)22h02 cosj .
5.3.4.量子解释(3)
5.1.4.X射线的衍射(1)
• 电磁波通过狭缝衍射
–要求波长与狭缝的大小同数量级
• X射线波长数量级:0.1nm
– 0.1nm的狭缝难以制造
• 晶体: 原子(格点)有规则排列的结构
– 晶格常数d : 相邻格点的距离 – 晶格常数d的数量级与X射线波长数量级相同
原子物理学全套精品课件
发现电子——汤姆逊栆糕模型——卢瑟福的 散射实验——否定了汤姆逊模型——无法解释大 角散射——卢瑟福提出核式结构模型——由卢瑟 福模型进一步推出散射理论——散射理论被实验 验证——卢瑟福提出核式结构模型正确。
三、学习原子物理学需要注意的问题:
1、掌握原子物理学研究问题的方法: 根据事实提出合理的假设,看这个 假设能否说明实验事实或与进一步的实验 事实相符或由此推出较深的理论,由进一 步的实验验证理论的正确性。这是一个理 论与实践多次反复的过程。
原子物理学
原子物理学绪论
一、原子物理课程说明
课程性质:原子物理学是物理学专业的一门重要的基础课程。 学时: 48
考试成绩构成说明: 期末考试成绩: 70% 30% 平时成绩(作业、出勤、学习态度、课堂提问):
二、原子物理学的研究对象、内容、研究方法:
1、 原子物理学的研究对象 原子物理学属于近代物理学课程,它主要研究物质在原子 层次内: (1)由什么组成; (2)各种组成成分间有怎样的相互作用; (3)各物质是怎样的运动形态。 等理论,是研究物质微观结构的一门科学。
原子的半径r= 10-10m ∴研究的空间在10-10m数量级以下。
这导致微观世界与宏观世界有很大的不同。具体的 体现就是量子化现象。
2、研究内容:(原子物理、核物理) (1)原子物理部分: 从原子光谱入手研究价电子的运动规律 从元素周期律和X射线入手研究内层电子的排布和运动规律
(2)核物理部分 主要研究核的整体性质如:核力、核模型、核衰变、核反应、 核能的开发和利用及基本粒子的相关知识。
四、原子物理学的发展历史
原子物理学的发展可以分为几个时期: 1、古代的原子论: (1)古希腊的原子论 最具代表性的是公元前4世纪古希腊的哲学家留基伯 (Leucippus)和他的学生得莫克利特(Democritus)提出: 物质结构不是连续的而是分立的学说。他们认为物质是由 许多极小的简单的不可分割的微粒组成。这种微粒称为原子。 这只是一种假设没有试验依据。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p m v
1 2
m
v
2
E
R
40 2Z 1.44fmMeV/0.1nm 3105 Z rad
E (MeV)
E
1-2-3 解释 粒子散射实验(4)
• 带正电物质散射(汤氏模型)(4)
–电子对α粒子的偏转的贡献(对头撞)(1)
动量、动能守恒
m v0 m v1 meve ,
–汤姆逊原子模型与实验不符!
1-3 卢瑟福散射公式
1. 库仑散射公式的推导 2. 卢瑟福公式的推导
1-3-1 库仑散射公式的推导(1)
• 远离靶核的入射能量E,电荷Z1e的带电粒子与电 荷Z2e的靶核散射
散射角
瞄准距离 碰撞参数
1-3-1 库仑散射公式的推导(2)
• 库仑散射公式
b a ctg
• 带正电物质散射(汤氏模型)(6)
– 粒子对金的散射角
E 5MeV Z=79
p 3105 Z rad<104 Z rad<103 rad
p
E
E
–一次散射的散射角 103 rad
–重复散射也不会产生大角度
• 重复散射为随机, 平均之后不会朝一个方向 特别不会稳定地朝某一方向散射
• 卢瑟福的核型结构模型
原子是由带正电的原子核和核外 作轨道运动的电子组成
1-2-2 粒子散射实验(1)
•实验装置
α粒子散射实验:
探测器
α粒子
金原子
1-2-2 粒子散射实验(2)
• 实验结果:
–绝大多数 粒子散射角: ~ 2º- 3º –1/8000的 粒子散射角:> 90º
• 奇怪
rv0
m
dvv dt
mr2 d L
dt
中心力角动量守恒
Z1Z2e2 rv0 m dvv d
4 0 r 2
d dt
dvv
1
4 0
Z1Z2e2
mr2 d
d rv0
原子物理学
原子物理学
• 第一章 原子的位型: 卢瑟福原子模型 • 第二章 原子的量子态: 玻尔模型 • 第三章 原子的精细结构: 电子自旋 • 第四章 多电子原子:泡利原理 • 第五章 X射线 • 第六章 原子核物理概论
第一章 原子的位型: 卢瑟福原子模型
1-1 背景知识 1-2 卢瑟福模型的提出 1-3 卢瑟福散射公式 1-4 卢瑟福公式的实验验证 1-5 行星模型的意义及困难
22
a Z1Z2e2
4 0 E
库仑散射因子
1-3-1 库仑散射公式的推导(3)
• 假定:
1. 单次散射 2. 点电荷,库仑相互作用 3. 核外电子的作用可略 4. 靶原子核静止(靶核重,晶体结构牢固)
1-3-1 库仑散射公式的推导(4)
• 推导库仑散射公式
v F
mav
Z1Z2e2
4 0 r 2
1-1 背景知识
1. 电子的发现 2. 电子的电荷和质量 3. 原子的大小
1-1-1 电子的发现
• 汤姆逊阴极射线实验+ -
–实验装置
D
C
P1
E
H⊙
P2
A ,B
+
–阴极射线(C)狭缝(A,B)金属板(D,E)荧光屏 ––D再,加E加磁电场场HvEv射射线线P2P1P1P2H阴ev极=E射e 线带v=负E/电H
1 2
m v02
1 2
m v12
1 2
meve2
入射的粒子 散射后的粒子 散射后的电子
ve
2m v0 m me
2m v0 m
2v0
p m v0 m v1 meve 2mev0
1-2-3 解释 粒子散射实验(5)
• 带正电物质散射(汤氏模型)(5)
• 带正电物质散射(汤氏模型)(2)
– 正电荷Ze对粒子(2e)的最大力
–散射角
F 1 2Ze2
40 R2
p
p
p’
p
p
–动量的变化~力乘以粒子在原子度过的时间2R/v
1-2-3 解释 粒子散射实验(3)
• 带正电物质散射(汤氏模型)(3)
–相对动量的变化
e2
p 2FR / v 2Ze2 /(40R)
3A
)1 3
4 N A
A/ NA
数量级:r ~ 10-10 m = 1 Å
1-2 卢瑟福模型的提出
1. 原子正负电荷如何分布? 2. 粒子散射实验 3. 解释 粒子散射实验
1-2-1 原子正负电荷如何分布? (1)
• 汤姆逊原子模型
正电荷均匀分布在整个原子球体内, 电子镶嵌在其中(同心球壳上)。
–电子对α粒子的偏转的贡献(对头撞)(2)
p m v0 mv1 meve 2mev0 p m v0 p 2mev0 2me 1 104
p m v0 m 4000
电子引起α粒子的偏转角非常小 可以说几乎没有什么贡献
1-2-3 解释 粒子散射实验(6)
–去掉电场 射线半径r mv2/r= Hev
e/m=v/Hr
1-1-2 电子的电荷和质量(1)
• 密立根油滴实验 (1)
–测得电子电量为:e = 1.6×10-19 C (库仑)
电子质量 me = 9.1×10-31 kg –密立根首次发现了电荷的量子化
• 电荷只能是 e 的整数倍
–若知H+(质子)的荷质比 e
–1[u] ≡ 1个12C 原子质量/12
12克
ቤተ መጻሕፍቲ ባይዱ
1
.
[克] 1.66 10 24[克]
12 N A
NA
–原子质量 MA [u] = 原子量 [u] = A [u]
1-1-3 原子的大小
• 原子半径
–一个原子体积 = 4 r3
3
= 一个原子的质量 / 原子质量密度 =
原子半径 r = (
me 1
mp
mp 1836
1-1-2 电子的电荷和质量(2)
• 密立根油滴实验 (2)
–原子呈中性,原子中具有带负电的电子, 必定有带正电的物质(对于氢原子,这 种带正电荷的物质称为质子)
原子 = 正电物质 + 负电物质 + 不带电物质
1-1-2 电子的电荷和质量(3)
• 原子质量单位 [u]
–相当于炮弹被一张纸反弹回来一样!
1-2-3 解释 粒子散射实验(1)
• 带正电物质散射(汤氏模型)(1)
– 原子的正电荷Ze对入射的 粒子(2e)产生的力
1 2Ze2
F
4
0
1
4 0
r2
2Ze2 R3
r
rR rR
R
r
原子半径
1-2-3 解释 粒子散射实验(2)