两线制4~20mA电流信号能传多远

合集下载

4-20mA是什么?简单易懂,让你不再一脸懵...

4-20mA是什么?简单易懂,让你不再一脸懵...

4-20mA是什么?简单易懂,让你不再一脸懵...工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,它们都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

4-20mA,指的就是最小电流为4mA,最大电流为20mA 。

在工业现场,要完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。

为了解决上述问题和避开相关噪声的影响,我们会用电流来传输信号,因为电流对噪声并不敏感。

4-20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。

肯定有很多朋友会问:为什么选择4-20mA而不是0-20mA呢?很简单,如果0是最小,那么开路故障就检测不到了!那么,为什么偏偏是4mA呢?正常工作时,电流信号不会低于4mA。

当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

有两个原因。

一个原因是为了避免干扰,另一个原因是在4-20mA使用的是两线制,即两根线即是信号线,同时也是电源线,而4mA是为了给传感器提供电路的静态工作电流用。

这个4-20mA控制回路是怎么工作的呢?4-20mA构成基础要件:•24V电源供电•变送器控制4-20mA信号使其与过程变量成比例变化•指示器将4-20mA信号转化为相应过程变量•指示器或控制器I/O输入电阻250Ω分流器生成1-5V输入信号(欧姆定律:电压=电流*电阻,4-20 mA X 250 ohms = 1-5V)通常情况下:1)它们将热电偶或热电阻传感器的温度信号转换为4-20mA信号然后再输出;2)控制器再将4-20mA反译为具体的温度值;3)基于此温度值,控制回路给实现对过程终端控制元件的控制。

电流衰减的几种意见

电流衰减的几种意见

有几种说法,仅供参考1.两线制4~20mA电流信号,在负载符合要求的前提下,传输过程中信号没有线阻损失,不会衰减,抗干扰能力强2、两线制4~20mA输出型变送器的带载能力,按R=50×(V-u)计算,单位Ω,其中,V为实际供电电压,u为变送器允许的最低供电电压, V的取值,要考虑电压波动因素,如不足24VDC的情况3、两线制4~20mA电流信号的理论传输距离,按L=0.5×(R-A)÷B 计算,单位公里, 其中,A 为信号接收端,采集卡、二次表等设备的取样电阻,常见的有250Ω、100Ω 等;B为每芯电缆每公里的电阻值;实际应用要留余量,按理论传输距离L值的50% 估算,俺认为较好4、直流信号传输,电缆最好选用密度80%以上屏蔽的双绞线2.当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。

想传输距离远就需要24VDC功率稳定,保障屏蔽单点接地,避免信号地浮空,同时将铜芯换粗。

能传多远可以简化计算下。

假设供电24VDC为10%波动,变送器保障恒流的最低电压为16V,铜芯工作温度为75℃那么R=(24-1.2-16)/0.02-250=90已知t=75℃时铜的电阻系数ρ=0.0217Ωmm2/m则1.0mm2的铜芯传输距离D=1.0*90/0.0217/2=2073m这是1.0mm2的理想传输距离,实际传输距离最好再减少20%为稳妥。

因为你测一下你来的电缆面积就知道什么叫奸商了。

我说过这是理论值呀,如果要经验值的话1.0mm2可以拉1000m,1.5mm2可以拉1500m。

但是这在屏蔽呀、电源电压呀都按规范来的情况下。

3.4-20mA电流传输距离过远确实会存在干扰和衰减,一般情况下,传输距离越远,需要使用的电缆线截面积越大;大概情况可以这样区分:小于80m 0.75mm小于110m 1.0mm小于170m 1.5mm小于260m 2.5mm小于900m 4.0mm至于更长基本上也没有这个必要,一般情况下中控室和现场不会超过1km吧4.这得看输出信号的带载能力,大多数DCS AO卡都能带700欧姆负载,如果是接齐纳安全栅和电气阀门定位器的话,阀门定位器负载是250欧,齐纳栅上有130欧姆,还有个0.7V 的压降,电流按20mA算,相当于35欧电阻,安徽天康的1.5mm2电缆1公里13.5欧姆,来回是27欧姆,700-250-130-35=285欧,285/27=10.556公里,所以基本上是没问题的,如果是隔离安全栅那就可以接更远了。

4~20MA信号传输距离

4~20MA信号传输距离

4~20mA信号传送距离在论坛上有个帖子问:“4~20mA信号能否传送1KM?”,在其它论坛上也见过类似问题的帖,特发此文讨论。

看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?ﻫ但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。

因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。

ﻫ决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。

已知:RL=250Ω,Vo=24V.DC 其允许误差为24V +10% -5%,ﻫ电源允许波动△V=24V*5%=1.2V,ﻫImax=20mA=0.02A,ﻫ最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此dlr取16.28V。

即Vmin=16.28≤24-1.2-0.02(250+r)则连接导线的电阻r=24-1.2-16.28/0.02-250=76Ω仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。

已知t=75℃时铜的电阻系数ρ=0.0217Ω.mm2/m。

ﻫ根据L=Sr/ρ 就可计算出铜导线的最大长度。

用标称截面1.5mm2导线时L=1.5*76/0.0217=5253mﻫ用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m因为仪表的接线往返是两根线,所以计算结果应除2即:ﻫ用标称截面1.5mm2导线时L1=5253.5/2=2626mﻫ用标称截面0.8mm2导线时L2=2801.8/2=1400mﻫ在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。

采用4—20mA的电流来传输模拟量

采用4—20mA的电流来传输模拟量

采用4—20mA的电流来传输模拟量工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,这些都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰,因为工业现场的噪声电压的幅度可能达到数V,但是噪声的功率很弱,所以噪声电流通常小于nA级别,因此给4-20mA传输带来的误差非常小;电流源内阻趋于无穷大,导线电阻串联在回路中不影响精度,因此在普通双绞线上可以传输数百米;由于电流源的大内阻和恒流输出,在接收端我们只需放置一个250欧姆到地的电阻就可以获得0-5V的电压,低输入阻抗的接收器的好处是nA级的输入电流噪声只产生非常微弱的电压噪声。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC 或者GND),可节省一根线,所以现在基本上将四线制变送器称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,变送器在电路中相当于一个特殊的负载,这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此在量程范围内,变送器通常只有24V,4mA供电(因此,在轻负载条件下高效率的DC/DC电源(TPS54331,TPS54160),低功耗的传感器和信号链产品、以及低功耗的处理器(如MSP430)对于两线制的4-20mA收发非常重要)。

这使得两线制传感器的设计成为可能而又富有挑战。

一般需要设计一个VI转换器,输入0-3.3v,输出4mA-20mA,可采用运放LM358,供电+12v。

20ma电流环传输距离

20ma电流环传输距离

20ma电流环传输距离
4-20mA电流环是工业自动化领域中常用的一种信号传输方式,通常用于传输传感器测量的数据。

这种传输方式的优点是能够有效抵抗长距离传输过程中的噪声干扰,确保数据的准确性和稳定性。

传输距离主要取决于几个因素:
1.电缆的阻抗:电缆的阻抗越大,传输距离就越短。

为了增加传输距离,应使用低阻抗的电缆。

2.电源电压:供电电压越高,能够支持更长的传输距
离。

3.负载阻抗:接收设备的输入阻抗越大,支持的传输
距离就越长。

4.信号损耗:信号在传输过程中会有损耗,当损耗达
到一定程度时,信号的质量会下降,影响数据的准
确性。

通常情况下,4-20mA电流环的传输距离可以达到数百米到几千米不等,具体距离还需要根据上述因素综合考虑。

为了确保信号质量,在长距离传输时应尽量使用优质的电缆,并考虑使用信号放大器或者隔离器来提高信号的稳定性和抗干扰能力。

两线制4-20ma原理

两线制4-20ma原理

两线制4-20ma原理4-20mA(毫安)是一种常见的电流信号传输标准,常用于工业控制系统中,例如传感器和执行器之间的信号传递。

两线制(Two-Wire)4-20mA是指使用两根导线进行信号传输的系统。

以下是两线制4-20mA的基本原理:1.电流范围:4-20mA的范围表示电流信号的范围。

在正常运行情况下,传感器或设备产生的电流在4mA到20mA之间变化,对应了相应的测量范围。

4mA通常表示零点,而20mA表示满量程。

2.两线制:使用两根导线进行信号传输,其中一根是电流的信号线,另一根是信号线和电源的共地线。

这简化了布线,降低了系统的成本,因为只需要两根导线就能传输电源和信号。

3.电流信号:在4-20mA标准中,电流信号的范围对应于测量值的范围。

例如,一个温度传感器可能在25摄氏度时输出4mA的电流,而在75摄氏度时输出20mA的电流。

这种方式对比电压信号更抗干扰,因为电流信号不容易受到电阻和线路阻抗的影响。

4.设备供电:在两线制4-20mA系统中,通常使用环回供电(Loop-Powered)方式。

即,传感器或设备通过同一根导线接收电源供电。

这就要求设备能够工作在非常低的电流下,以确保在电流范围内提供足够的电源。

5.信号解析:接收端的控制系统测量电流值,并将其解析为相应的物理量,例如温度、压力或液位。

通常,控制系统中有专门的模块或电路用于解析4-20mA电流信号。

总体来说,两线制4-20mA系统的优势在于抗干扰性强、布线简单、成本相对较低,因此在工业环境中被广泛应用于传感器和执行器的信号传输。

两线制4-20mA变送器的电路设计

两线制4-20mA变送器的电路设计

两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

两线制4-20ma原理

两线制4-20ma原理

两线制4-20ma原理两线制4-20mA电流回路是工业自动化中一种常见的模拟信号传输方式。

它在工业控制现场中广泛应用,用于传输测量、监测和控制设备的模拟信号。

该回路的原理很简单,是通过将模拟信号转换为标准的4mA到20mA的电流,然后通过两根导线传输至远程设备,最后再将电流信号转换回模拟信号进行处理。

以下是该回路的详细解析。

1.原理概述两线制4-20mA电流回路采用4mA到20mA的电流范围来表示模拟量的变化。

其中4mA表示信号的最小值,20mA表示信号的最大值。

这种电流范围相对较大,有助于提高信号传输的抗干扰能力,特别适用于工业环境中电磁干扰较多的场合。

2.发送端在发送端,首先需要将模拟信号转换为相应的电流信号。

通常使用模拟信号转换模块,例如模拟电流输出模块,将0-10V或0-20mA等模拟信号转换为4-20mA的电流输出信号。

此时,电流根据输入模拟信号的大小进行调节,当模拟信号为0时,输出电流为4mA;当模拟信号达到最大值时,输出电流为20mA。

3.传输线路经过模拟信号转换后,输出的4-20mA电流信号将通过两根导线进行传输。

这两根导线通常称为“回路电源线”和“回路信号线”。

回路电源线提供电流回路所需的电源供电,实时监测电流波动情况;而回路信号线则用于传输电流信号。

4.接收端在接收端,需要将电流信号重新转换为模拟信号进行处理。

通常使用接收模块,例如模拟电流输入模块,将4-20mA的电流信号转换为0-10V或0-20mA等模拟信号。

接收模块会根据电流信号的大小,将其转换为相应的模拟信号输出。

5.电源供电两线制4-20mA电流回路的电源供电方式有两种常见的形式:一是使用回路电源,即在回路电源线中提供电源供电;二是使用第三方电源供电,即通过外部电源为回路提供电源。

回路电源通常具有一定的过压和短路保护功能,确保电源稳定和回路安全。

6.优势和应用两线制4-20mA电流回路在工业自动化中具有以下优势:-高抗干扰能力:电流信号相对于电压信号,具有更好的抗干扰能力,能够有效抵御外界电磁干扰对信号传输的影响。

4~20MA信号传输距离之欧阳光明创编

4~20MA信号传输距离之欧阳光明创编

4~20mA信号传送距离欧阳光明(2021.03.07)在论坛上有个帖子问:“4~20mA信号能否传送1KM?”,在其它论坛上也见过类似问题的帖,特发此文讨论。

看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。

因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。

决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。

已知:RL=250Ω,Vo=24V.DC 其允许误差为24V +10% -5%,电源允许波动△V=24V*5%=1.2V,Imax=20mA=0.02A,最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此dlr取16.28V。

即Vmin=16.28≤24-1.2-0.02(250+r)则连接导线的电阻 r=24-1.2-16.28/0.02-250=76Ω仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。

已知t=75℃时铜的电阻系数ρ=0.0217Ω.mm2/m。

根据L=Sr/ρ 就可计算出铜导线的最大长度。

用标称截面1.5mm2导线时L=1.5*76/0.0217=5253m用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m因为仪表的接线往返是两根线,所以计算结果应除2即:用标称截面1.5mm2导线时L1=5253.5/2=2626m用标称截面0.8mm2导线时L2=2801.8/2=1400m在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。

基础知识两线制4~20mA电流信号究竟能传多远?

基础知识两线制4~20mA电流信号究竟能传多远?

基础知识两线制4~20mA电流信号究竟能传多远?两线制4~20mA电流信号能传多远呢?今天仪控君就来给大家科普一下!1.两线制4~20mA变送器的电流信号究竟能传多远呢?干扰因素:①与激励电压高低有关;②与变送器允许的最小工作电压有关;③与板卡设备采集电流用的取压电阻大小有关;④与导线电阻的大小有关。

通过这四项有关量,可以计算出4~20mA电流信号的理论传输距离。

2.要使4~20mA信号,无损失在两线回路里传输,必须满足欧姆定律。

即满足:(激励电压-变送器允许的最小工作电压)≥输出电流×电流环路总电阻当输出电流I=20mA,即0.02A时,上式取等号,则:电流环路总电阻=(激励电压-变送器允许的最小工作电压)÷0.03、将这个计算值记作r,即r=(激励电压-变送器允许的最小工作电压)×50,单位Ω这个r,业界称之为电流信号的负载电阻,也就是电流信号的最大带载能力。

3.业界为什么要特意给出这个r的计算式呢?那是由于:4~20mA电流信号能传多远,实质是实际电阻,与r 比大小的问题。

当环路实际总电阻>r时,就算传输距离为0,变送器也是没办法输出20mA电流的;当环路实际总电阻=r时,变送器输出20mA电流,传输距离只能为0米(超导除外);当环路实际总电阻<r时,变送器输出20mA电流,才能在环路中有效传输若干米。

①由于板卡采集电流用的取压电阻为定值,故导线电阻大小,决定着传输距离的长短;②导线电阻越小,信号传输的距离越远;③导线若是超导,电阻≈0,那电流传到美国去也不是事,传到火星去也没问题。

综上所述,电流环路的总电阻R,必须满足R≤r,否则4~20mA 信号,无法正常传输。

4.电流环路的总电阻R,由板卡设备上采集电流信号的取压电阻R1,和导线电阻R2组成。

取压电阻R1,多见250Ω、150Ω、100Ω、50Ω,而今流行100Ω~40Ω等小电阻取压。

导线电阻R2=电导率×导线总长度÷导线横截面积=单位长度电阻×导线总长度=单位长度电阻×传输距离×2编个小题算一算4~20mA电流信号的理论传输距离L(单位千米),A采用2.5平方毫米双绞线,每1000米的电阻=7.5Ω,用此导线传输信号A自研自造的SC322无零漂压力变送器,最小允许激励电压=10VDC,DCS板卡上采集电流用的取压电阻R1=100Ω,DCS板卡上的供电电压=24VDC,电流信号的最大传输距离距离为多少?计算如下:①先计算变送器的负载电阻r,r=(24-10)×50=700Ω②再写出环路总电阻R的算式:R=R1+R2=100+7.5×L×2=100+15L 单位Ω③由于有R≤r,即(100+15L)≤700计算得:L≤40千米,即最大传输距离为40000米。

4~20ma变送器延长传送距离的措施

4~20ma变送器延长传送距离的措施

4~20ma变送器延长传送距离的措施一、对“4~20mA,二线制变送器的信号线最长可铺设多长”的讨论一般4~20ma的变送器的供电源均为24V,其输出末端均为PNP型晶体管构成的电流源形式,见下图:上左图中G2为PNP型晶体管,其发射极接一精密电阻R4(图为250欧),R4的电压跟随其基极对+24V电压Ux而变化,由集电极对外输出构成的电流源。

Ux是由内部电路产生的根据外被测信号的大小变换的电压,在被测的模拟信号范围内Ux的变化值,使集电极输出电流为:4~20ma。

此时G2管发射极对+24V的电位差为:1~5V,G2管发射极对地电位为:4ma时Ue=24-4×0.25=23V;20ma时Ue=24-20×0.25=19V;上右侧图为变送器输出接终端负载Rf的等效电路图,其Ro为传送导线的电阻,此时集电极A点对地电压:UA=I·(R0+Rf)……(1)式中I 为4~20ma。

讨论一、传送导线电阻相同时,不同截面积的导线传送距离:如已知传送导线的电阻Ro及其电阻密度ρ,其导线截面积S与长度L的关系式如下:Ro=ρ.L/ S (2)由(2)式可知:如传送导线的电阻值保持不变,其导线截面积变大,则导线的长度也变长,即传送距离变远。

其导线截面积变小,则导线的长度也变短,即传送距离变近。

故一般发现传送距离不够长时,可采用加大导线线径的办法来实现。

但过粗的导线会加导线重量,即提高材料成本。

讨论二、同一个变送器(如其输出晶体管的发射电阻=250Ω),而终端电阻不同时:1、如终端电阻Rf=250Ω,当电流I=20ma时,B点对地电压UB=20×0.25=5V,如Ro=0,则UA也=5V。

G2的管压降=19-5=14V。

随着Ro由0逐渐变大,其Ro二端的电压也由0逐渐增加,使UA电压随之增大,G2管压随之变小。

为避免信号失真,容许G2管最小管压降=1V,即UA=18V,则Ro=(18-5)÷0.02=650Ω.即传送导线的电阻≤650Ω时信号不会失真。

两线制4-20mA变送器的电路设计

两线制4-20mA变送器的电路设计

两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

为什么采用4—20mA的电流来传输模拟量?

为什么采用4—20mA的电流来传输模拟量?

工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,这些都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰,因为工业现场的噪声电压的幅度可能达到数V,但是噪声的功率很弱,所以噪声电流通常小于nA级别,因此给4-20mA传输带来的误差非常小;电流源内阻趋于无穷大,导线电阻串联在回路中不影响精度,因此在普通双绞线上可以传输数百米;由于电流源的大内阻和恒流输出,在接收端我们只需放置一个250欧姆到地的电阻就可以获得0-5V的电压,低输入阻抗的接收器的好处是nA 级的输入电流噪声只产生非常微弱的电压噪声。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,所以现在基本上将四线制变送器称之为三线制变送器。

其实大家可能注意到,4-20mA电流本身就可以为变送器供电,变送器在电路中相当于一个特殊的负载,这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此在量程范围内,变送器通常只有24V,4mA供电(因此,在轻负载条件下高效率的DC/DC电源(TPS54331,TPS54160),低功耗的传感器和信号链产品、以及低功耗的处理器(如MSP430)对于两线制的4-20mA收发非常重要)。

这使得两线制传感器的设计成为可能而又富有挑战。

一般需要设计一个VI转换器,输入0-3.3v,输出4mA-20mA,可采用运放LM358,供电+12v。

4-20mA信号究竟能够传输多远

4-20mA信号究竟能够传输多远

4-20mA信号究竟能够传输多远4-20mA信号究竟能够传输多远前言我国电气自动化仪表从技术发展角度分类,主要分为DDZ-Ⅰ型、DDZ-Ⅱ型、DDZ-Ⅲ型和DDZ-S型等几个类型,目前基本上都是电3型和电4型仪表,分别是指DDZ-Ⅲ型和DDZ-S型。

它们的主要特点是:电动单元组合仪表(DDZ)特点研制时间直流电流信号范围DDZ-Ⅰ型仪表以电子管为核心元件60年代前后无DDZ-Ⅱ型仪表以晶体管为核心元件 60年代0-10mADDZ-Ⅲ型仪表以集成电路为核心元件70年代4-20mADDZ-S型仪表以微电脑为核心的智能型仪表70年代后期4-20mA对于Ⅲ型仪表和S型仪表之间的模拟信号均采用标准的4-20mA.DC(电流传输)或1-5V.DC(电压接收)。

参考标准GB/T3369.1-2008和GB/T 3369.2-2008。

1直流电压信号为何不宜用于长距离传输?在《GB/T 3369.2-2008 过程控制系统用模拟信号第2部分:直流电压信号》标准中描述:“与GB/T 3369.1-2008所规定的模拟直流电流信号相反,本部分所规定的模拟直流电压信号不宜用作长距离的传输”。

主要原因是电压信号经过长距离传输会有所衰减,而且容易受到干扰。

图1:电压信号传输时会有衰减图2:电流信号传输时无衰减正是由于电压信号有衰减,所以当电压信号传输时,要求接收端必须呈现高阻抗,即图1中的Ri越大越好,而输入阻抗越高,越容易受到干扰。

因此,直流电压信号不宜用于长距离传输。

24-20mA电流信号究竟能够传输多远?4-20mA电流信号的传输距离主要与以下几个因素有关:1. 信号的激励电压Ue;2. 仪表的最低工作电压Umin;3. 接收设备的负载(采样)电阻RL;4. 导线电阻r。

图3:二线制变送器电流信号传输回路其中,Uo是变送器的供电电压,必须在满载时(电流I=20mA)保证Uo≥Umin。

即:。

根据这个公式,可以计算出在变送器处于最低工作电压时,最大的导线电阻。

两线制压力变送器设计(4-20mA原理)x.doc

两线制压力变送器设计(4-20mA原理)x.doc

两线制压力变送器设计2008-01-24 14:27分类:字号:小开篇: 认识两线制传感器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

两线制变送器和四线制信号传输方式

两线制变送器和四线制信号传输方式

二线制传输方式中,供电电源、负载电阻、变送器是串联的,即二根导线同时传送变送器所需的电源和输出电流信号,目前大多数变送器均为二线制变送器;四线制方式中,供电电源、负载电阻是分别与变送器相连的,即供电电源和变送器输出信号分别用二根导线传输。

......请看变送器八问八答。

一.什么是两线制电流变送器?什么是两线制?两线制有什么优点?两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。

两线制与三线制(一根正电源线,两根信号线,其中一根共G ND) 和四线制(两根正负电源线,两根信号线,其中一根GND)相比,两线制的优点是:1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用;2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;两线制与三线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。

3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制....5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。

6,在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。

三线制和四线制变送器均不具上述优点即将被两线制变送器所取代,从国外的行业动态及变送器心片供求量即可略知一斑,电流变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米甚至更远。

设备现场的环境较为恶劣,强电信号会产生各种电磁干扰,雷电感应会产生强浪涌脉冲,在这种情况下,单片机应用系统中遇到的一个棘手问题就是如何在恶劣环境下远距离可靠地传送微小信号。

电流输出传感器采用两线制4-20mA输出原因分析

电流输出传感器采用两线制4-20mA输出原因分析

电流输出传感器采用两线制4-20mA输出原因分析电流输出传感器采用两线制4-20mA输出原因分析电流输出传感器一般情况下都是选择4-20mA输出,如压力传感器、温度传感器等,而工业上都是使用4-20mA输出。

对于为什么不选择其它的输出数值,而只选择4-20mA输出?采用4-20mA输出的原因电流输出传感器采用4-20mA输出的一个重要原因是,采用电流信号的原因是不容易受干扰,且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

采用两线制输出的原因分析电流型变送器将物理量转换成4-20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线公用VCC或者GND,可节省一根线,称之为三线制变送器。

其实大家可能注意到,4-20mA 电流本身就可以为变送器供电。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4-20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

以上是电流输出型传感器采用两线制输出的可能性分析。

另外,从实际功用的角度看,在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元。

因此在应用中,两线制传感器必然是首选。

综合以上的分析,不难理解,传感器在选择的时候一般都是4-20mA信号输出,这样信号不容易受干扰而且安全可靠,两线制4-20mA输出更可以节省传感器成本等等,这些原因使得以电流输出为主的压力传感器、温度传感器等产品在工业上普遍使用的是两线制4-20mA输出。

仪表信号传送距离

仪表信号传送距离

信号传送距离看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。

因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。

决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。

已知:RL=250Ω,Vo=24V.DC 其允许误差为24V +10% -5%,电源允许波动△V=24V*5%=1.2V,Imax=20mA=0.02A,最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此笔者取16.28V。

即Vmin=16.28≤24-1.2-0.02(250+r)则连接导线的电阻 r=24-1.2-16.28/0.02-250=76Ω仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。

已知t=75℃时铜的电阻系数ρ=0.0217Ω.mm2/m。

根据L=Sr/ρ就可计算出铜导线的最大长度。

用标称截面1.5mm2导线时L=1.5*76/0.0217=5253m用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m因为仪表的接线往返是两根线,所以计算结果应除2即:用标称截面1.5mm2导线时L1=5253.5/2=2626m用标称截面0.8mm2导线时L2=2801.8/2=1400m在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。

4~20MA信号传输距离

4~20MA信号传输距离

4~20mA信号传送距离在论坛上有个帖子问:“4~20mA信号能否传送1KM?”,在其它论坛上也见过类似问题的帖,特发此文讨论。

看了标题有的人可能会说:发送4-20mA.DC电流信号的仪表都具有恒流特性,采用电流源传送,其精度与导线的电阻不是无关吗?既然这样还用讨论4-20mA.DC信号的传送距离吗?但以上的说法是针对特定条件而言的,应看到当仪表供电电源电压低至一定程度或导线电阻大到一定程度时,4-20mA.DC电流传送信号将产生误差。

因此我们讨论的是4-20mA.DC信号在保证规定的精度下的传送距离,讨论传送距离实质就是确定电流源仪表连接导线的最大长度。

决定电流源仪表导线长度的参数有:负载电阻RL及连接导线的电阻r;供电电压Vo及其波动范围△V;仪表的最大输出电流Imax;仪表能维持最大工作电流时的最低供电电压Vmin。

已知:RL=250Ω,Vo=24V.DC 其允许误差为24V +10% -5%,电源允许波动△V=24V*5%=1.2V,Imax=20mA=0.02A,最低供电电压Vmin各种型号仪表的此值是不相同的,因为这个参数还与电子元件的特性有关系,从产品样本来看,有的仪表最低的可达12V(但是指无负载时),大多仪表在15--17V之间的居多;在此dlr取16.28V。

即Vmin=16.28≤24-1.2-0.02(250+r)则连接导线的电阻 r=24-1.2-16.28/0.02-250=76Ω仪表连接电线用的是铜线,其截面大多选择S=1.5和0.8mm2的居多,在《电工手册》上有铜电线在20℃和75℃时的电阻系数,在选择铜导线时应考虑到使用现场的环境情况,因此最好选择75℃时的电阻系数来计算较妥。

已知t=75℃时铜的电阻系数ρ=0.0217Ω.mm2/m。

根据L=Sr/ρ 就可计算出铜导线的最大长度。

用标称截面1.5mm2导线时L=1.5*76/0.0217=5253m用标称截面0.8mm2导线时L=0.8*76/0.0217=2801m因为仪表的接线往返是两根线,所以计算结果应除2即:用标称截面1.5mm2导线时L1=5253.5/2=2626m用标称截面0.8mm2导线时L2=2801.8/2=1400m在实际应用中决定导线的真实长度要比计算值略低才行,因为电线的标称截面几乎都是偏高的。

变送器的输出信号的传输距离有没有要求?如果有,要求是怎么规定的?

变送器的输出信号的传输距离有没有要求?如果有,要求是怎么规定的?

变送器的输出信号的传输距离有没有要求?如果有,要求是怎
么规定的?
以前也思考过同样的问题,但是这个问题必须具体情况具体分析。

第一种情况
以使用的电容式变送器举例,采用两线制信号和电源共线,电源为24VDC,输出信号为4-20mA,其最大输出信号21.6mA,最小工作电压10.5V,那么它的负载电阻为600Ω。

比如用的是隔爆电容式变送器要求导线电阻和变送器设备等电阻之和不超过600Ω,那么对隔爆电容式变送器的两线制传输距离没限制。

第二种情况
使用的是本安型电容式变送器,其两线制传输距离有限定。

主要原因在于本安是系统,而不是单台仪表,由于关联的设备需配备安全栅,因此对导线传输距离有要求。

由于安全栅有最大允许电感和电容,比如说现在导线的电感电容和变送器没有保护的电感电容超过安全栅的最大允许的规定限,那么此台变送器失去本安功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:两线制4~20mA电流信号能传多远?
1、两线制4~20mA变送器的电流信号究竟能传多远呢?
①、与激励电压高低有关,
②、与变送器允许的最小工作电压有关,
③、与板卡设备采集电流用的取压电阻大小有关,
④、与导线电阻的大小有关
通过这四项有关量,可以计算出4~20mA电流信号的理论传输距离
2、要使4~20mA信号,无损失在两线回路里传输,必须满足欧姆定律,
即满足:(激励电压-变送器允许的最小工作电压)≥输出电流×电流环路总电阻
当输出电流I=20mA,即0.02A时,上式取等号,则:
电流环路总电阻=(激励电压-变送器允许的最小工作电压)÷0.02
将这个计算值记作r,即r=(激励电压-变送器允许的最小工作电压)×50 ,单位Ω
这个r,业界称之为电流信号的负载电阻,也就是电流信号的最大带载能力
3、业界为啥要特意给出这个r的计算式呢?
那是由于:4~20mA电流信号能传多远,实质是实际电阻,与r比大小的问题,
当环路实际总电阻>r时,就算传输距离为0,变送器也是没办法输出20mA电流的,
当环路实际总电阻=r时,变送器输出20mA电流,传输距离只能为0米,(超导除外)
当环路实际总电阻<r时,变送器输出20mA电流,才能在环路中有效传输若干米,
①、由于板卡采集电流用的取压电阻为定值,故导线电阻大小,决定着传输距离的长短
②、导线电阻越小,信号传输的距离越远
③、导线若是超导,电阻≈0,那电流传到美国去也不是事,传到火星去也木问题
综上:电流环路的总电阻R,必须满足R≤r ,否则4~20mA信号,无法正常传输
4、电流环路的总电阻R,由板卡设备上,采集电流信号的取压电阻R1,和导线电阻R2组成取压电阻R1,多250Ω、150Ω、100Ω、50Ω,而今流行100Ω~40Ω等小电阻取压导线电阻
R2=电导率×导线总长度÷导线横截面积=单位长度电阻×导线总长度=单位长度电阻×传输距离×2
5、编个小题算一算,4~20mA电流信号的理论传输距离L(单位千米)
帅克转手倒卖的2.5平方毫米双绞线,,每1000米的电阻=7.5Ω,用此导线传输信号帅克自研自造的SC322无零漂压力变送器,,最小允许激励电压=10VDC DCS板卡上采集电流用的取压电阻R1=100Ω DCS板卡上的供电电压=24VDC
计算如下:
①、先计算变送器的负载电阻r,r=(24-10)×50=700 Ω
②、再写出环路总电阻R的算式,R=R1+R2=100+7.5×L×2=100+15L 单位Ω
③、由于有R≤r,即(100+15L )≤ 700 计算得:
L ≤40千米,即最大传输距离为40000米
Unrestricted。

相关文档
最新文档